Face processing for visual- and audio-visual speech

Zhiqi Kang¹, Mostafa Sadeghi², Xavier Alameda-Pineda¹, Radu Horaud¹, Jacob Donley³ and Anurag Kumar³ Inria ¹Grenoble, ²Nancy, France, and ³Meta, Redmond, USA

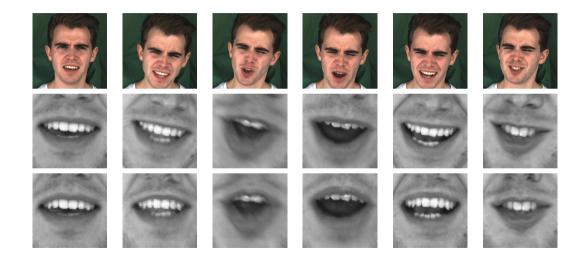
August 23, 2022

1/17

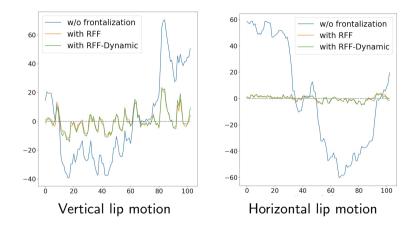
Why visual speech?

- Visual perception plays a crucial role in speech communication, e.g. human-to-human and human-to-robot:
 - **()** Lip, jaw, and tongue movements non rigid are controlled by speech production.
 - Head movements rigid play linguistic functions (they mark the structure of the ongoing discourse).
 - **③** Visual information is not affected by acoustic noise or by competing audio source.
- But:
 - Non-rigid facial movements cannot be easily separated from rigid head movements, and
 - Visual information comes with its own caveats, e.g. occluding objects, large variabilities in pronunciation, low resolution, non-verbal lip movements, tongue movements are not observable, etc.

The impact of rigid head motions onto lip movements (i)



The impact of rigid head motions onto lip movements (ii)



Today's state of affairs

- Until recently, the vast majority of methods combine noisy speech with clean lip motions, for such tasks as audio-visual speech recognition and speech enhancement;
- Discriminative deep learning techniques have been recently trained with in-the-wild data collections, demonstrating some degree of robustness with respect to visual "noise", e.g. small head movements, low resolution images, self occlusions, etc.
- Nevertheless:
 - deep lip reading remains a very difficult task, currently limited to small vocabulary isolated word recognition.
 - the vast majority of audio-visual speech processing techniques are discriminatively trained very large collections of videos are necessary with associated ground truth.

There is a gap between visual- and audio speech recognition

- State of the art lip reading achieves isolated word recognition (IWR) with a small vocabulary: 500-1000 words.
- There are approximatively 170,000 English words in current use, out of 1,000,000.
- Large vocabulary continuous speech recognition (LVCSR) which is the state of the art in commercially available ASR systems is out of reach with lip reading.
- Instead we address audio-visual processing, and in particular audio-visual speech enhancement (AVSE)

Challenge: How to separate rigid head movements and non-rigid facial movements?

- Face deformation model 3DMM (3D morphable model),
- Rigid motion model scale, 3D rotation and translation 1+3+3 parameters,
- Robust statistical inference of the model parameters,
- Dynamic face frontalization.

Expression-preserving face frontalization

X₁... **X**_N: 3D facial landmarks

Frontal landmark model:

- Neutral face (means): Y₁...Y_N
- Non-rigid variabilities (covariances)

Deformable face model:

 $oldsymbol{V}_n = oldsymbol{U}_n oldsymbol{s} + \overline{oldsymbol{M}}_n$

Deformable face model

Frontal landmarks are predicted by:

$$\boldsymbol{Y}_n = \boldsymbol{\mathsf{U}}_n \boldsymbol{s} + \overline{\boldsymbol{M}}_n + \boldsymbol{F}_n, \quad \forall n \in \{1 \dots N\}$$

with:

 \mathbf{U}_n : reconstruction matrix (learned),

 \overline{M}_n : neutral face (learned),

s: low-dimensional face embedding (shape parameters),

 \boldsymbol{F}_n : reconstruction error.

Rigid motion model

Frontal landmarks are predicted by:

$$\boldsymbol{Y}_n = \rho \mathbf{R} \boldsymbol{X}_n + \boldsymbol{T} + \boldsymbol{D}_n, \quad \forall n \in \{1 \dots N\}$$

with:

- ρ : global scale
- R: 3D rotation matrix,
- T: 3D translation vector,
- D_n : error vector (non-rigid motion, noise, outliers).

Robust estimator: generalized Student-t distribution

$$E_{n} = \underbrace{\rho \mathbf{R} \mathbf{X}_{n} + \mathbf{T}}_{\text{rigid}} - \underbrace{(\mathbf{U}_{n} \mathbf{s} + \overline{\mathbf{M}}_{n})}_{\text{deformable}}$$

$$\mathcal{L}(\boldsymbol{\theta} | \mathbf{X}) = -\sum_{n=1}^{N} \log p(\mathbf{E}_{n}; \boldsymbol{\theta})$$

$$p(\mathbf{E}_{n}; \boldsymbol{\theta}) = \int_{0}^{\infty} \mathcal{N}(\mathbf{E}_{n}; 0, \omega_{n}^{-1} \boldsymbol{\Sigma}) \mathcal{G}(\omega_{n}; \mu, 1) d\omega_{n}$$

$$\boldsymbol{\theta} = (\rho, \mathbf{R}, \mathbf{T}, \mathbf{s}, \boldsymbol{\Sigma}, \mu)$$
(1)

Direct minimization of (1) is intractable...

11/17

Inference

Initialization

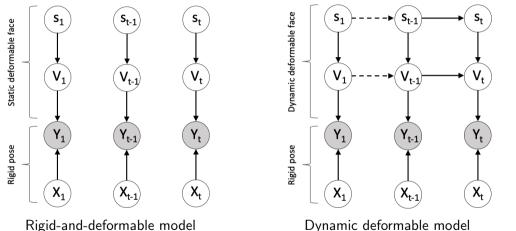
Expectation:

 ${\, \bullet \, }$ Evaluate the weight posteriors and the weight means $\overline{w}_{1:N}$

Maximization:

- Estimate the rigid parameters $\rho, \mathbf{R}, \boldsymbol{T}$
- ${\ensuremath{\,\circ\,}}$ Estimate the non-rigid parameters s
- Estimate the pdf parameters $\mathbf{\Sigma}, \mu$

Graphical models



(doubly latent model \rightarrow Kalman filter equivalence)

13/17

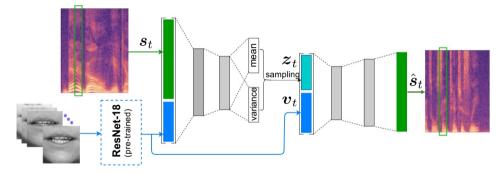
Examples from the Oulu dataset

(a) Faces recorded with the 30° camera

(b) Faces recorded with the 0° camera

(c) Proposed (self-occluded regions are displayed in white)

Audio-visual speech enhancement pipeline



For more details please consult [Sadeghi et al 2020, 2021], [Kang 2022].

Speech enhancement results

Measure	STOI [0, 1] ↑					PESQ [-0.5, 4.5] ↑					SI-SDR (dB) ↑				
SNR (dB)	-10	-5	0	5	10	-10	-5	0	5	10	-10	-5	0	5	10
Noisy audio input	0.40	0.53	0.66	0.78	0.86	0.90	1.24	1.67	2.05	2.42	-15.92	-10.62	-5.44	-0.40	4.60
A-VAE Leglaive et al. MLSP'18	0.41	0.56	0.70	0.79	0.85	0.93	1.51	2.02	2.43	2.73	-7.01	-0.29	5.08	9.41	12.74
AV-CVAE Sadeghi et al. TASLP'20	0.42	0.57	0.69	0.79	0.84	1.02	1.56	2.06	2.42	2.73	-6.96	-0.04	5.01	9.06	12.25
Res-AV-CVAE-DFF	0.43	0.60	0.73	0.79	0.85	1.13	1.71	2.20	2.48	2.77	-6.35	0.28	5.87	9.42	12.77

Table: Average STOI, PESQ, SI-SDR values.

Examples & paper download:

ICASSP'22:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9746401
IJCV submission: https:

//team.inria.fr/robotlearn/research/facefrontalization-benchmark/

Conclusions

- We proposed robust face frontalization (RFF) and its dynamic extension (DFF).
- Both RFF and DFF rely on 68 facial landmarks:
 - Sufficient to show that face frontalization improves audio-visual speech performance,
 - Insufficient to really boost the performance of audio-visual speech.
- Future work directions:
 - It is planned to use dense facial features to increase the impact of the dynamic model.
 - *Conversational speech* (CHIME-6 Challenge) may benefit from visual processing: Where is the speaker in the room? Who speaks to whom? Who speaks when? etc.