IMACS

Ingénierie Mathématique & Calcul Scientifique

Hybrid H-matrix — FMM solvers for wave equations

 $N(c, \alpha) = \frac{2c}{\pi} + \frac{1}{\pi^2} \ln\left(\frac{1-\alpha}{\alpha}\right) \log(c) + O(\log(c))$ Toufic Abboud

 $G(x,y) \approx \sum_{\alpha=1}^{r} a_{\alpha}(x)b_{\alpha}(y)$ Pau, 12-14 December 2017

Merci Abderrahmane !

BEM

 \mathcal{H}_{i-B_0X}

- Boundary Element Method, also known as Method of Moment (MoM) is the method of choice for many Electromagnetic problems
- Cost: assembly in $O(N^2)$, factorisation/solve in $O(N^3)$ complexity. In practice N = $O(f^2)$
- Fast solvers & HPC are mandatory

IMAC:

- FMM algorithm & iterative solvers (Greengard and Rokhlin, 90's):
 - matrix-by-vector product in O(N log N) operations
 - issues: low frequency or locally refined meshes, illconditioned problems, big number of right hand sides (RHS)...
- H-matrix direct solvers (Hackbusch 00's):
 - ^b overall complexity *O*(N (log N)²) complexity in the case of asymptotically smooth kernel (like Laplace's kernel)
 - absence of solid theoretical bases for the oscillating kernel until recently

^{G(x,y)λ(y)dΓ}ψHi-BOX

Supported by a grant from **DGA**, the French Government Defence Procurement and Technology Agency, in the framework of **RAPID** program (dual innovation support scheme), under project No. 132906163.

Aims: a generic software library implementing stateof-the-art fast direct and iterative solvers for existing BEM-based codes

Leader: **IMACS**. Partners: **Airbus Group** and **Inria** (the French Institue for Research in Computer Science and Automation)

Focus on the local approximate rank of the Helmholtz kernel $N(c, \alpha) = \frac{2c}{\pi} + \frac{1}{2^2} \ln \left(\frac{1-\alpha}{\alpha} \log(c) + o(\log(c)) \right)$

 $G(x,y) \approx \sum_{\alpha=1}^{\infty} a_{\alpha}(x) b_{\alpha}$ (Kieran Delamotte PhD thesis)

Cluster tree

Compression (low rank approximation)

Conference in honor of Abderrahmane

Admissibility

Hierarchical matrix

Compression (analytic method)

$$M_{ij} = \int_{\Gamma} \int_{\Gamma} G(x, y) \Phi_j(y) \Phi_i(x) \, d\Gamma(y) d\Gamma(x)$$

$$G(x,y) = \frac{e^{\pi i |x-y|}}{4\pi |x-y|}$$

Low rank approximation of the Green's kernel

$$G(x,y) \approx \sum_{q=1}^{r} u_q(x) v_q(y)$$

→ Low rank approximation of M Justification for non asymptotically smooth kernels?

- D is the diameter of the clusters,
- R the distance between clusters

$$x = \xi_1 u_1 + \xi_2 u_2 + \xi_3 u_3, y = \eta_1 u_1 + \eta_2 u_2 + \eta_3 u_3$$

In the (u_1, u_2, u_3) basis the kernel reads as

$$G(x,y) \approx$$

$$G(x,y) = \frac{e^{ikR}}{|x-y|} e^{ik(\xi_3 - \eta_3)} e^{ik\frac{(\xi_1 - \eta_1)^2}{2R}} e^{ik\frac{(\xi_2 - \eta_2)^2}{2R}} e^{i\Phi}$$

with
$$\Phi = \mathcal{O}(k \frac{D^3}{R^2})$$

IMACS Admissibility condition & rank ropid growth

<u>Classical static admissibility condition (Hackbusch et)</u>

 $R \geq \alpha D$

- this works well for 'low frequencies', i.e. if combined with :

$(kD) \le \beta$

- the phase term is bounded then the kernel has essentially the same rank as the Laplace one

 $G(x,y) \approx \sum_{n=1}^{\infty} otherwise, we show that rank may grow like k² in the high frequency regime. The result would lead to a poor asymptotic compression ratio$

IMACS Admissibility condition & rank ropid growth

 Fraunhofer admissibility condition (Engquist, Darve, ...)

 $R \ge \alpha \max((kD), 1)D$

- 2nd order terms are bounded
- frequency-independant rank (plane waves);

too restrictive : clusters with big radii, *i.e.* (kD) >1, have to be far => small blocks with cst rank: *Divide but NOT Conquer* unless at very high frequencies.

IMACS New admissibility condition & ropid rank control

Fresnel admissibility condition

 $R \ge \alpha \max((kD)^{\frac{1}{2}}, 1)D$

- 3rd order terms are bounded
- less restrictive than Fraunhofer condition : bigger blocks with small rank
- dominant phase terms are

 $G(x,y) \approx \sum a_{\alpha}(x)b_{\alpha}(y)$

$$e^{ikrac{(\xi_1-\eta_1)^2}{2R}}e^{ikrac{(\xi_2-\eta_2)^2}{2R}}$$

Zoning

IMACS Fresnel or Fox-Li operator

2nd order phase terms : product of 1D operators

 $e^{ik\frac{(\xi_1-\eta_1)^2}{2R}} = e^{ik\frac{\xi_1^2}{2R}}e^{ik\frac{\xi_1\eta_1}{R}}e^{ik\frac{\eta_1}{R}}e^{ik\frac{\eta_1}{2R}}$

• we study the operator

$$F_c: \lambda \mapsto [F_c \lambda](x) = \int_{-1}^1 e^{icxt} \lambda(t) dt$$

• operator studied in laser context by Fox and Li, in signal theory at Bell Labs by Slepian, Pollak, Landau, connected to results by Szegö and Widom

Singular values of F_c are the eigenvalues of Q_c:

$$Q_c = \frac{c}{2\pi} F_c^* F_c \qquad Q_c \phi(x) = \frac{1}{\pi} \int_{-1}^1 \frac{\sin(c(x-t))}{x-t} \phi(t) dt$$

Eigenfunctions are the Prolate Spheroidal Wave Functions of order zero

$$(1 - x^2)\psi_n''(x) - 2x\psi_n'(x) + (\chi_n - c^2x^2)\psi_n(x) = 0$$

Prolate spheroidal wave functions of order zero

Approximate rank estimation

Theorem[Landau-Widom ('80)] [Conjectured by Slepian ('65)]

$$N(c,\alpha) = \#\{n \ge 1 : \mu_n > \alpha\}$$
$$N(c,\alpha) = \frac{2c}{\pi} + \frac{1}{\pi^2} \log\left(\frac{1-\alpha}{\alpha}\right) \log(c) + o(\log(c))$$

That provides the ε -rank of the Fresnel kernel:

$$\varepsilon - \operatorname{rank}(F_c) \simeq \frac{2c}{\pi} + \frac{2}{\pi^2} |\log(\varepsilon)| \log(c)$$

Admissibility - rank

IMACS

 $\frac{(kd)^2}{kR}$

Hackbusch	$R \sim d$	$c \sim kd$
Fresnel	$R \sim k^{\frac{1}{2}} d^{\frac{3}{2}}$	$c \sim (kd)^{\frac{1}{2}}$
Fraunhofer	$R \sim k d^2$	$c \sim 1$

HCA2 method

- This provides an alternative to ACA algorithm
- HCA2: interpolation based technique (functional equivalent of ACA)
- Fresnel admissibility condition
- Oriented boxes
- Number of interpolation points chosen according to Landau-Widom theorem in (u₁,u₂) directions and like O(log ε) along u₃
- ^{G(x,y)} block rank may grow like k^{1/2} or k depending on the cross section

IMACS Hybrid Cross Approximation HCA2

$$G(x,y)pprox \sum_{a_lpha(x)b_lpha(y)}^r rac{c}{4\pi|x-y|} \, ,$$

- Fresnel admissibility condition
- Interpolation nodes chosen according to Landau-Widom theorem

 Control of the precision & of the growth of the block rank

Conference in honor of Abderrahmane Bendali

rapid

prescribed precision is achieved blockwise

Conference in honor of Abderrahmane Bendali

rapid

Frequency stable error

Influence of admissibility coold condition on the memory growth

IMACS Conclusion & perspectives

- Fresnel admissibility: frequency-dependent condition
- block rank growth control
- HCA2 method for oscillating kernel: robust, precise and efficient
- Better clustering for wave problems exploiting rank estimates
- Improving parallelism:
 - Distributing computation tasks
 - Memory management.
- Hybridisation of solvers for the biggest cases

Example of H-matrix — FMM hybridisation

 $N(c,\alpha) = \frac{2c}{\pi} + \frac{1}{\pi^2} \ln\left(\frac{1-\alpha}{\alpha}\right) \log(c) + o(\log(c))$

Locally refined meshes: plate refined in its centre

 $G(x,y) \approx \sum_{n=1}^{\infty} (x,y) \approx \sum_{n=1}^{\infty} (x,$

Conference in honor of Abderrahmane Bendali

rapid

Plates: elapsed time (6core proc)

IMACS

Plates: precision

IMACS

rapid

H-matrix preconditioner

Approximate factorisation

- assemble the H-matrix with the desired precision
- · factorise the matrix with a degraded accuracy
- use this factorised matrix to provide an approximate inverse => preconditoner
- example with a 160640 dof :
 - accurate factorisation ($\varepsilon_f = 1.E-4$) :
 - IIAx-bII/IIbII = 1.2E-4
- $G(x,y) \approx \sum_{n=1}^{6} \frac{\text{degraded factorisation } (\varepsilon_f = 5.E-2) + \text{iterative solver :}}{\text{solver :}}$
 - IIAx-bII/IIbII = 2.1E-5 after 5 iterations

^{(x,y)\lambda(y)d}Hi-BOX

- Advanced linear algebra algorithm & HPC:
 - * H-matrix, FMM & hybridisation
 - handling of ooc, multithreading and distribution
 - block GMRES iterative solver
 - parallel computing using runtime system
- Library already used by several aeronautic and defence industrials
- Benchmarks showed a significant gain
- $G(x,y) \approx$ compared to existing solutions

