

A Circuit-Based Approach to Efficient Enumeration

Antoine Amarilli¹, Pierre Bourhis², Louis Jachiet³, Stefan Mengel⁴ September 20th, 2017

¹Télécom ParisTech

²CNRS CRIStAL

³Université Grenoble-Alpes

⁴CNRS CRIL

Problem statement

Input

• Problem: The output may be too large to compute efficiently

• Problem: The output may be too large to compute efficiently

Q knowledge compilation

8

Search

• Problem: The output may be too large to compute efficiently

Q knowledge compilation Search

Results 1 - 20 of 10,514

• Problem: The output may be too large to compute efficiently

Q knowledge compilation Search

Results 1 - 20 of 10,514

. . .

• Problem: The output may be too large to compute efficiently

Q knowledge compilation Search

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

• Problem: The output may be too large to compute efficiently

Q knowledge compilation Search

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

→ Solution: Enumerate solutions one after the other

Input

Currently:

Currently:

Currently:

- Directed acyclic graph of gates
- Output gate:
- Variable gates:

• Internal gates:

(¬)

- Directed acyclic graph of gates
- Outp •
- Varia

Inter •

• Valuation: function from variables to {0,1} Example: $\nu = \{ \mathbf{x} \mapsto \mathbf{0}, \mathbf{y} \mapsto \mathbf{1} \}$...

- Directed acyclic graph of gates
- Outp •
- Varia

Inter •

• Valuation: function from variables to {0,1} Example: $\nu = \{ \mathbf{x} \mapsto \mathbf{0}, \mathbf{y} \mapsto \mathbf{1} \}$...

- Directed acyclic graph of gates
- Outp •
- Varia

Interr •

• Valuation: function from variables to {0,1} Example: $\nu = \{ \mathbf{x} \mapsto \mathbf{0}, \mathbf{y} \mapsto \mathbf{1} \}$...

- Directed acyclic graph of gates
- Outp •
- Varia

Inter •

• Valuation: function from variables to {0,1} Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

- Directed acyclic graph of gates
- Output gate:
- Variable gates:

• Internal gates:

• Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

(\)

(¬)

 Assignment: set of variables mapped to 1 Example: S_ν = {y}; more concise than ν

Х

- Directed acyclic graph of gates
- Output gate:
- Variable gates:

• Internal gates:

• Valuation: function from variables to $\{0, 1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

(\)

(¬)

 Assignment: set of variables mapped to 1 Example: S_ν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

Circuit restrictions

d-DNNF:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

The inputs are **independent** (= no variable *x* has a path to two different inputs)

d-DNNF:

• (V) are all **deterministic**:

The inputs are **mutually exclusive** (= no valuation ν makes two inputs simultaneously evaluate to 1)

• () are all **decomposable**:

The inputs are **independent** (= no variable *x* has a path to two different inputs) v-tree: ∧-gates follow a tree on the variables

Theorem

Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** with preprocessing **linear in** |C| + |T| and delay **linear in each assignment**

Theorem

Given a *d-DNNF circuit C* with a *v-tree T*, we can enumerate its satisfying assignments with preprocessing linear in |C| + |T| and delay linear in each assignment

Also: restrict to assignments of **constant size** $k \in \mathbb{N}$ (at most k variables are set to 1):

Theorem

Given a *d*-DNNF circuit C with a v-tree T, we can enumerate its satisfying assignments of size $\leq k$ with preprocessing linear in |C| + |T| and constant delay

Orders (O for short)			Dish (D	for short)	Items (I f	Items (I for short)		
customer	day	dish	dish	dish item		price		
Elise	Monday	burger	burger	patty	patty	6		
Elise	Friday	burger	burger	onion	onion	2		
Steve	Friday	hotdog	burger	bun	bun	2		
Joe	Friday	hotdog	hotdog	bun	sausage	4		
			hotdog	onion				
			hotdog	sausage				

Consider the join of the above relations:

day	dish	item	price
Monday	burger	patty	6
Monday	burger	onion	2
Monday	burger	bun	2
Friday	burger	patty	6
Friday	burger	onion	2
Friday	burger	bun	2
	•••		
	Monday Monday Monday Friday Friday	Monday burger Monday burger Monday burger Friday burger Friday burger	Monday burger patty Monday burger onion Monday burger bun Friday burger patty Friday burger onion Friday burger bun

O(customer, day, dish), D(dish, item), I(item, price)

O(custon	ner, day, <mark>dis</mark>	h), D(<mark>dish</mark>	, <mark>item</mark>), l(i	tem, price)
customer	day	dish	item	price
Elise	Monday	burger	patty	6
Elise	Monday	burger	onion	2
Elise	Monday	burger	bun	2
Elise	Friday	burger	patty	6
Elise	Friday	burger	onion	2
Elise	Friday	burger	bun	2

A relational algebra expression encoding the above query result is:

$\langle Elise \rangle$	×	$\langle Monday \rangle$	×	$\langle burger \rangle$	×	$\langle patty \rangle$	×	$\langle 6 \rangle$	U
$\langle \textit{Elise} \rangle$	×	$\langle Monday \rangle$	×	$\langle burger \rangle$	×	$\langle onion \rangle$	×	$\langle 2 \rangle$	U
$\langle \textit{Elise} \rangle$	×	$\langle Monday \rangle$	×	$\langle burger \rangle$	×	(bun)	×	$\langle 2 \rangle$	U
$\langle \textit{Elise} \rangle$	×	$\langle \mathit{Friday} \rangle$	×	$\langle burger \rangle$	×	$\langle patty \rangle$	×	$\langle 6 \rangle$	U
$\langle \textit{Elise} \rangle$	×	$\langle Friday angle$	×	$\langle burger \rangle$	×	$\langle onion \rangle$	×	$\langle 2 \rangle$	U
$\langle Elise \rangle$	×	(<i>Friday</i>)	×	$\langle burger \rangle$	×	$\langle bun \rangle$	×	$\langle 2 \rangle$	υ

- Decomposable: by definition (following the schema)
- Deterministic: we do not obtain the same tuple multiple times

- Decomposable: by definition (following the schema)
- Deterministic: we do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015]) Given a deterministic factorized representation, we can enumerate its tuples with **linear preprocessing** and **constant delay**

Query evaluation on trees

Database: a tree T where nodes have a color from an alphabet $\bigcirc \bigcirc \bigcirc$

Query Q: a sentence in monadic second-order logic (MSO) • $P_{\odot}(x)$ means "x is blue"

• $x \rightarrow y$ means "x is the parent of y"

"Is there both a pink and a blue node?" $\exists x y P_{\odot}(x) \land P_{\odot}(y)$

Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of the tree T (the query Q is fixed)

(Slides courtesy of Pierre Bourhis)

Application 2: Query evaluation

- Compute the results (*a*, *b*, *c*) of a query *Q*(*x*, *y*, *z*) on a tree *T*
 - \rightarrow Generalizes to **bounded-treewidth** databases

Application 2: Query evaluation

- Compute the results (*a*, *b*, *c*) of a **query** *Q*(*x*, *y*, *z*) on a **tree** *T*
 - ightarrow Generalizes to **bounded-treewidth** databases
- Query given as a deterministic tree automaton
 - → Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures conjunctive queries, SQL, etc.

Application 2: Query evaluation

- Compute the results (a, b, c) of a query Q(x, y, z) on a tree T
 - ightarrow Generalizes to **bounded-treewidth** databases
- Query given as a deterministic tree automaton
 - \rightarrow Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures **conjunctive queries**, SQL, etc.
- ightarrow We can construct a **d-DNNF** that describes the query results

- Compute the results (a, b, c) of a query Q(x, y, z) on a tree T
 - ightarrow Generalizes to **bounded-treewidth** databases
- Query given as a deterministic tree automaton
 - \rightarrow Captures **monadic second-order** (data-independent translation)
 - \rightarrow Captures **conjunctive queries**, SQL, etc.
- $\rightarrow\,$ We can construct a $d\text{-}\mathsf{DNNF}$ that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013]) For any constant $k \in \mathbb{N}$ and fixed MSO query Q, given a database D of treewidth $\leq k$, the results of Q on Dcan be enumerated with linear preprocessing in D and linear delay in each answer (\rightarrow constant delay for free first-order variables)

Proof techniques

Preprocessing phase:

Enumeration phase:

Normalized

circuit

Special zero-suppressed semantics for circuits:

Special **zero-suppressed semantics** for circuits:

- No NOT-gate
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup

Special zero-suppressed semantics for circuits: $\{\{y\}, \{z\}\}$ • No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup

Ζ

х

 $\{x, y\}, \{x, z\}\}$ Special zero-suppressed semantics for circuits: $\{y\}, \{z\}\}$ No NOT-gate

- Each gate captures a set of assignments
- **Bottom-up** definition with \times and \cup

{{x, z}} Special zero-suppressed semantics for circuits: {{y}, {z}} No NOT-gate

- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

{{x, z}} Special zero-suppressed semantics for circuits: {{y}, {z}} No NOT-gate

- Each gate **captures** a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

Many **equivalent ways** to understand this:

- Generalization of **factorized representations**
- Analogue of **zero-suppressed** OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials

Special zero-suppressed semantics for circuits: z}} No NOT-gate

- Each gate **captures** a set of assignments
- Bottom-up definition with \times and \cup
- **d-DNNF**: \cup are disjoint, \times are on disjoint sets

Many **equivalent ways** to understand this:

- Generalization of factorized representations
- Analogue of zero-suppressed OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in \leq 2)

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) :

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

- Concatenation: enumerate S(g)and then enumerate S(g')
- Determinism: no duplicates

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x, y\}, \{x, z\}\}$, enumerate $\{x, y\}$ and then $\{x, z\}$

Base case: variable (x) : enumerate $\{x\}$ and stop

Concatenation: enumerate S(g)and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g)and for each result t enumerate S(g')and concatenate t with each result

Decomposability: no duplicates

• **Problem:** if
$$S(g) = \emptyset$$
 we waste time

- **Problem:** if $S(g) = \emptyset$ we waste time
- Solution: compute bottom-up if $S(g) = \emptyset$

• **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates

 $\{\{x\}\}$

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
 - Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates

 $\{\{x\}\}$

- Problem: if S(g) contains {} we waste time in chains of AND-gates
 - Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1

 $\{\{x\}\}$

 $\{\{x\}\}$

 $\{\{x\}\}$

 $\{X\}$

- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1

 $\{\{x\}\}$

{{x}}

{{x}}

 $\{X\}$

- Problem: if S(g) contains {} we waste time in chains of AND-gates
 - Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates
 - collapse AND-chains with fan-in 1
- → Now, traversing an AND-gate ensures that we make progress: it splits the assignments non-trivially

• **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

- **Problem:** we waste time in OR-hierarchies to find a **reachable exit** (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

Solution:

- Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

• This is where we use the **v-tree**

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

• Problem: quadratic blowup

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup
- Solution:
 - Order < on variables in the v-tree (x < y < z)
 - Interval [x, z]
 - Range gates to denote $\bigvee [x, z]$ in constant space

- This is where we use the **v-tree**
- Add explicitly untested variables (smoothing)

- Problem: quadratic blowup
- Solution:
 - Order < on variables in the v-tree (x < y < z)
 - Interval [x, z]
 - Range gates to denote $\bigvee [x, z]$ in constant space

Conclusion

- Enumerate the satisfying assignments of structured d-DNNF \rightarrow in delay linear in each assignment
 - \rightarrow in **constant** delay for constant Hamming weight
- \rightarrow Can recapture existing enumeration results
- $\rightarrow\,$ Useful general-purpose result for applications

- Enumerate the satisfying assignments of structured d-DNNF \rightarrow in delay linear in each assignment
 - \rightarrow in **constant** delay for constant Hamming weight
- \rightarrow Can recapture existing enumeration results
- \rightarrow Useful **general-purpose** result for applications

Future work:

- Practice: implement the technique with automata
- Theory: handle updates on the input

- Enumerate the satisfying assignments of structured d-DNNF \rightarrow in delay linear in each assignment
 - \rightarrow in **constant** delay for constant Hamming weight
- \rightarrow Can recapture existing enumeration results
- → Useful **general-purpose** result for applications

Future work:

- Practice: implement the technique with automata
- Theory: handle updates on the input

arXiv.org > cs > arXiv:1709.06185

Computer Science > Databases

Enumeration on Trees under Relabelings

Antoine Amarilli, Pierre Bourhis, Stefan Mengel

(Submitted on 18 Sep 2017)

- Enumerate the satisfying assignments of structured d-DNNF \rightarrow in delay linear in each assignment
 - \rightarrow in **constant** delay for constant Hamming weight
- \rightarrow Can recapture existing enumeration results
- → Useful **general-purpose** result for applications

Future work:

- Practice: implement the technique with automata
- Theory: handle updates on the input

arXiv.org > cs > arXiv:1709.06185

Computer Science > Databases

Enumeration on Trees under Relabelings

Antoine Amarilli, Pierre Bourhis, Stefan Mengel

(Submitted on 18 Sep 2017)

Thanks for your attention!

Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay.

In CSL.

- Kazana, W. and Segoufin, L. (2013).
 Enumeration of monadic second-order queries on trees.
 TOCL, 14(4).
- Olteanu, D. and Závodnỳ, J. (2015).
 Size bounds for factorised representations of query results. TODS, 40(1).