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Three Complexity Notions

A Shtarkov or NML Complexity

A central notion in nonstochastic log-loss individual
sequence prediction.

A PAC-Bayesian Complexity

A right-hand side in a strong excess risk bound in
(stochastic) statistical learning for arbitrary loss fns

A especially suited for (pseudo-) Bayesian methods
but not for very large classes

A Rademacher Complexity

A right-hand side in stochastic excess risk bound that
deals well with large classes but not with log-loss
and priors



The Shtarkov/IMDL Complexity

A Minimax Cumulative Regret for Individual Sequence
Prediction with Log Loss( Sht ar kov 0688,
also known as Shtarkov complexity or MDL/stochastic

complexity:

MZ{PQIQEG}

comp, (M) = log Z pg(yn)(yn)



On-L1 ne nNnProbabi |l 1 st

A Consider sequence ¥1,92,--- ,ally; €Y
A Goal: sequentially predict ¥; given pasty’ ! = y1,...,9i_1
using a oprobalPfilisticlYprec

A prediction strategy "Yis function mapping, for all i,
Ohi styi,.---,¥i—-10 | -th
outcome

S UL Y" — set of distributions on Y



prediction strategy = distribution

A If we think that Y1,...,Yn ~ P (not necessarily i.i.d !)
then should predict Y; using conditional distribution

PGy D) =PV,=-|Y1=vy1,...,Yi_1 = yi_1)

A note that then joint probability mass/densﬂy IS equal to
the product of the predictions: Py = H P(y; | v~ 1)

1 =1
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A If we think that Y1,...,Yn ~ P (not necessarily i.i.d !)
then should predict Y; using conditional distribution

PGy D) =PV,=-|Y1=vy1,...,Yi_1 = yi_1)

A note that then joint probability mass/densﬂy IS equal to
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Conversely, every prediction strategy S may be thought
of as a distribution on (Y1, .., Y»), by defining:

Py = 5(9:1)
P(y1,--ym) = [ Py ly'™)



Logarithmic Loss

To compare performance of different prediction
strategies, we need a measure of prediction quality

One popular measure of quality is the log loss:

loss(y, P) := —logs P(y)
n
lOSS(yl « ey Yn, S) = Z loss(yia S(yla < ayi—l))
1=1

corresponds to two important practical settings:

A data compression: loss(yy ..., yn,S) is number
of bits needed to encode ¥1;---,Yn using code Y

A 6Kel | yo:lgssa=dg capital growth factor



Log loss & likelihood

AFor every fpreRaloti on str at

n . n .
S loss(y;, PC 1y ™)) =Y —log P(y; | v'=1) = —log P(y1, . - -, yn)
i—1 i=1 ‘
S —log P(y; |y 1) = —log [] Py; | v 1) = —log ] DD og Py, ym)

=1 1=1 P( = 1)



Log loss & likelihood

AFor every fpreRaloti on str at

n

n . .
S loss(y;, PC 1y ™)) =Y —log P(y; | ') = —log P(y1, ..., Yn,)
i—1 i=1

A Accumulated log loss = minus log likelihood

Dawi d 084, RI S ¢



Universal Prediction

A Let M = {P;: 0 € ©}Dbe a set of predictors (identified with
probability distributions on Y°°)

A Simplest example: M is the Bernoulli model

A Nonparametric example: ) is unit interval, M is set
of all monotonically decreasing probability ensities

A GOAL: given M , construct a new predictor predicting
data O6al most as FycMnbdattar svhaia r
data arrive (a nonstochastic setting!)



Universal Prediction

A More concretely: find, for fixed ¢, the predictor
L achieving the minimax cumulative log-loss regret

min { su loss(y", P) — [inf loss(y", P, )
in { sup (loss(u” P) ~ [ing toss(s” 7] ) |

n

where loss(y", Q) = Z —109 Q(y; | yi_l)
i=1

A Solution was given by Shtarkov in 1988 (!)



Universal Prediction

A More concretely: find, for fixed ¢, the predictor
L achieving the minimax cumulative log-loss regret

min { sup (loss(y", P) — [inf loss(y", P, )

i {yn D ( (y", P) [9 S (y", Py)] }

= min { sup |(—logP(y") —[inf —log Py(y" )
L <\ynuyn ( g P(y") [6; L —log 0(y")] }

mpln <\yTSng[3n (— log P(y") + log Pg(yn)(y )) }




Universal Prediction

mpln {ygggn (— log P(y") + log Pg‘(yn)(y )) }

A uniquely achieved* by Shtarkov or NML (Normalized
Maximum Likelihood) Distribution, given by

Zyneyn Pg(yn) (y™)

anl(yn) —

A ...and its regret satisfies, for all " € Y™ ,

—log Pami(y")—[= 109 Py, ny (y™)] = comp,, (M) =1og > pgn(y")



Complexity for Parametric Models

A So comp,(M) =log > pg(yn)(yn)

IS cumulative minimax regret relative to model M

For Qdimensional exponential families with bounded

density ratios (RiIssanen 09¢

comp, (M) = glog %+Iog / \/det I(0)+0(1) = O(logn)




Complexity for Parametric Models

comp, (M) = glog %+Iog / \/det I(6)40(1) = O(logn)

...whereas the Bayesian marginal likelihood
Poayes(y") = [ Pa(y™)w(6)ds

IS known to satisfy*

—log PBayes(yn) — [~ log P@‘(yn)(yn)] —

g g -——log w(0)+log \/det I(8)+o(1) = O(logn)
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—log PBayes(yn) — [~ log P@‘(yn)(yn)] —

g g -——log w(0)+log \/det I(8)+o(1) = O(logn)
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the

Minimum
Description

AS | d e Length

principle

Aln its simplest form, the |
states that to compare 2 statistical models Mg, M for
the same data, one should associate them both with a

lossless universal code (i.e. a code that gives small
codel engths whenever o0t he

A ... and then pick the model which allows for the
shortest codelength of the data

A Alossless code is just a sequential log-loss prediction
strategy... It is a good universal code if it has small

regret
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Minimum
Description

AS | d e Length

principle

A pick the model M; which allows for shortest codelength
of data if encoded with good universal code

A Alossless code is just a sequential log-loss prediction
strategy... it is a good universal code if it has small
regret

Ai .e. MDL teM;s you t a prffck
—log Phmi(y" | M1)—(=109 Phmi(y" | Mg)) < —K
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of data if encoded with good universal code

A Alossless code is just a sequential log-loss prediction
strategy... it is a good universal code if it has small
regret

Ai .e. MDL teM;s you t a prffck
—log Phmi(y" | M1)—(=109 Phmi(y" | Mg)) < —K

i.e. Pnmi(y” | M) > oK
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the

Minimum
Description

AS | d e Length

principle

Api M wi triiff 6 confi dence

anl(yn | Ml) > 2K
anl(yn | MO) -

A If null model is simple, then “Yis an S-value (EY p)

A ... More generally, one also allows ratios of other 0 se
that correspond to codes with small regret, such as
Bayesian, Oprequential 6, 0:s

A Ryabko & M :
yabko & Monarev _ szip(yn)

Po(y™)

§ —

S



Complexity for Parametric Models

comp, (M) = glog %+Iog / \/det I(6)40(1) = O(logn)
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ford e f f r e yw(d) « /detI(6) asymptotically same!



Nonparametric Models

AOpper & HaussHtBeiran(cohd6)& Laiegs
and more recently Rakhl i n ¢
bounds using chaining based on U -covering nrs:

comp, (M) < igglog Noo(M, €)424 /OE \/Iog Noo(M, 6)dé
€

A 1If the model is i.i.d., then Noo(M, €) isT -covering nr

under metric d(P,Q) = 525| —log P(Y) + log Q(Y)|
Y
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and more recently Rakhl i n ¢
bounds using chaining based on U -covering nrs:

comp, (M) < igglog Noo(M, €)424 /OE \/Iog Noo(M, 6)dé
€

A 1If the model is i.i.d., then Noo(M, €) isT -covering nr

under metric d(P,Q) = 525| —log P(Y) + log Q(Y)|
Y

A With this bound they obtained
for variety of nonparametric modelscomp,,(M) = O(n")



Two Observations

comp,,(M) < inf log Noo(M, ©)+24 /OE /109 Noo (M, 8)dd

A Bound is often better than best regret bound that can
be given for prediction by Bayes marginal likelihood
(¢ vs.e forT [ )
A ...and for some models it is indeed known that
Bayesian prediction has larger worst-case regret

A ...yet bound is void if Noo(M,€) = oo



Two Observations

comp,,(M) < inf log Noo(M, ©)+24 /OE /109 Noo (M, 8)dd

1. Bound is often better than best regret bound that
can be given for prediction by Bayes marginal

likelihood (¢ vs. € forf [ )
A ...and for some M it is indeed known that Bayesian
prediction has larger worst-case regret
2. ..yetboundis void if Noo(M,e€) = 0o
A Take e.g. M to be all i.i.d. extensions of
monotonically decreasing densities (bounded
away from 0 and Hb) on unit interval



Two Complexity Notions,

Two Results

A Shtarkov or NML Complexity

A central notion in log-loss individual sequence
prediction. Existing bounds are interms of 0 -
entropy nrs; we have bound in terms of U y g0

nrs.
A PAC-Bayesian Complexity

A right-hand side in a strong excess risk bound in
(stochastic) statistical learning for arbitrary loss
fns; not suited for very large classes. We will
unify with Shtarkov Complexity and thus make
bound suitable for large classes.



Zhangos Excess RI

For every learning algorithmt  h (s that outputs a
distributionon maAd e | L evergv em:y Orf

nn, 1 & KL(TL,, |1
E;q, Bzop' [rr(2)] < Efwﬂnlgzrf(zi)r (n_n 0)
=1

AG. & Mehta 2016 mostly about extending the left-hand
side

ATODAY: G. & Mehta 2017a; mostly about the right-
hand side



Zhangos Excess RI

For every learning algorithmt  h v s that outputs a
di stribution on modvery- ,

] KL(ﬁnHHO)

nn, I &
B, BE (D)9 Bpq, [ 50 -

I (D) h b)) () is excess loss on @



Zhangos Excess RI

For every learning algorithmt  h v s that outputs a
di stribution on modvery- ,

nn, 1 & KL(IL, | II,)
Ep.n, BYY [1(D) 8 B, [ 320 |+ FE0

i (Dh b () isexcess loss on &

Jtcan be any loss function

eg. ® (@O)h/B( dhv) I "AD)s (0/1-loss)
G (Gyh/b( Gdy) (& "dwW)) (sq. Err. loss)
() 1 InC® (log loss)



Zhangos Excess RI

For every learning algorithmt  h v s that outputs a
di stributifon on modvery— T ,

nn, 1 & KL(IL, | II,)
Ep.n, BYY [1(D) 8 B, [ 320 |+ FE0

I (D) h b)) () is excess loss on @
Jtcan be any loss function (0/1, square, log-loss, ...)
"Q is risk minimizer in F :

f* = argminEz.plty(7)



Zhangos Excess RI

For every learning algorithmt  h v s that outputs a

distributono n mafd e | L evergvemy Of
nn, 1 & KL(II,, | o)
By, BEY (/D)o By, [+ 350 - EEE



Zhangos Excess RI

For every learning algorithmt  h v s that outputs a

distributono n mafd e | L evergvemy Of
annmn, 72, KL ﬂn H
Ef“ﬁn EZ~Pn [ (Z)] 2y Cy- (Ef~fln P "‘Q + (77-77|,| 0))
! Py (Z")

-—— -log
n-n Ps ) (Z7)

where n s (@ n@iQ O p@iq O BO
are the oO0entropifiedodo probab



Zhangos Excess RI

For eveny,euenrni -fordhe generalized —
Bayesian posterior, every 0 p r li @every — TI:

By B 1D (1

1 S, (Z™)dllo(f)
UREL Pps ,(Z7)




Zhangos Excess RI

For eveny,euenrni -fordhe generalized —
Bayesian posterior, every 0 p r i @every — Tt

E

poit, Bzep' [75(2)]9pn Cyp (Ef~ﬂn

1 S, (Z™)dllo(f)
—— log

n-n Ps (Z7)

Insight: excess risk bound in terms of the cumulative log-
loss of a Bayesian prediction strategy




Two Observations

comp,,(M) < inf log Noo(M, ©)+24 /OE /109 Noo (M, 8)dd

1. Bound is often better than best regret bound that
can be given for prediction by Bayes marginal
likelihood (¢ vs.& forf [ )

A ...and for some M it is indeed known that Bayesian
prediction has larger worst-case regret



Recall: Two Complexity Notions

A Shtarkov or NML Complexity

A central notion in log-loss individual sequence
prediction

A PAC-Bayesian Complexity

A right-hand side in a strong excess risk bound in
(stochastic) statistical learning for arbitrary loss
fns; not suited for very large classes. We will
unify with Shtarkov Complexity and thus make
bound suitable for large classes.



G & M Excess Risk Bound (Thm)

For every L~ @ ,everypriort ,every— T

E;n, E,. b [ri(Z)] 9

n KL(ﬁnHHO)
n-n

1 T
Ko, [5;"“10(21:)]



G & M Excess Risk Bound

Foreveryt L~ ® ,everMevery— U

Effvﬂn E; b [re(Z2)] <

12 R?; (
E ~ — Zz -+
fNHn[n?;rf( )] o



G & M Excess Risk Bound

For every L ~ @, every luckiness function 0,
every — TI:

Effvﬂn E; b [re(Z2)] <

1 - n
Ef'vﬁn [g er(zi)] + COMPU(]:, 1L, w, Z )

“

data-dependent part data-independent
part



