Enhance micro-blogging recommendations of posts with an homophily-based graph

Quentin Grossetti

Supervised by Cédric du Mouza, Camelia Constantin and Nicolas Travers

1LIP6 - Université Pierre Marie Curie - Paris, France
2CEDRIC Laboratory - CNAM - Paris, France

BDA - Novembre 2017
Introduction

Context

- Growth of microblogging platforms since 2000

- 700 millions of messages/day in 2017
- 300 millions of messages/day in 2017
- 70 millions of publications/day in 2017
- 70 millions of pictures/day in 2017
Enhance micro-blogging recommendations of posts with an homophily-based graph
Introduction

Real life examples

Finding Users of Interest in Micro-blogging Systems (EDBT 2016)

Enhance micro-blogging recommendations of posts with an homophily-based graph
Problem

How to connect users to relevant messages?

- Recommendation of messages
- 700M new messages every day
- 300M of users
- Real time
Table of contents

1 State of the art
2 Data Analysis
 1 Topology
 2 Retweets
 3 Homophily
3 Approach
 1 Similarity graph
 2 Propagation Model
4 Experiments
 1 Protocol
 2 Results
 3 Updating strategies
5 Conclusion
6 Annexes
Content-based [Lops (2011)]

<table>
<thead>
<tr>
<th>Method</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content-based</td>
<td>No need of interactions</td>
<td>tweets are hard to describe</td>
</tr>
</tbody>
</table>
State of the art

Collaborative filtering [Schafer (2007)]

<table>
<thead>
<tr>
<th>Method</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content-based</td>
<td>No need of interactions</td>
<td>tweets are hard to describe</td>
</tr>
<tr>
<td>Collaborative filtering</td>
<td>simple model and good results</td>
<td>too large matrix</td>
</tr>
</tbody>
</table>
Matrix Factorization [Koren (2009)]

\[
\begin{pmatrix}
 u_{11} & \cdots & u_{1r} \\
 \vdots & \ddots & \vdots \\
 u_{m1} & \cdots & u_{mr}
\end{pmatrix}
\begin{pmatrix}
 S_{11} & 0 & \cdots \\
 0 & \ddots & \vdots \\
 \vdots & \cdots & S_{rr}
\end{pmatrix}
\begin{pmatrix}
 v_{11} & \cdots & v_{1n} \\
 \vdots & \ddots & \vdots \\
 v_{r1} & \cdots & v_{rn}
\end{pmatrix}
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content-based</td>
<td>No need of interactions</td>
<td>tweets are hard to describe</td>
</tr>
<tr>
<td>Collaborative filtering</td>
<td>simple model and good results</td>
<td>too large matrix</td>
</tr>
<tr>
<td>Matrix Factorization</td>
<td>efficient to fight sparsity</td>
<td>matrix growing too fast</td>
</tr>
</tbody>
</table>
State of the art

Hybrid systems [Bostandjiev (2010)]

<table>
<thead>
<tr>
<th>Method</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content-based</td>
<td>No need of interactions</td>
<td>tweets are hard to describe</td>
</tr>
<tr>
<td>Collaborative filtering</td>
<td>simple model and good results</td>
<td>too large matrix</td>
</tr>
<tr>
<td>Matrix Factorization</td>
<td>efficient to fight sparsity</td>
<td>matrix growing too fast</td>
</tr>
<tr>
<td>Hybrid systems</td>
<td>increase user engagement</td>
<td>hard to describe relationship</td>
</tr>
</tbody>
</table>
State of the art

Random walks models [Sharma (2016)]

<table>
<thead>
<tr>
<th>Method</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content-based</td>
<td>No need of interactions</td>
<td>tweets are hard to describe</td>
</tr>
<tr>
<td>Collaborative filtering</td>
<td>simple model and good results</td>
<td>too large matrix</td>
</tr>
<tr>
<td>Matrix Factorization</td>
<td>efficient to fight sparsity</td>
<td>matrix growing too fast</td>
</tr>
<tr>
<td>Hybrid systems</td>
<td>increase user engagement</td>
<td>hard to describe relationship</td>
</tr>
<tr>
<td>Random walks models</td>
<td>very cheap</td>
<td>low memory</td>
</tr>
</tbody>
</table>
State of the art
Not only recommendations

- User recommendation (topology, content-based, demographic etc...)
- Hashtag (Bayesian model, euclidien...)
- Timeline Filtering (Deep Learning)
- Few papers on tweets recommendation except Twitter in 2016
Data Analysis

Dataset

Updated connected component from the graph found in [Kwak (2009)].

<table>
<thead>
<tr>
<th>No of nodes</th>
<th>2,182,867</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of edges</td>
<td>325,451,980</td>
</tr>
<tr>
<td>No of tweets</td>
<td>2,571,173,369</td>
</tr>
<tr>
<td>Avg. out-degree</td>
<td>57.8</td>
</tr>
<tr>
<td>Avg. in-degree</td>
<td>69.4</td>
</tr>
<tr>
<td>max out-degree</td>
<td>348,595</td>
</tr>
<tr>
<td>max in-degree</td>
<td>185,401</td>
</tr>
<tr>
<td>Diameter</td>
<td>15</td>
</tr>
<tr>
<td>Average shortest path</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Table – Twitter dataset characteristics
Smallest path
Number of paths

Small world with average distance of 3.7

Figure – Twitter smallest paths distribution
Data Analysis

Retweets

Figure – Distribution of the number of retweets per tweet

- 1 retweet - 7%
- 2-5 retweets - 1%
- 6+ - 0.2%

Enhance micro-blogging recommendations of posts with an homophily-based graph
Data Analysis

Lifespan

Figure – Lifespan of a message

Enhance micro-blogging recommendations of posts with an homophily-based graph
Data Analysis

Homophily

<table>
<thead>
<tr>
<th>Distance</th>
<th>No of users</th>
<th>%</th>
<th>Mean similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3229</td>
<td>02,65</td>
<td>0,0085</td>
</tr>
<tr>
<td>2</td>
<td>32 668</td>
<td>26,86</td>
<td>0,0014</td>
</tr>
<tr>
<td>3</td>
<td>81 645</td>
<td>67,13</td>
<td>0,0009</td>
</tr>
<tr>
<td>4</td>
<td>3 820</td>
<td>03,14</td>
<td>0,0010</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>00,03</td>
<td>0,0014</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0,0008</td>
</tr>
<tr>
<td>Impossible</td>
<td>216</td>
<td>0,18</td>
<td>0,0017</td>
</tr>
</tbody>
</table>

Table – Evolution of the similarity score through distance in the network

\[
sim(u, v) = \frac{\sum_{i \in L_u \cap L_v} \frac{1}{\log(1 + pop(i))}}{|L_u \cup L_v|}
\]

(1)

Enhance micro-blogging recommendations of posts with an homophily-based graph
Data Analysis

Homophily

Table – Link between distance in the network and position in the Top-N

<table>
<thead>
<tr>
<th>Rank</th>
<th>Average Distance</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,55</td>
<td>57,03</td>
<td>31,53</td>
<td>10,64</td>
<td>0,8</td>
</tr>
<tr>
<td>2</td>
<td>1,68</td>
<td>49,60</td>
<td>33,13</td>
<td>16,87</td>
<td>0,4</td>
</tr>
<tr>
<td>3</td>
<td>1,8</td>
<td>42,45</td>
<td>36,02</td>
<td>20,72</td>
<td>0,8</td>
</tr>
<tr>
<td>4</td>
<td>1,86</td>
<td>38,71</td>
<td>38,71</td>
<td>20,56</td>
<td>2,02</td>
</tr>
<tr>
<td>5</td>
<td>1,98</td>
<td>31,44</td>
<td>40,16</td>
<td>27,59</td>
<td>0,81</td>
</tr>
</tbody>
</table>

Enhance micro-blogging recommendations of posts with an homophily-based graph
Data Analysis

Conclusions

Many conclusions from this analysis:

- Freshness is crucial (Messages dies very fast)
 \Rightarrow real-time recommendation

- Few users have high similarity
 \Rightarrow use transitivity

- Distance 2 successfully gather important users
 \Rightarrow rely on this homophily
Similarity Graph

Building process

Figure – Twitter Graph
Graphe de similarité
Exemple de construction

Figure – Twitter Graph
Similarity Graph

Building process

\[\text{Approach} \]

\[\text{Similarity graph} \]

\[\text{Building process} \]

\[\text{Enhance micro-blogging recommendations of posts with an homophily-based graph} \]

\[\text{Figure – Twitter Graph} \]
Graphe de similarité

Exemple de construction

Figure – Twitter Graph
Similarity Graph

Building process

\(\text{Figure} \) – Similarity Graph
Similarity Graph

Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Twitter Network</th>
<th>Similarity Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of nodes</td>
<td>2,182,867</td>
<td>1,149,374</td>
</tr>
<tr>
<td>No of edges</td>
<td>325,451,980</td>
<td>4,950,417</td>
</tr>
<tr>
<td>Avg. similarity score</td>
<td>57.8</td>
<td>0.008</td>
</tr>
<tr>
<td>Mean out-degree</td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>

Table – Similarity Graph Characteristics
Propagation Model

In a nutshell

\[p(u, t) = \frac{\sum_{v \in Fu} p(u \leftarrow v, t)}{|Fu|} \] \hspace{1cm} (2)

With \(Fu \) the set of users influential to \(u \) and \(p(u \leftarrow v, t) \) a probability estimation that \(u \) likes \(t \) determined by the behavior of the user \(v \).

\[p(u \leftarrow v, t) = p(v, t) \times \text{sim}(u, v) \] \hspace{1cm} (3)
Propogation Model

Example

\[
\begin{align*}
\text{U} & \quad 0.3 \quad \text{W} \\
\text{V} & \quad 0.1 \quad \text{Y} \\
\text{W} & \quad 0.5 \quad \text{X}
\end{align*}
\]

Figure – Propagation example
Propagation Model

Example

Figure – Propagation example - a tweet $t1$ is published
Propagation Model

Example

Figure – Propagation example - X shares/likes t1

\[p(x, t1) = 1 \]
Propagation Model

Example

\[
p(w, t1) = \frac{\sum_{v \in F_w} p(w \leftarrow v, t)}{|F_w|} = \frac{0 + 1 \times 0.5}{2} = 0.25
\]
Propagation Model

Example

\[p(u, t1) = \frac{0.25 \times 0.5}{2} = 0.0625 \]
Propagation Model

Convergence

Let n be users $(u_1, u_2, ..., u_n)$:

\[
\begin{align*}
 a_{11} p_{u_1} + a_{12} p_{u_2} + \ldots + a_{1n} p_{u_n} &= b_1 \\
 a_{21} p_{u_1} + a_{22} p_{u_2} + \ldots + a_{2n} p_{u_n} &= b_2 \\
 \vdots &= \vdots \\
 a_{n1} p_{u_1} + a_{n2} p_{u_2} + \ldots + a_{nn} p_{u_n} &= b_n
\end{align*}
\]

Could also be written as $Ap = b$ with

\[
A = \begin{pmatrix}
 u_1 & u_2 & \ldots & u_n \\
 u_1 & a_{11} & a_{12} & \ldots & a_{1n} \\
 u_2 & a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 u_n & a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix},
\]

\[
p = \begin{pmatrix}
 p(u_1) \\
 p(u_2) \\
 \vdots \\
 p(u_n)
\end{pmatrix},
\]

\[
b = \begin{pmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{pmatrix}
\]

Because $\forall u, v \ \text{sim}(u, v) \leq 1$, $|a_{jj}| \geq \sum_{j \neq i} |a_{ij}|$ for every i, the matrix A is diagonally dominant.
Optimizations

- Speed up the convergence
 Let $\Delta(u, t1) = p(u, t)^{k+1} - p(u, t)^k$
 If $\Delta(u, t1) < \beta$ we stop the propagation
Propagation Model

Optimizations

- Speed up the convergence
 Let $\Delta(u, t1) = p(u, t)^{k+1} - p(u, t)^k$
 If $\Delta(u, t1) < \beta$ we stop the propagation

- Limitation of popular messages
 If $p(u, t) < f(t)$ no need to propagate.
 \[f(t) = 1 - \frac{k^p}{k^p + \text{pop}(t)^p} \]
Experiments

Protocol

- 130 Millions of messages shared at least twice
- Split the ranked set 90% - 10%
- Compute recommendation during this 10% for 1500 random users (500 small, 500 medium, 500 big)
- Comparison with
 - CF : naive collaborative filtering
 - Bayes : probabilistic model
 - GraphJet : Twitter used solution
Experiments

Experiments

Hits

Figure – Hits pour 1500 utilisateurs

- Linear growth of *CF*
- Fast growth for *SimGraph*
- *GraphJet* stuck around 5000 hits
Experiments

Hits according to user profiles

Figure – 500 small

small < 50; medium < 1000; big > 1000

Tendencies are very stables no matter the profile of users
Experiments

Hits accuracy

Bayes targets close messages
GraphJet targets popular messages
CF and SimGraph are mixing both popular and close messages

Figure – Hits popularity
Experiments

F1 scores

- Figure – F1 Scores

Enhance micro-blogging recommendations of posts with an homophily-based graph
Experiments

Running time

<table>
<thead>
<tr>
<th>Method</th>
<th>init. (per user)</th>
<th>init total time (1,149,374 users)</th>
<th>time (per message)</th>
<th>total time (70 cores //) 13,238,941 Tweets (Trial period)</th>
<th>total time init + recos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayes</td>
<td>10ms</td>
<td>0.04h</td>
<td>975ms</td>
<td>51.22h</td>
<td>51.26h</td>
</tr>
<tr>
<td>CF</td>
<td>8,583ms</td>
<td>39.40h</td>
<td>0.5ms</td>
<td>0.02h</td>
<td>41.01h</td>
</tr>
<tr>
<td>SimGraph</td>
<td>311ms</td>
<td>1.41h</td>
<td>38ms</td>
<td>2.00h</td>
<td>3.41h</td>
</tr>
<tr>
<td>GraphJet</td>
<td>0ms</td>
<td>0h</td>
<td>14ms</td>
<td>4.2h</td>
<td>4.2h</td>
</tr>
</tbody>
</table>

Table – Initialization and recommendation time (in ms)
How to update *SimGraph*?

- Split the last 10% in 2
- Evaluate hits prediction impact for the remaining 5%:
 - *do nothing*
 - *recompute everything*
 - *update only weights*
 - *crossfold*
Experiments

Updating strategies

Figure – Hits / updating strategies

- doing nothing is the same as updating weights
- crossfold (very cheap) works very well

Enhance micro-blogging recommendations of posts with an homophily-based graph
Experiments

Convergence property of the SimGraph

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Number of edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4,950,417</td>
</tr>
<tr>
<td>2</td>
<td>7,519,031</td>
</tr>
<tr>
<td>3</td>
<td>10,836,129</td>
</tr>
<tr>
<td>4</td>
<td>11,496,445</td>
</tr>
<tr>
<td>5</td>
<td>11,678,747</td>
</tr>
</tbody>
</table>

Table – Number of edges evolution through iterations
Conclusion

Contribution

- Construction and analysis of a large Twitter dataset
- Method relying on homophily to find nearest neighbors at low cost
- Construction and optimization of a convergent propagation model
- Comparison of the recommendations made by our model with state of the art solutions
- Possibility for the model to be updated at low cost
Conclusion

Future works

- Densify points of comparison between users
- Burst recommendation bubbles
- Work on the *crossfold* convergence of the model
- Add a popularity prediction optimization
Thanks for your attention!
ANNEXES
Annexes

Lifespan and popularity

Figure – Correlation between lifespan and popularity

- Strong correlation up to 10^3 hours
- After a month, the correlation fades
Topology

Figure – Smallest path distribution for the similarity graph

- Diameter of 21 for an average path of 7.5

Enhance micro-blogging recommendations of posts with an homophily-based graph
Similarities

Figure – Score similarity evolution

- Really weak scores
- Breaks after the fifth most similar user
Figure – Parts of hits included in SimGraph

Enhance micro-blogging recommendations of posts with an homophily-based graph
Annexes

Number of recommendations

Figure – Recall capacity

- **CF** is less limited
- Other methods are bunched together
- Threshold effect for SimGraph and Bayes