Dynamic neural fields and manifold learning for audiovisual fusion in psychophysics and robotics

Simon Forest^{1, 2}, Jean-Charles Quinton¹, Mathieu Lefort² ¹LJK, Univ. Grenoble Alpes ²LIRIS, Univ. Claude Bernard Lyon 1

23/08/2022 Workshop on Methods and Tools for Audio-Visual Processing and Human Robot Interaction

 Introduction
 Previous contributions
 Fusion in learned manifolds
 Results
 Conclusion

 ••
 Soo
 Soo
 Soo
 Soo

 Introduction
 Previous contributions
 Fusion in learned manifolds
 Results
 Conclusion

 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •

 •
 •
 •
 •
 •

Dynamic neural fields and manifold learning for audiovisual fusion in psychophysics and robotics

4 / 16

Introduction	Previous contributions	Fusion in learned manifolds	Results	Conclusion
00	○○●	0000	00000	00
Application	to the ventriloqui	st effect [Forest et al., 2022]		

- Inspired by superior colliculus
- Qualitative fit to exp. data
- Parameter sensitivity analysis
- To be applied to new data (+ saccades)

NI LI				
Introduction	Previous contributions	Fusion in learned manifolds	Results	Conclusion

New problem

- Usually assuming merging in aligned, regular spaces
- Not faithful to actual perception
 e.g. fovea (top) → superior colliculus (bottom)
- Existing models of selection/fusion in arbitrary topologies
- Contribution: selection/fusion in learned topologies

 Introduction
 Previous contributions
 Fusion in learned manifolds
 Results
 Conclusion

 oo
 oo
 oo
 oo
 oo

A simple manifold learning algorithm:

Forest, Quinton, and Lefort

Introduction 00	Previous contributions	Fusion in learned manifolds ○00●	Results 00000	Conclusion 00
DNF adaptation	on			
For each node <i>k</i> : <i>Iµ</i> <i>r_{k,s}: rank of k by</i>	$k_s = \lambda_{modality,s} e^{rac{-r_{k,s}^2}{2\sigma^2}}$ proximity to stimulus s			2.0 -1.5 -1.0 -0.5 0.0
$\Delta U_k = rac{\Delta t}{ au} igg(- U_k \ < k, k' >: ext{ distance}$ in multimodal grap	$+ I_k + \sum_{k'} W(\langle k, k' \rangle) f$ between k and k' oh	$U(U_{k'}) + h$		$\begin{array}{c} \cdot 2 \\ \cdot 1 \\ \cdot 0 \\ \cdot -1 \\ \cdot -2 \end{array}$

Dynamic neural fields and manifold learning for audiovisual fusion in psychophysics and robotics

10 / 16

^{TO} Azimuth

13 / 16

Introduction 00	Previous contributions	Fusion in learned manifolds	Results ○○○○●	Conclusion 00
Results				

Introduction	Previous contributions	Fusion in learned manifolds	Results	Conclusion
00		0000	00000	• 0
Conclusion				

Contributions and results

- Adaptation of neuro-inspired model (DNF) to irregular topologies
- Learning and combination of manifolds of different sensory space
- Consistent results in selection tasks

Perspectives

- High-dimensional data using deep learning
- Integration in robotics
- Implementation of eye movements

PS: PhD defense on September 16th, 10 AM in Villeurbanne (+ video retransmission)

Introduction 00	Previous contributions	Fusion in learned manifolds	Results 00000	Conclusion ○●
References				

- Amari, S.-I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. *Biological Cybernetics*, 27(2):7787.
- Forest, S., Quinton, J.-C., and Lefort, M. (2022). A dynamic neural field model of multimodal merging: application to the ventriloquist effect. *Neural Computation*, 34(8).
- Fritzke, B. (1995). A growing neural gas network learns topologies. In Tesauro, G., Touretzky, D., and Leen, T., editors, *Advances in Neural Information Processing Systems*, volume 7. MIT Press.
- Algazi, V. R., Duda, R. O., Thompson, D. M., and Avendano, C. (2001). The CIPIC HRTF database. In *Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575)*, pages 99102. IEEE.
- + Forest, S., Quinton, J.-C., and Lefort, M. (2022). Combining manifold learning and neural field dynamics for multimodal fusion. *2022 International Joint Conference on Neural Networks (IJCNN)*.

Appendix: e	ve movements			
Introduction	Previous contributions	Fusion in learned manifolds	Results	Conclusion
00		0000	00000	00

"

Pursuit

	11	
	11	
	11	
	12	
×	12	
X	12	
X	10	

Saccade

