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Decision-making algorithms (review article in preparation)
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Dynamic neural fields (DNF) [Amari, 1977]
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Application to the ventriloquist effect [Forest et al., 2022]
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New problem

Usually assuming merging in aligned,
regular spaces

Not faithful to actual perception
e.g. fovea (top) → superior colliculus (bottom)

Existing models of selection/fusion
in arbitrary topologies

Contribution: selection/fusion
in learned topologies
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Growing neural gas (GNG) [Fritzke, 1995]

A simple manifold learning algorithm:
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Creating multimodal topologies
Modality 1 Modality 2
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Modality 1: 3D

Modality 2: 100D

Modalities linked
by co-activations

Projected in 2D
for visualization

Forest, Quinton, and Lefort Dynamic neural fields and manifold learning for audiovisual fusion in psychophysics and robotics 8 / 16



Introduction Previous contributions Fusion in learned manifolds Results Conclusion

DNF adaptation

For each node k :

Ik = λmodality ,s e
−r2

k,s

2σ2

rk,s : rank of k by proximity to stimulus s

∆Uk =
∆t

τ

(
−Uk + Ik +

∑
k ′

W
(
<k , k ′>

)
f (Uk ′) + h

)

<k, k ′>: distance between k and k ′

in multimodal graph
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Example inspired from superior colliculus

Vision: 2D+logpolar (blue)

Audio: regular 2D (red)

Added crossmodal edges (black)

Tests ∀ azimuths:
2 bimodal stimuli:
• Top: stronger visually
• Bottom: stronger auditorily

→ multiple DNF runs
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Model analysis (50 simulations × 90 azimuths × 3 DNF kernels)
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Using data from robotics
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[Algazi et al., 2001]

(in 2D for visualization)

Forest, Quinton, and Lefort Dynamic neural fields and manifold learning for audiovisual fusion in psychophysics and robotics 12 / 16



Introduction Previous contributions Fusion in learned manifolds Results Conclusion

Same with 3D vision
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Results

Visual: 3D, regular Auditory: 100D, HRTF Bimodal
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Conclusion

Contributions and results

Adaptation of neuro-inspired model (DNF) to irregular topologies

Learning and combination of manifolds of different sensory space

Consistent results in selection tasks

Perspectives

High-dimensional data using deep learning

Integration in robotics

Implementation of eye movements

PS: PhD defense on September 16th, 10AM in Villeurbanne (+ video retransmission)
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Appendix: eye movements

Pursuit Saccade
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