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Motivation
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Inverse problems in audio signal processing

Latent signal of interest Noisy and/or incomplete observations

likelihoodpriorposterior

Source separation, speech enhancement, inpainting, phase retrieval, bandwidth extension, ...

We need a probabilistic/generative model of the latent signal of interest
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Let  denote an audio/speech signal in the short-

time Fourier transform (STFT) domain, with

 denotes the complex-valued spectrum of the

signal at time frame .

 represents the expected power spectrum of the

signal at time frame .
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Non-stationary Gaussian model (Ephraim and Malah, 1984)

The variance is usually constrained to encode speci�c spectro-temporal characteristics.

S  ∈ CF×T

p(S  ) =  p(s  ) =
t=1

∏
T

t  N  s  ;0, diag{v  } .
t=1

∏
T

c ( t s,t )

s  ∈t CF

t

v  ∈s,t R  +
F

t

Y. Ephraim and D. Malah, Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator, IEEE TASSP 1984.

This Gaussian model implies that the entries of  follow an exponential or Gamma distribution parametrized by .∣s  ∣t ⊙2 v  s,t
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The variance modeling framework (Vincent et al., 2010)

From "explicit" signal models to data-driven approaches:

Structured-sparsity-inducing priors for modeling tonal and transient sounds  
(Févotte et al., 2007)

Non-negative matrix factorization (NMF) for modeling spectrograms as non-negative linear
combinations of learned spectral templates  
(Benaroya et al., 2003; Févotte et al., 2009; Ozerov et al., 2012)

(Dynamical) variational autoencoder (VAE) for learning (spectro-temporal) spectral structures  
(Bando et al., 2018; Leglaive et al., 2018; 2020; Girin et al., 2021)

E. Vincent et al., Probabilistic modeling paradigms for audio source separation, In: Machine Audition: Principles, Algorithms and Systems, 2010.
C. Févotte et al., Sparse linear regression with structured priors and application to denoising of musical audio, IEEE TASLP, 2007. 
L. Benaroya et al., Non negative sparse representation for Wiener based source separation with a single sensor, IEEE ICASSP 2003. 
C. Févotte et al., Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis, Neural Computation, 2009. 
A. Ozerov et al., A general �exible framework for the handling of prior information in audio source separation, IEEE/ACM TASLP, 2012. 
Y. Bando et al., Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization, IEEE ICASSP 2018. 
S. Leglaive et al., A variance modeling framework based on variational autoencoders for speech enhancement, IEEE MLSP 2018. 
S. Leglaive et al., A recurrent variational autoencoder for speech enhancement, IEEE ICASSP 2020.  
L. Girin et al., Dynamical variational autoencoders: A comprehensive review, Foundations and Trends in Machine Learning, 2021. 6



 is a dictionary matrix of
spectral templates;

 is the low-dimensional activation

vector at time frame ;

 is the rank of the factorization.
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NMF-based variance modeling (Févotte et al., 2009)

p(s  ) =t N  (s  ;0, diag{v  =c t s,t Wh  }),t

W ∈ R  +
F×K

h  ∈t R  +
K

t

K

C. Févotte et al., Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis, Neural Computation, 2009. 7



 is a low-dimensional latent vector

with .

 is a neural network

(decoder) of parameters .

.

VAE-based variance modeling (Kingma and Welling, 2014; Bando et al., 2018)
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p(s  ∣t z  ) =t N  (s  ;0, diag v  = v  (z  ) ),c t { s,t θ t }

z  ∈t RK

p(z  ) =t N (z  ;0, I)t

v  :θ R ↦K R  +
F

θ

p(s  ) =t p(s  ∣∫ t z  )p(z  )dz  t t t

D.P. Kingma and M. Welling, Auto-encoding variational Bayes, ICLR 2014. 
Y. Bando et al., Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization, IEEE ICASSP 2018. 8



NMF vs. VAE for variance modeling
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NMF-based variance modeling VAE-based variance modeling

In speech enhancement, the VAE model outperforms the NMF model (Leglaive et al., 2018).

However, contrary to NMF, we cannot directly relate the learned representation to
interpretable properties of the signal.  

 
This is the problem we are going to tackle.

S. Leglaive et al., A variance modeling framework based on variational autoencoders for speech enhancement, IEEE MLSP 2018.
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Analyzing the VAE latent space
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Prior Generative model Inference model

Complete VAE model
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encoder decoder

We trained a vanilla VAE on about 25 hours of unlabeled speech signals at 16 kHz.

p(z  ) = N (z  ; 0, I) p  (s  ∣z) =θ N  s  ;0, diag v  (z  )c ( { θ }) q  (z  ∣s  ) =ϕ N z  ;μ  (s  ), diag v  (s  )( ϕ { ϕ })
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Original signal

Reconstruction with 

1. oracle phase 

2. Gri�n-Lim (Gri�n and Lim, 1984) 

3. WaveGlow (Prenger et al., 2019) 

Analysis-resynthesis by encoding-decoding

D. Gri�n and J.S. Lim, Signal estimation from modi�ed short-time Fourier transform, IEEE TASSP, 1984.  
R. Prenger et al., Waveglow: A �ow-based generative network for speech synthesis, IEEE ICASSP, 2019. 12



 

Understanding the structure of the latent space using natural speech signals is di�cult,
let's "open the black box" with simpler speech signals.
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In voiced speech, the source originates from the vibration
of the vocal folds. This vibration is characterized by the
fundamental frequency, loosely referred to as the pitch.

The source signal is modi�ed by the vocal tract, which is
assumed to act as a linear �lter. The cavities of the vocal
tract give rise to resonances, which are called the formants.

Source-�lter model of (voiced) speech production
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The source-�lter model proposed by (Fant, 1970) considers that the production of
speech results from the interaction of a source signal with a linear �lter.

G. Fant, Acoustic theory of speech production (No. 2), Walter de Gruyter, 1970.
14



By moving the speech articulators (tongue, lips, jaw),
humans modify the shape of their vocal tract, which
results in a change of the formant frequencies.

 

 

The source-�lter model tells us that we can control the
source ( ) independently of the �lter (the formants)

(Fant, 1970).

The �rst formant frequencies  can also be

controled independently of each other  
(MacDonald et al., 2011).

 
 

f  0

{f  }  i i≥1

E. N. MacDonald, Probing the independence of formant control using altered auditory feedback, JASA, 2011.
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Automatically-labeled arti�cial speech trajectories
: fundamental frequency : 1st formant frequency : 3rd formant frequency: 2nd formant frequency

We generate datasets  containing a few seconds of vowel-like speech power spectra

where only one factor  varies, all other factors , being arbitrarily �xed.

We used Soundgen (Anikin, 2019), an arti�cial speech synthesizer based on the source-�lter
model.

All examples in  are automatically-labeled with  (this is an input of soundgen).

We are going to investigate the VAE latent representation associated with these
trajectories.

{D  }  i i=0
3

f  i {f  }  j j≠i

D  i f  i

A. Anikin, Soundgen: An open-source tool for synthesizing nonverbal vocalizations, Behavior Research Methods, 2019.
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Aggregated posterior

Let  denote the empirical distribution associated with .

The aggregated posterior is a marginal distribution over  de�ned by "aggregating, or

averaging, the VAE approximate posterior  over ":

For instance, we have

In the following, without loss of generality, we assume centered latent vectors:

 (s  ) =p̂(i)
  δ(s  −#D  i

1

s  ∈D  n i

∑ s  )n D  i

z  

q  (z  ∣s  )ϕ  (s  )p̂(i)

  (z  ) =q̂ϕ
(i) E  [q  (z  ∣s  )] =p (s  )(i) ϕ q  (z  ∣s  )  (s  )ds  =∫ ϕ p̂(i)

  q  (z  ∣s  ).
#D  i

1

s  ∈D  n i

∑ ϕ n

μ  (D  ) =ϕ i E  [z  ] =
  (z  )q̂
ϕ

(i)   E  [z  ] =
#D  i

1

s  ∈D  n i

∑ q  (z  ∣s  )ϕ n
  μ  (s  ).

#D  i

1

s  ∈D  n i

∑ ϕ n

z  ← z  − μ  (D  ).ϕ i
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Source-�lter latent subspace learning

Intuition: Because one single factor  varies in , we expect the corresponding latent vectors

to live in a lower-dimensional manifold of the original latent space .

encoder

decoder

Pretrained
VAE

VAE latent spaceData space

lower-dimensional 
latent subspace

We assume this manifold to be a linear subspace characterized by its semi-orthogonal basis

matrix , computed by solving

As in principal component analysis (PCA), a closed-form solution is obtained by an
eigendecomposition of a symmetric positive semi-de�nite matrix.

f  i D  i

RK

U  ∈i R ,M  <K×M  i
i K

 E  ∥ z  − UU z  ∥  , s.t. U U =
U∈RK×M  i

min
  (z  )q̂
ϕ

(i) [ ⊤
2
2] ⊤ I.

18



 latent trajectory  latent trajectory  latent trajectory  latent trajectory

Trajectories in the learned latent subspaces

For each element , we plot  .

Two speech spectra with close values for the factor  have latent representations that are

also close in the learned subspaces.

The latent representation learned by the VAE preserves the notion of proximity in terms
of fundamental and formant frequencies.

s  ∈ D  i E  [U  z  ] =q  (z  ∣s  )ϕ i
⊤ U  μ  (s  ) ∈i

⊤
ϕ RM  i (M  =i 3)

f  0 f  1 f  2 f  3

f  i

19



Disentanglement analysis

The proposed approach o�ers a natural and straightforward way to quantitatively
measure if the VAE managed to learn a disentangled representation of the source-�lter

characteristics of speech.

By looking at the eigenvalues associated with the columns of , we can measure

the amount of variance that is retained by the projection .

If a small number of components  represents most of the variance, it indicates that only a

few intrinsic dimensions of the latent space are dedicated to the factor .

If for two di�erent factors  and , the columns of  are orthogonal to those of , the two

factors are encoded in orthogonal subspaces and therefore disentangled (Higgins et al., 2018).

U  ∈i RK×M  i

U  U  i i
⊤

M  i

f  i

f  i f  j U  i U  j

I. Higgins et al., Towards a de�nition of disentangled representations. arXiv preprint arXiv:1812.02230, 2018.
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We choose  so as to retain 80% of the data

variance after projection onto the latent
subspaces. It gives

.

We compute the dot product between all
pairs of unit vectors in the matrices  

.

Except for a correlation value of 

between  and the 1st component of , all

values are below  (in absolute value).

This analysis con�rms the orthogonality of the source-�lter latent subspaces and the
disentanglement of the corresponding factors in the VAE latent space.

M  i

M  =0 4,M  =1 1,M  =2 3,M  =3 3

{U ∈i R }  

K×M  i
i=0
3

−0.21
f  1 f  2

0.13
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Conclusion

Using only a few seconds of arti�cially generated speech, we put in evidence that a VAE
trained in an unsupervised manner learns a latent representation that is consistent with the
source-�lter model of speech production.

Indeed, the fundamental frequency and �rst formant frequencies are encoded in orthogonal
subspaces of the original VAE latent space.

It suggests that we could manipulate one factor in its latent subspace without a�ecting the
others, similarly as how humans produce speech according to the source-�lter model.

22



Moving in the source-�lter latent subspaces

23



Disentangled speech manipulation in the VAE latent space

encoder

decoder

Pretrained
VAE

VAE latent space
Data space

source-filter latent subspaces

Target value     for the factor

Linear subspace
mapping

regression model
data coordinates in the latent 
subspace defined by

We can transform a speech spectrum by analyzing it with the VAE encoder, applying the following
a�ne transformation, and resynthesizing with the VAE decoder:

This transformation allows us to move only in the subspace associated with , leaving

other source-�lter factors unchanged thanks to the orthogonality property.

=z~ z − U  U  z +i i
⊤ U  g  (y).i η  i

f  i

24



Weakly-supervised piecewise linear regression learning

encoder

decoder

Pretrained
VAE

Linear subspace
mapping

automatically-labeled data generated with an 
artificial speech synthesizer label in Hertz

: dataset for the fundamental frequency

: dataset for the 1st formant frequency

: dataset for the 2nd formant frequency

: dataset for the 3rd formant frequency

VAE latent space
source-filter latent subspaces

Piecewise linear regression
100 200 300

Making now use of the labels in , we learn a piecewise-linear regression model 

from the value  of the factor  to the data coordinates  in the latent subspace:

where  and  is the empirical distribution of .

D  i g  :η  i R  ↦+ RM  i

y ∈ R  + f  i U  z  i
⊤

η  =i  E  [∥g  (y) −
η

arg min
  (z  ,y)q̂
ϕ

(i) η U  z  ∥  ],i
⊤

2
2

(z  , y) =q̂
ϕ

(i)
q  (z  ∣s  )  (s  , y)ds  ∫ ϕ p̂(i)

 (s  , y)p̂(i) D =i {(s  , y  )}  n n n
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Qualitative results
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Fundamental and formant frequency manipulation of the vowel /a/ uttered by a female speaker

encoder decoder

Target value     for the factor

affine 
transformation
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prior decoder

Target value     for the factor

affine 
transformation

Spectrogram generated from input trajectories of the fundamental and formant frequencies

We have de�ned a deep generative model of speech spectrograms that is conditioned on
interpretable trajectories of the fundamental and formant frequencies. 28



(top left) reconstructed w/o modi�cation, (top middle) whispered spectrogram obtained with , (other)
various  transformations. Waveforms are obtained from the spectrograms using WaveGlow (Prenger et al., 2019).

=z~ z − U  U  z0 0
⊤

f  0 29



In summary, a quantitative analysis using datasets of English vowels and speech
utterances con�rms that

source-�lter factors can be manipulated accurately, especially ;

varying one factor (e.g., ) has little e�ect on the others (e.g., the formants).

 
 

Quantitative results

We refer you to the paper, or you can ask for the backup slides.

 
 

f  0

f  0
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Conclusion
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encoder

decoder

Pretrained
VAE

Linear subspace
mapping

automatically-labeled data generated with an 
artificial speech synthesizer label in Hertz

: dataset for the fundamental frequency

: dataset for the 1st formant frequency

: dataset for the 2nd formant frequency

: dataset for the 3rd formant frequency

VAE latent space
source-filter latent subspaces

Piecewise linear regression
100 200 300

In this work, given a VAE trained on hours of unlabeled speech data and a few seconds of
automatically-labeled data generated with an arti�cial speech synthesizer,

we put in evidence that the latent representation learned by a VAE is consistent with the
source-�lter model of speech production (Fant, 1970);

we proposed a weakly-supervised method to learn how to move in the VAE latent space, so as
to perform disentangled speech manipulations.

32



Future work

Take the non-linear nature of the manifolds into account;

Address the phase reconstruction issue, with better neural vocoders or working directly in the
time domain (Caillon and Esling, 2021);

Extend the approach to multi-microphone and reverberant signals, to learn both spectro-
temporal and spatial representations of speech;

Exploit the invariance of the projected representations to perform analysis (e.g.,  estimation);

Leverage the proposed conditional deep generative speech model to guide VAE-based speech
enhancement methods with the pitch information.

f  0

A. Caillon and P. Esling, RAVE: A variational autoencoder for fast and high-quality neural audio synthesis, arXiv preprint arXiv:2111.05011, 2021. 33



 

Thank you

 
 

Code and audio examples available online  
https://samsad35.github.io/site-sfvae/

34
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Quantitative results
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Dataset

12 English vowels  50 male and 50 female speakers, labeled with
fundamental and formant frequencies.

Task

We transform each vowel by varying one single factor  at a time.

 

Min (Hz) Max (Hz) Step (Hz)

100 300 1

300 900 10

1100 2700 20

2200 3200 20

Metrics

Accuracy and disentanglement (lower is better)

We compute the relative absolute error  where  is the target value

for  and  its estimation on the output transformed signal.

Speech naturalness (higher is better)

We use NISQA (Mittag and Möller, 2020), an objective metric developed in the context of speech
transformation algorithms to be highly correlated with subjective mean opinion scores.

×

f  i

f  0

f  1

f  2

f  3

δf  =i ∣  −ŷ y∣/y × 100%, y

fi  ŷ

G. Mittag and S. Möller, Deep learning based assessment of synthetic speech naturalness, Interspeech, 2020.
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Methods

TD-PSOLA (Moulines and Charpentier, 1990) performs  modi�cation through a decomposition of the

signal into pitch-synchronized overlapping frames.

WORLD (Morise et al., 2016) is a vocoder also used for  modi�cation. It decomposes the signal into

three components characterizing , the aperiodicity, and the spectral envelope.

The VAE baseline (Hsu et al. 2017) consists in applying translations directly in the VAE latent space:

where  and  are prede�ned latent attribute representations associated with the source

and target values of the factor to be modi�ed, respectively.

Computing  requires analyzing the input speech signal (e.g., to estimate ), which is not

the case of the proposed method that only relies on a projection of .

f  0

f  0

f  0

=z~ z  − μ  +src μ  ,trgt

μ  src μ  trgt

μ  src f  0

z  

E. Moulines and F. Charpentier, Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones, Speech Communication, 1990.  
M. Morise et al., World: a vocoder-based high-quality speech synthesis system for real-time applications, IEICE TIS, 2016.  
W.-N. Hsu et al., Learning latent representations for speech generation and transformation, Interspeech, 2017. 37



The proposed method always outperforms the baseline.

 is lower than 1 % for the proposed method  very good precision in  manipulation.

WORLD obtains the best performance in terms of disentanglement  because the source and

�lter contributions are decoupled in the architecture of the vocoder.

Traditional signal processing methods obtain the best performance in terms of speech naturalness
(NISQA) probably because they directly operate in the time domain (no phase reconstruction issue).

δf  0 → f  0

(δf  , i >i 0)

38



In terms of accuracy, the proposed method always outperforms the baseline (by 7%, 5% and 5%
for ,  and , respectively.)

In terms of disentanglement, the pitch is much less a�ected by formant manipulations with
the proposed method.

f1 f  2 f  3

39



A similar analysis on a dataset of short speech utterances (TIMIT) leads to similar conclusion.

This dataset is phonemically richer than the isolated vowels dataset.

However, it is not labeled with the fundamental and formant frequencies, so the groud truth
required to measure disentanglement is estimated on the original speech signals, which makes
the evaluation less reliable.

40



The objective of this study is not to compete with traditional signal processing methods such
as TD-PSOLA and WORLD for pitch shifting.

It is rather to advance on the understanding of deep generative modeling of speech signals
and to compare honestly with highly-specialized traditional systems.

TD-PSOLA and WORLD exploit signal models that are speci�cally designed for the task at hand,
while the proposed method is data-driven and the exact same methodology applies for
modifying  or the formant frequencies.

TD-PSOLA is still a strong baseline that is di�cult to outperform with deep learning
techniques, see e.g. controllable LPCNet (Morrison et al., 2020).

f  0

M. Morrison et al., Controllable Neural Prosody Synthesis, Interspeech, 2020. 41



VAE model training
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Parameters estimation

Direct maximization of the marginal likelihood is intractable due to non-linearities.

For any distribution , we have (Neal and Hinton, 1999; Jordan et al. 1999)

where  is the evidence lower bound (ELBO) de�ned by

q  (z∣x)ϕ

ln p(x; θ) = L(x;ϕ, θ) + D  (q  (z∣x) ∥KL ϕ p  (z∣x)),θ

L(x;ϕ, θ)

L(x;ϕ, θ) = E  [ln p(x, z; θ) −q  (z∣x)ϕ
ln q  (z∣x)].ϕ

R.M. Neal and G.E. Hinton, A view of the EM algorithm that justi�es incremental, sparse, and other variants, in M. I. Jordan (Ed.), Learning in graphical models, 1999. 
M.I. Jordan et al., An introduction to variational methods for graphical models, Machine Learning, 1999. 43

http://www.cs.toronto.edu/~radford/ftp/emk.pdf
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Problem #1

where 

Parameters estimation

Direct maximization of the marginal likelihood is intractable due to non-linearities.

For any distribution , we have (Neal and Hinton, 1999; Jordan et al. 1999)

where  is the evidence lower bound (ELBO) de�ned by

q  (z∣x)ϕ

ln p(x; θ) = L(x;ϕ, θ) + D  (q  (z∣x) ∥KL ϕ p  (z∣x)),θ

L(x;ϕ, θ)

L(x;ϕ, θ) = E  [ln p(x, z; θ) −q  (z∣x)ϕ
ln q  (z∣x)].ϕ

R.M. Neal and G.E. Hinton, A view of the EM algorithm that justi�es incremental, sparse, and other variants, in M. I. Jordan (Ed.), Learning in graphical models, 1999. 
M.I. Jordan et al., An introduction to variational methods for graphical models, Machine Learning, 1999.

 L(x;ϕ, θ),
θ

max

L(x;ϕ, θ) ≤ ln p(x; θ)
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Problem #1

where 

Problem #2

Parameters estimation

Direct maximization of the marginal likelihood is intractable due to non-linearities.

For any distribution , we have (Neal and Hinton, 1999; Jordan et al. 1999)

where  is the evidence lower bound (ELBO) de�ned by

q  (z∣x)ϕ

ln p(x; θ) = L(x;ϕ, θ) + D  (q  (z∣x) ∥KL ϕ p  (z∣x)),θ

L(x;ϕ, θ)

L(x;ϕ, θ) = E  [ln p(x, z; θ) −q  (z∣x)ϕ
ln q  (z∣x)].ϕ

R.M. Neal and G.E. Hinton, A view of the EM algorithm that justi�es incremental, sparse, and other variants, in M. I. Jordan (Ed.), Learning in graphical models, 1999. 
M.I. Jordan et al., An introduction to variational methods for graphical models, Machine Learning, 1999.

 L(x;ϕ, θ),
θ

max

L(x;ϕ, θ) ≤ ln p(x; θ)

 L(x;ϕ, θ)
ϕ

max

⇔  D  (q  (z∣x) ∥
ϕ

min KL ϕ p  (z∣x))θ

43
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ELBO

The ELBO is now fully de�ned:

prior: 

likelihood model: 

inference model: 

sampling

  

L(x;ϕ, θ) = E  [ln p(x, z; θ) − ln q  (z∣x)]q  (z∣x)ϕ ϕ

=  −  .

reconstruction accuracy

 E  [ln p  (x∣z)]q  (z∣x)ϕ θ

regularization

 D  (q  (z∣x) ∥ p(z))KL ϕ

p(z) = N (z;0, I)

p  (x∣z) =θ N x;μ  (z), diag v  (z)( θ { θ })

q (z∣x) =ϕ N z;μ  (x), diag v  (x)( ϕ { ϕ })

44



ELBO

The ELBO is now fully de�ned:

prior: 

likelihood model: 

inference model: 

sampling

The reconstruction accuracy term is approximated with a Monte Carlo estimate:

  

L(x;ϕ, θ) = E  [ln p(x, z; θ) − ln q  (z∣x)]q  (z∣x)ϕ ϕ

=  −  .

reconstruction accuracy

 E  [ln p  (x∣z)]q  (z∣x)ϕ θ

regularization

 D  (q  (z∣x) ∥ p(z))KL ϕ

p(z) = N (z;0, I)

p  (x∣z) =θ N x;μ  (z), diag v  (z)( θ { θ })

q (z∣x) =ϕ N z;μ  (x), diag v  (x)( ϕ { ϕ })

E  [ln p  (x∣z)] ≈q  (z∣x)ϕ θ   ln p  (x∣  ), with  ∼
R

1

r=1

∑
R

θ z~r z~r q  (z∣x).ϕ
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ELBO

The ELBO is now fully de�ned:

prior: 

likelihood model: 

inference model: 

sampling

The reconstruction accuracy term is approximated with a Monte Carlo estimate, using the so-
called reparametrization trick, to make the (sampled version of the) ELBO derivable w.r.t. :

  

L(x;ϕ, θ) = E  [ln p(x, z; θ) − ln q  (z∣x)]q  (z∣x)ϕ ϕ

=  −  .

reconstruction accuracy

 E  [ln p  (x∣z)]q  (z∣x)ϕ θ

regularization

 D  (q  (z∣x) ∥ p(z))KL ϕ

p(z) = N (z;0, I)

p  (x∣z) =θ N x;μ  (z), diag v  (z)( θ { θ })

q (z∣x) =ϕ N z;μ  (x), diag v  (x)( ϕ { ϕ })

ϕ

E  [ln p  (x∣z)] ≈q  (z∣x)ϕ θ   ln p  (x∣  ),   .
R

1

r=1

∑
R

θ z~r {
ϵ  r

 z~r

∼ N (0, I)
= μ  (x) + diag v  (x) ϵ  ϕ { ϕ }  2

1

r
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Training procedure

Step 1: Pick an example in the dataset

 

L(x;ϕ, θ) = ln p  (x∣ ) − D  (q (z∣x) ∥ p(z))θ z~ KL ϕ
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Training procedure

Step 2: Map through the encoder

 

L(x;ϕ, θ) = ln p  (x∣ ) − D  (q (z∣x) ∥ p(z))θ z~ KL ϕ
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Training procedure

Step 3: Sample from the inference model

 

L(x;ϕ, θ) = ln p  (x∣ ) − D  (q  (z∣x) ∥ p(z))θ z~ KL ϕ
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Training procedure

Step 4: Map through the decoder

 

L(x;ϕ, θ) = ln p  (x∣ ) − D  (q  (z∣x) ∥ p(z))θ z~ KL ϕ
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Training procedure

Step 5: Gradient ascent step on the ELBO

Encoder-decoder shape, which correspond to an inference-generation process.

 

L(x;ϕ, θ) = ln p  (x∣ ) − D  (q  (z∣x) ∥ p(z))θ z~ KL ϕ

In practice, one averages over mini batches before doing the backpropagation.
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At test time

The encoder was primarily introduced in order to estimate the parameters of the decoder.

We do not need the encoder for generating new samples.

But it is useful if we need to do inference.
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