Querying Key-Value Stores Under Simple Semantic Constraints: Rewriting and Parallelization

Olivier Rodriguez
Université de Montpellier
olivier.rodriguez@etu.umontpellier.fr

Corentin Colomier
Université de Montpellier
corentin.colomier@etu.umontpellier.fr

Cécile Rivière
Université de Montpellier
cecile.riviere@etu.umontpellier.fr

Reza Akbarinia
INRIA Sophia Antipolis
reza.akbarinia@inria.fr

Federico Ulliana
Université de Montpellier
federico.ulliana@lirmm.fr

Accessing data under semantic constraints

Popular paradigm, considered for example in ontology-based data integration. Usually setting is: DL or existential rules + relational or RDF data + conjunctive queries.

Demo contribution

A system for accessing Key-Value stores that
1. accounts for semantic constraints over keys
2. supports MongoDB queries akin to tree-pattern queries (without joins)
3. exploits query reformulation techniques for data access
4. parallelizes the computing of large rewriting sets over multiple threads

Query rewriting

Rewrite the edges of the tree-like query:

$(\forall$-rule) $k_1 \rightarrow k_2$ replace k_2 with k_1

$(\exists$-rule) $k_1 \rightarrow \exists k_2$ replace k_2 with $k_1,$ only on "existential leaves".

3-rules must be applied only on existential leaves to ensure soundness.

The tree view of JSON records

General form of a key constraint:

$(\forall$-rule) $k_1 \rightarrow k_2$ (inclusion between keys)

$(\exists$-rule) $k_1 \rightarrow \exists k_2$ (mandatory key)

σ_1 phone \rightarrow contact Every phone is a contact

σ_2 mail \rightarrow contact Every mail is a contact

σ_3 prof \rightarrow director If there is a professor then there is a director

σ_4 prof \rightarrow faculty A professor is a faculty member

Key constraints

Parallelization

Goal: parallelize the generation of the whole rewriting set.

Rewrite $Q: \{\text{faculty} : \{ \text{contact} : \{ \text{exists} : \text{true} \} \} \}$ with the rules $\sigma_1, \sigma_2, \sigma_4$

1) Enumerate the edges of the query and build an unranked decision tree where

- the level j corresponds to the rewriting of the edge j of the query ($1 \leq j \leq |Q|$)
- the degree of a node d_j corresponds to the possible rewritings of the edge j

2) A leaf-code $\{ c_1, \ldots, c_n \} \in \{0,1, \ldots, |\Sigma|\}^{\mathbb{P}(\Sigma)}$ given (d_1, \ldots, d_n) is the integer

$p_{c_1, \ldots, c_n} = c_1 \cdot d_1 + c_2 \cdot d_2 + \ldots + c_n \cdot d_n$ with $B_1 = 1$ and $B_{j+1} = d_{j+1} \cdot B_{j+1}$

3) Assign to each of n rewritings an interval of queries to be generated $[N, \ldots, N+\lambda]$ with $\lambda = |\text{leaves} (\text{Rew}(Q, \Sigma))/n|$.