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Why visual speech?

Visual perception plays a crucial role in speech communication, e.g.
human-to-human and human-to-robot:

1 Lip, jaw, and tongue movements – non rigid – are controlled by speech production.
2 Head movements – rigid – play linguistic functions (they mark the structure of the

ongoing discourse).
3 Visual information is not affected by acoustic noise or by competing audio source.

But:
1 Non-rigid facial movements cannot be easily separated from rigid head movements,

and
2 Visual information comes with its own caveats, e.g. occluding objects, large

variabilities in pronunciation, low resolution, non-verbal lip movements, tongue
movements are not observable, etc.
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The impact of rigid head motions onto lip movements (i)
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The impact of rigid head motions onto lip movements (ii)

Vertical lip motion Horizontal lip motion
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Today’s state of affairs

Until recently, the vast majority of methods combine noisy speech with clean lip
motions, for such tasks as audio-visual speech recognition and speech
enhancement;

Discriminative deep learning techniques have been recently trained with in-the-wild
data collections, demonstrating some degree of robustness with respect to visual
“noise”, e.g. small head movements, low resolution images, self occlusions, etc.

Nevertheless:

deep lip reading remains a very difficult task, currently limited to small
vocabulary isolated word recognition.
the vast majority of audio-visual speech processing techniques are discriminatively
trained – very large collections of videos are necessary with associated ground
truth.
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There is a gap between visual- and audio speech recognition

State of the art lip reading achieves isolated word recognition (IWR) with a small
vocabulary: 500-1000 words.

There are approximatively 170,000 English words in current use, out of 1,000,000.

Large vocabulary continuous speech recognition (LVCSR) – which is the state of
the art in commercially available ASR systems – is out of reach with lip reading.

Instead we address audio-visual processing, and in particular audio-visual speech
enhancement (AVSE)
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Challenge: How to separate rigid head movements and non-rigid facial
movements?

Face deformation model – 3DMM (3D morphable model),

Rigid motion model – scale, 3D rotation and translation – 1+3+3 parameters,

Robust statistical inference of the model parameters,

Dynamic face frontalization.
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Expression-preserving face frontalization
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Deformable face model

Frontal landmarks are predicted by:

Y n = Uns+Mn + F n, ∀n ∈ {1 . . . N}

with:

Un: reconstruction matrix (learned),

Mn: neutral face (learned),

s: low-dimensional face embedding (shape parameters),

F n: reconstruction error.
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Rigid motion model

Frontal landmarks are predicted by:

Y n = ρRXn + T +Dn, ∀n ∈ {1 . . . N}

with:

ρ: global scale

R: 3D rotation matrix,

T : 3D translation vector,

Dn: error vector (non-rigid motion, noise, outliers).
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Robust estimator: generalized Student-t distribution

En = ρRXn + T︸ ︷︷ ︸
rigid

−(Uns+Mn︸ ︷︷ ︸
deformable

)

L(θ|X) = −
N∑

n=1

log p(En;θ) (1)

p(En;θ) =

∫ ∞
0
N (En; 0, ω

−1
n Σ)G(ωn;µ, 1)dωn

θ = (ρ,R,T , s,Σ, µ)

Direct minimization of (1) is intractable...
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Inference

Initialization

Expectation:

Evaluate the weight posteriors and the weight means w1:N

Maximization:

Estimate the rigid parameters ρ,R,T
Estimate the non-rigid parameters s
Estimate the pdf parameters Σ, µ
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Graphical models

Rigid-and-deformable model Dynamic deformable model
(doubly latent model → Kalman filter equivalence)
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Examples from the Oulu dataset
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Audio-visual speech enhancement pipeline

performance by using a more powerful feature extractor.

The rest of the paper is organized as follows. Section 2
introduces VAE architecture for SE experiments. In sec-
tion 3 the state-of-the-art face frontalization method for AV-
processing is presented. Section 4 presents the protocol for
our experiments and discusses the results.

2. AUDIO-VISUAL VARIATIONAL AUTOENCODER

In this section, we briefly review the principles of VAE-
based AVSE. As discussed in the previous section, the whole
framework consists of two main steps: training and testing
(inference). In the first step, a prior distribution for clean
speech is learned from clean audiovisual data. Then, in
the second step, the learned prior distribution is combined
with a parametric model for noise, whose parameters as well
as the clean speech are estimated following a variational
expectation-maximization method.

Learning speech prior distribution Given a collection of
(clean) complex-valued speech short-time Fourier transform
(STFT) time frames, denoted st 2 CF , and the correspond-
ing embedding for the (clean and frontal) image of the speaker
lips at frame t, denoted vt 2 RM , a latent variable gener-
ative model is trained using the VAE framework. This in-
volves defining a parametric distribution for the likelihood
p⇥(st|zt, vt), and a parametric prior distribution for the la-
tent code zt 2 RL, L ⌧ F , i.e., p�(zt|vt). These distribu-
tions are implemented by some deep neural network architec-
tures, whose parameters, i.e., {⇥,�}, are trained following an
amortized variational inference [11].

Speech enhancement With the parametric prior distribu-
tion for clean speech being learned, one considers an observa-
tion model as xt = st + bt, in which bt 2 CF and xt 2 CF

denote, respectively observed speech and noise. Consider-
ing an NMF-based model for noise, and combining with the
speech model, the set of NMF parameters are then learned
by some variational inference procedure. Once learned, the
clean speech estimate is obtained via a probabilistic Wiener
filtering. More details can be found in [8].

3. ROBUST FACE FRONTALIZATION

The core idea of the robust face frontalization (RFF) method
that we recently proposed, [27], is to estimate the 3D pose
(scale s, rotation R and translation t) and the 3D shape of
an input face viewed from an arbitrary angle, and to warp it
onto a frontal view. The main feature of this method is to
perform pose and shape estimation sequentially rather than

simultaneously. The pose is estimated by rigidly aligning a
set of observed 3D facial landmarks extracted from the input,
X1:J = {Xj}J

j=1 ⇢ R3, with a set of model 3D landmarks
associated with a neutral and frontal view of a mean face,
Z1:J = {Zj}J

j=1 ⇢ R3. The shape is estimated by fitting
a 3D morphable model (3DMM) to the frontalized 3D land-
marks {Y j}J

j=1, with Y j = sRXj + t.

Because the landmark locations are inherently affected
by detection errors as well as by non-rigid facial deforma-
tions, it is suitable to use a robust rigid-parameter estimation
technique. For this purpose, we assume that the errors be-
tween the model and frontalized landmarks are samples of a
random variable drawn from a robust probability distribution
function (pdf), namely the Student-t distribution – a heavy
tailed distribution that is able to deal with both Gaussian (in-
liers) and non-Gaussian (outliers) noise in the data, by assign-
ing a weight to each observed landmark. The corresponding
expectation-maximization (EM) algorithm alternates between
the estimation of (i) the weight posteriors, (ii) the pdf param-
eters and (iii) the rigid parameters. At convergence, EM as-
signs high posterior probabilities to observed-to-model land-
mark pairs that are linked by a rigid transformation and low
probabilities to landmark pairs that are affected by detection
errors or by non-rigid facial deformations.

The next step consists of fitting a deformable 3D shape
model to the frontalized landmarks. We use a linear deforma-
tion model which consists of a 3D mesh whose vertices are
parameterized by a low-dimensional embedding. Once these
parameters are estimated, a frontal dense depth map of the
face is built, such that the texture associated with the input
face can be warped onto the frontalized one.

To be done: Briefly describe here the implementation
details, 3D landmakrs, 3D rotation, Basel model, etc.

4. EXPERIMENTS

Dataset For training the VAE-based models, we opt for the
MEAD [28] which contains large-scale emotional talking-
face videos. For all 46 publicly available participants, there
are recordings of 8 different emotions at 3 different intensity
levels and 7 camera angles. Many participants have natural
head motions, making the frontalization necessary to get a
clean visual data. Among all videos, we select the videos of
all emotion categories taken at the frontal view and at the level
3 (the highest) of emotion intensity. We believe that the high-
est emotion intensity can trigger a clearer head movement
and more exaggerated lip motions, allowing the difference
between frontalization methods to be more distinguishable.

Frontalization methods We prepared the visual data by
different frontalization methods to compare the effect of re-
moving the head movements. We consider in total 4 different
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For more details please consult [Sadeghi et al 2020, 2021], [Kang 2022].
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Speech enhancement results

Measure STOI [0, 1] ↑ PESQ [−0.5, 4.5] ↑ SI-SDR (dB) ↑
SNR (dB) -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

Noisy audio input 0.40 0.53 0.66 0.78 0.86 0.90 1.24 1.67 2.05 2.42 -15.92 -10.62 -5.44 -0.40 4.60

A-VAE Leglaive et al. MLSP’18 0.41 0.56 0.70 0.79 0.85 0.93 1.51 2.02 2.43 2.73 -7.01 -0.29 5.08 9.41 12.74

AV-CVAE Sadeghi et al. TASLP’20 0.42 0.57 0.69 0.79 0.84 1.02 1.56 2.06 2.42 2.73 -6.96 -0.04 5.01 9.06 12.25

Res-AV-CVAE-DFF 0.43 0.60 0.73 0.79 0.85 1.13 1.71 2.20 2.48 2.77 -6.35 0.28 5.87 9.42 12.77

Table: Average STOI, PESQ, SI-SDR values.

Examples & paper download:
ICASSP’22:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9746401

IJCV submission: https:

//team.inria.fr/robotlearn/research/facefrontalization-benchmark/
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Conclusions

We proposed robust face frontalization (RFF) and its dynamic extension (DFF).

Both RFF and DFF rely on 68 facial landmarks:

Sufficient to show that face frontalization improves audio-visual speech performance,
Insufficient to really boost the performance of audio-visual speech.

Future work directions:

It is planned to use dense facial features to increase the impact of the dynamic
model.
Conversational speech (CHIME-6 Challenge) may benefit from visual processing:
Where is the speaker in the room? Who speaks to whom? Who speaks when? etc.
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