
Today

1. Complexity

ÅIndividual Sequence Prediction with Log-

Loss: the NML distribution and Complexity

ÅExtending the Right-Hand Side of Zhangôs 

Bound

2. Safe Probability, Safe Statistics



Three Complexity Notions

ÅShtarkov or NML Complexity

Åcentral notion in nonstochastic log-loss individual 

sequence prediction. 

ÅPAC-Bayesian Complexity

Å right-hand side in a strong excess risk bound in 

(stochastic) statistical learning  for arbitrary loss fns

Åespecially suited for (pseudo-) Bayesian methods 

but not for very large classes

ÅRademacher Complexity

Å right-hand side in stochastic excess risk bound that 

deals well with large classes but not with log-loss 

and priors



The Shtarkov/MDL Complexity

ÅMinimax Cumulative Regret for Individual Sequence 

Prediction with Log Loss (Shtarkov ó88, Rissanen ó96), 

also known as Shtarkov complexity or MDL/stochastic 

complexity: 



On-Line ñProbabilisticò Prediction

ÅConsider sequence                     , all                

ÅGoal: sequentially predict      given past                      

using a óprobabilistic predictionô     (distribution on     )

Åprediction strategy Ὓis function mapping, for all i ,  

óhistoriesô                      to distributions for i -th

outcome 



prediction strategy = distribution

Å If we think that                         (not necessarily i.i.d !) 

then should predict      using conditional distribution 

Ånote that then joint probability mass/density is equal to 

the product of the predictions: 



prediction strategy = distribution

Å If we think that                         (not necessarily i.i.d !) 

then should predict      using conditional distribution 

Ånote that then joint probability mass/density is equal to 

the product of the predictions: 

Conversely, every prediction strategy S may be thought 

of as a distribution on                  , by defining: 



Logarithmic Loss

Å To compare performance of different prediction 

strategies, we need a measure of prediction quality

Å One popular measure of quality is the log loss:

Å corresponds to two important practical settings:

Å data compression:                              is number 

of bits needed to encode                  using codeὛ

ÅóKellyô gambling: loss = log capital growth factor                                             



Log loss & likelihood

ÅFor every ñprediction strategyò P, all n,

Å



Log loss & likelihood

ÅFor every ñprediction strategyò P, all n,

ÅAccumulated log loss   = minus log likelihood

Dawid ó84, Rissanen ó84



Universal Prediction

ÅLet                            be a set of predictors (identified with 

probability distributions on      )

ÅSimplest example:       is the Bernoulli model

ÅNonparametric example:      is unit interval,       is set 

of all monotonically decreasing probability ensities

ÅGOAL: given      , construct a new predictor predicting 

data óalmost as wellô as any of the             no matter what 

data arrive (a nonstochastic setting!)



Universal Prediction

ÅMore concretely: find, for fixed ὲ, the predictor 

ὖachieving the minimax cumulative log-loss regret

where 

ÅSolution was given by Shtarkov in 1988 (!)



Universal Prediction

ÅMore concretely: find, for fixed ὲ, the predictor 

ὖachieving the minimax cumulative log-loss regret



Universal Prediction

Åuniquely achieved* by Shtarkov or NML (Normalized 

Maximum Likelihood) Distribution, given by    

Å ...and its regret satisfies, for all                  , 



ÅSo

is cumulative minimax regret relative to model M

For Ὠ-dimensional exponential families with bounded 

density ratios (Rissanen ô96, G. ó07),  

Complexity for Parametric Models



...whereas the Bayesian marginal likelihood                   

is known to satisfy* 

Complexity for Parametric Models



...whereas the Bayesian marginal likelihood                   

is known to satisfy* 

for Jeffreysô prior,                            asymptotically same! 

Complexity for Parametric Models



Aside

ÅIn its simplest form, the MDL Principle (Rissanen, ô89) 

states that to compare 2 statistical models              for 

the same data, one should associate them both with a 

lossless universal code (i.e. a code that gives small 

codelengths whenever óthe model fits the data wellô ...)

Å ... and then pick the model which allows for the 

shortest codelength of the data

ÅA lossless code is just a sequential log-loss prediction 

strategy... It is a good universal code if it has small 

regret 



Aside

Åpick the model       which allows for shortest codelength 

of data if encoded with good universal code

ÅA lossless code is just a sequential log-loss prediction 

strategy... it is a good universal code if it has small 

regret

Åi.e. MDL tells you to pick       with óconfidenceô ὑ πiff 



Aside

Åpick the model       which allows for shortest codelength 

of data if encoded with good universal code

ÅA lossless code is just a sequential log-loss prediction 

strategy... it is a good universal code if it has small 

regret

Åi.e. MDL tells you to pick       with óconfidenceô ὑ πiff 

i.e.



Aside

Åpick       with óconfidenceô ὑ πiff

Å If null model is simple, then Ὓis an S-value (E Ὓ ρ)

Å ... More generally, one also allows ratios of other ὖᴂs 

that correspond to codes with small regret, such as 

Bayesian, óprequentialô, óswitchô

ÅRyabko & Monarev: 



...whereas the Bayesian marginal likelihood                   

is known to satisfy* 

for Jeffreysô prior,                            asymptotically same! 

Complexity for Parametric Models



Nonparametric Models

ÅOpper & Haussler (ó96), Cesa-Bianchi & Lugosi (ó01) 

and more recently Rakhlin and Sridharan (ó15) gave 

bounds using chaining based on ὒ -covering nrs:

Å If the model is i.i.d., then                  is -covering nr 

under metric



Nonparametric Models

ÅOpper & Haussler (ó96), Cesa-Bianchi & Lugosi (ó01) 

and more recently Rakhlin and Sridharan (ó15) gave 

bounds using chaining based on ὒ -covering nrs:

Å If the model is i.i.d., then                  is -covering nr 

under metric

ÅWith this bound they obtained                                    

for variety of nonparametric models  



Two Observations

ÅBound is often better than best regret bound that can 

be given for prediction by Bayes marginal likelihood 

(ὲ vs. ὲ for  )

Å ...and for some models it is indeed known that 

Bayesian prediction has larger worst-case regret

Å ...yet bound is void if 



Two Observations

1. Bound is often better than best regret bound that 

can be given for prediction by Bayes marginal 

likelihood (ὲ vs. ὲ for  )

Å ...and for some M it is indeed known that Bayesian 

prediction has larger worst-case regret

2. ...yet bound is void if

ÅTake e.g. M to be all i.i.d. extensions of 

monotonically decreasing densities (bounded 

away from 0 and Њ) on unit interval 



Two Complexity Notions, 

Two Results
ÅShtarkov or NML Complexity

Åcentral notion in log-loss individual sequence 

prediction. Existing bounds are in terms of ὒ -

entropy nrs; we have bound in terms of ὒȾȢὖ

nrs. 

ÅPAC-Bayesian Complexity

Å right-hand side in a strong excess risk bound in 

(stochastic) statistical learning for arbitrary loss 

fns; not suited for very large classes. We will 

unify with Shtarkov Complexity and thus make 

bound suitable for large classes. 



Zhangôs Excess Risk Bound

ÅG. & Mehta 2016 mostly about extending the left-hand 

side

ÅTODAY: G. & Mehta 2017a; mostly about the right-

hand side

For every learning algorithm ɩ ḧɩȿ: that outputs a 

distribution on model     , every ópriorô ɩ every – π:



ὶὤ ḧЉ ὤ Љᶻὤ is excess loss on ὤ

For every learning algorithm ɩ ḧɩȿ: that outputs a 

distribution on model     , every ópriorô ɩ every – π:

Zhangôs Excess Risk Bound



ὶὤ ḧЉ ὤ Љᶻὤ is excess loss on ὤ

Љcan be any loss function

e.g. ὤ ὢȟὣȟЉ ὢȟὣ ȿὣ Ὢὢȿ (0/1-loss)

ὤ ὢȟὣȟЉ ὢȟὣ ὣ Ὢὢ (sq. Err. loss)

Љ ὤ ÌÏÇὴ ὤ (log loss)

For every learning algorithm ɩ ḧɩȿ: that outputs a 

distribution on model     , every ópriorô ɩ every – π:

Zhangôs Excess Risk Bound



ὶὤ ḧЉ ὤ Љᶻὤ is excess loss on ὤ

Љcan be any loss function (0/1, square, log-loss, ...) 

Ὢᶻis risk minimizer in      :      

For every learning algorithm ɩ ḧɩȿ: that outputs a 

distribution on model     , every ópriorô ɩ every – π:

Zhangôs Excess Risk Bound



Zhangôs Excess Risk Bound

For every learning algorithm ɩ ḧɩȿ: that outputs a 

distributionon model     , every ópriorô ɩ every – π:



Zhangôs Excess Risk Bound

where ὴȟ ᾀ ὴᾀẗὩ ὴᾀẗὩ Љ Љᶻ

are the óentropifiedô probabilities we discussed earlier

For every learning algorithm ɩ ḧɩȿ: that outputs a 

distributionon model     , every ópriorô ɩ every – π:



Zhangôs Excess Risk Bound

For every ópriorô ɩ , every π –ȟfor the generalized –-
Bayesian posterior, every ópriorô ɩ every – π:



Zhangôs Excess Risk Bound

For every ópriorô ɩ , every π –ȟfor the generalized –-
Bayesian posterior, every ópriorô ɩ every – π:

Insight: excess risk bound in terms of  the cumulative log-

loss of a Bayesian prediction strategy



Two Observations

1. Bound is often better than best regret bound that 

can be given for prediction by Bayes marginal 

likelihood (ὲ vs. ὲ for  )

Å ...and for some M it is indeed known that Bayesian 

prediction has larger worst-case regret



Recall: Two Complexity Notions

ÅShtarkov or NML Complexity

Åcentral notion in log-loss individual sequence 

prediction

ÅPAC-Bayesian Complexity

Å right-hand side in a strong excess risk bound in 

(stochastic) statistical learning for arbitrary loss 

fns; not suited for very large classes. We will 

unify with Shtarkov Complexity and thus make 

bound suitable for large classes. 



For every ɩ ɩ ὤ᷄ , every prior ɩ , every – π: 

G & M Excess Risk Bound (Thm)



For every ɩ ɩ ὤ᷄ , every prior ɩ , every – π: 

G & M Excess Risk Bound



For every ɩ ɩ ὤ᷄ , every luckiness function ύ,  

every – π: 

G & M Excess Risk Bound

data-dependent part data-independent 

part


