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Integral equation for low frequency Maxwell

Ωj Γj

nj

Ω = bounded Lipschitz, Γ = ∂Ω

Find E ∈ H(curl,Ω) such that

curl(curl E)− κ2E = 0 in Ω
n × (E|Γ × n) = g on Γ.

Boundary integral formulation ? at low frequency?

Electric field integral equation (EFIE) : find u ∈ H

−1/2(divΓ, Γ) such that
∫

Γ×Γ

Gκ(x − y)
(

κ−2
divΓv(x)divΓu(y)− v(x) · u(y)

)

dσ(x, y)

=

∫

Γ

g(x) · v(x)dσ(x) ∀v ∈ H

−1/2(divΓ, Γ)
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Low frequency breakdown

Loop-star/tree stabilisation : Wilton & Glisson (1981), Vecchi (1999), Zhao

& Chew (2000), Lee & Burkholder (2003), Eibert (2004), Andriulli (2012).

Debye sources : Greengard & Epstein (2010), Greengard, Epstein & O’Neil

(2013 & 2015), Vico, Ferrando, Greengard & Gimbutas (2016).

Current and charge formulation : Taskinen & Ylä-Oijala (2006) Taskinen &

Vanska (2007), Taskinen (2009), Bendali & al. (2012), Vico & al. (2013),

Ganesh, Hawkins & Volkov (2014).

Current and charge formulations have been shown to stem from Maxwell’s

equations by relaxing the contraint associated to divergence by means of

Lagrange multipliers. The later formulation of electromagnetics is known as

Picard’s system (introduced by Picard, 1984).

Goal of this work : clarifying the analysis of this approach (Calderón
calculus ? traces ? well-posedness? etc. . .)

Initial idea : rewrite Picard’s system as a 2nd order problem and try to adapt

the analysis presented in Costabel (1988).
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Reformulation of Maxwell’s BVP

u ∈ H(curl,Ω) such that

curl2u − κ2u = 0 in Ω

n × (u|Γ × n) = g on Γ

u ∈ X(Ω) := H(curl,Ω) ∩ H(div,Ω)

curl2u −∇(divu)− κ2u = 0 in Ω

n × (u|Γ × n) = g on Γ

(divu)|Γ = 0 on Γ

⇐⇒

Proposition (Hazard & Lenoir, 1996) : Let Ω ⊂ R
3 be bounded Lipschitz,

and assume that κ2 /∈ S(−∆
Dir

), then for any g ∈ H−1/2(curlΓ, Γ), we have
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. "Dirichlet trace"

Td(u) := (n × u × n,div(u))
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Green’s formula for the Hodge Laplacian

∫

Ω

u ·∆v − v ·∆u dx =

∫

Γ

Td(v) · Tn(u)− Td(u) · Tn(v) dσ

where Td(u) := (n × u|Γ × n, div(u)|Γ)

where Tn(u) := (n × curl(u|Γ),n · u|Γ)

Proposition

Denote X(∆,Ω) := {u ∈ X(Ω), curl2(u) ∈ L

2(Ω)3, ∇(divu) ∈ L

2(Ω)3}.

Then the following trace operators are continuous, surjective, and admit a

continuous right inverse,

Td : X(∆,Ω) → Hd(Γ) := H

− 1
2 (divΓ, Γ)×H

+ 1
2 (Γ)

Tn : X(∆,Ω) → Hn(Γ) := H

− 1
2 (curlΓ, Γ)×H

− 1
2 (Γ)

This choice for for Dirichlet and Neumann traces is apparently the only one

that garantees good continuity/surjectivity properties. It was also considered

in [Mitrea& al, 2016] and [Schwarz, 1995].
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Important :
∫

Γ
Td(v) · Tn(u) 6=

∫

Ω
curl(u) · curl(v) + div(u)div(v)dx ±

∫

Ω
v ·∆udx

which makes using Costabel’s variational analysis (apparently) impossible.
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Repesentation formula

Green’s formula may be rewritten as ∆1Ω − 1Ω∆ = T
′
dTn − T

′
nTd in the sense

of distributions. Hence for any u ∈ X(Ω) satisfying ∆u + κ2u = 0 in Ω, we

have
Gκ ∗ ( − (∆ + κ2)1Ωu = T

′
nTd(u)− T

′
dTn(u) )

where Gκ(x) := exp(ıκ|x |)/(4π|x|)
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′
dTn − T

′
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of distributions. Hence for any u ∈ X(Ω) satisfying ∆u + κ2u = 0 in Ω, we

have

DLκ(Td(u))(x) + SLκ(Tn(u))(x) = 1Ω(x)u(x), ∀x ∈ R
3

where DLκ := +Gκ ∗ T′
n : Hd(Γ) → X(∆,Ω)

where SLκ := −Gκ ∗ T′
d : Hn(Γ) → X(∆,Ω)

Explicit expression

DLκ(q, β)(x) :=

∫

Γ

(∇Gκ)(x − y)× (q(y)× n(y)) + Gκ(x − y)n(y)β(y) dσ(y)

SLκ(p, α)(x) :=

∫

Γ

−Gκ(x − y)p(y) + (∇G )(x − y)α(y) dσ(y)

No blow up at low frequency as the kernel Gκ(x) → G0(x) remains bounded

for κ → 0.



Jump formula and Calderón’s operator

Proposition : for ⋆ = d,n, denoting T⋆,c = exterior traces, and

[T⋆] := T⋆ − T⋆,c, we have

[Td] ·DLκ = Id, [Td] · SLκ = 0,

[Tn] ·DLκ = 0, [Tn] · SLκ = Id.

Proposition : the matrix of continuous boundary integral operators

C :=

[

Td ·DLκ Td · SLκ

Tn ·DLκ Tn · SLκ

]

is a projector C2 = C mapping Hd(Γ)×Hn(Γ) → Hd(Γ)×Hn(Γ). For

u ∈ X(∆,Ω) we have ∆u + κ2u = 0 in Ω ⇐⇒ (Td(u),Tn(u)) ∈ Range(C).

Proposition : Each of the four entries of the Calderón projector C is an

invertible operator, unless κ2 is an eigenvalue of ∆ in Ω.



First kind boundary integral operators

In [Mitrea & al, 2016], focus was on the BIOs of the second kind Td ·DLκ and

Tn · SLκ. Here, we focus on integral operators of the first kind. They admit the

following variational form.

〈

Td · SLκ

(

p

α

)

,
(

q

β

)〉

= −

∫

Γ×Γ

Gκ(x − y)[ p(y) · q(x) + α(y)divΓq(x) ]dσ

〈

Td · SLκ

(

p

α

)

,
(

q

β

)〉

= −

∫

Γ×Γ

Gκ(x − y)[ divΓq(y)β(x) + κ2α(y)β(x) ]dσ

and denoting p×(y) = n(y)× p(y),

〈

Tn ·DLκ

(

p

α

)

,
(

q

β

)〉

=

−

∫

Γ×Γ

Gκ(x − y)[ divΓq×(x)divΓp×(y)− κ2
q×(x) · p×(y) ]dσ

+

∫

Γ×Γ

Gκ(x − y)[ q×(x) · (n(y)×∇Γα(y)) + p×(y) · (n(x)×∇Γβ(x)) ]dσ

+

∫

Γ×Γ

Gκ(x − y)α(y)β(x)n(y) · n(x) dσ



Garding’s inequality

A classical tool for proving Garding’s inequality for Maxwell related operators

(see e.g. [Buffa & Hiptmair, 2002]) is the existence of a projector

Q : H−1/2(divΓ, Γ) → H−1/2(divΓ, Γ) such that

aaaaa • Q maps continuously into H
1/2
r (Γ) := {n × u|Γ, u ∈ H

1(Ω)3}
aaaaa • ker(Q) = {u ∈ H−1/2(divΓ, Γ), divΓ(u) = 0}.

Define an involution Θ2 = Id by

Θ(

[

p

α

]

) :=

[

p

α

]

− 2

[

Q(p)

κ−2
divΓ(p)

]

.

Theorem : For any κ ∈ R+, there exists a constant c(κ) > 0 and a compact

operator K : Hn(Γ) → Hn(Γ) such that

ℜe{〈(Td · SLκ +Kκ)u,Θ(u)〉} ≥ c(κ)‖u‖2
Hn(Γ) ∀u ∈ Hn(Γ).

Remarks : • Analogous result holds for Tn ·DLκ

Remarks : • The coercivity constant depends on κ
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Explicit expression of low frequency operators

We are particularly interested in studying the operators at vanishing

frequency.

〈

Td · SL0

(

p

α

)

,
(

q

β

)〉

=

−

∫

Γ×Γ

G0(x − y)[ p(y) · q(x) + α(y)divΓq(x) + β(x)divΓq(y) ]dσ

Unfortunately this operator admits a finite dimensional but systematically non

trivial kernel. Indeed we have.

Proposition : We have Td · SL0(p, α) = 0 if and only if p = 0 and
∇Γ(

∫

Γ
α(y)dσ(y)/|x − y | ) = 0, so that

dimker(Td · SL0) = #{ onneted omponents of Γ }
dimker(Td · SL0) = 1st Betti number of Γ.

Proposition : Any element (p, α) = (0, α) ∈ ker(Td · SL0) satisfying
∫

Γ
αβdσ = 0 for all β ∈ ker(∇Γ) = { locally constants } vanishes α = 0.
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Explicit expression of low frequency operators

Proposition : We have Td · SL0(p, α) = 0 if and only if p = 0 and

∇Γ(
∫

Γ
α(y)dσ(y)/|x − y | ) = 0, so that

dimker(Td · SL0) = #{ onneted omponents of Γ }
dimker(Td · SL0) = 1st Betti number of Γ.

Proposition : Any element (p, α) = (0, α) ∈ ker(Td · SL0) satisfying
∫

Γ
αβdσ = 0 for all β ∈ ker(∇Γ) = { locally constants } vanishes α = 0.

Regularised formulation : elements of the kernel can be filtered out

imposing constraints/Lagrange parameters, which leads to the following

saddle point problem.

Find u = (p, α) ∈ Hn(Γ) and µ ∈ ker(∇Γ) such that

〈Td · SL0(u), v〉+
∫

Γ
µβ dσ = 〈f, v〉 ∀v = (q, β) ∈ Hn(Γ)

∫

Γ
λα dσ = 0 ∀λ ∈ ker(∇Γ)



Explicit expression of low frequency operators

Things are somehow more involved for Tn ·DL0. Denote p× := n × p. The

variationnal form of this operator is

〈

Tn ·DL0

(

p

α

)

,
(

q

β

)〉

=

−

∫

Γ×Γ

G0(x − y)[ α(y)β(x)n(y) · n(x)− divΓp×(y)divΓq×(x) ]dσ(x, y)

−

∫

Γ×Γ

G0(x − y)[ q×(x) · curlΓα(y) + p×(y) · curlΓβ(x) ]dσ(x, y)

Proposition : We have Tn ·DL0(p, α) if and only if α = 0 and curlΓp = 0 and

curlΓ(
∫

Γ
n(y)× p(y)dσ(y)/|x − y| ) = 0, and we have

dim ker(Tn ·DLκ) = #{ non-bounding yles on Γ }
dim ker(Tn ·DLκ) = 2nd Betti number of Γ.

Proposition : Any element (p, α) = (p, 0) ∈ ker(Tn ·DL0) satisfying
∫

Γ
p · qdσ = 0 for all q ∈ ker(curlΓ) ∩ ker(divΓ) vanishes p = 0.



Conclusion

Summary

We have devised continuity, well-posedness and coercivity analysis for layer

potentials associated to the Hodge-Helmholtz in Lipschitz domains. These

can be used to reformulate Maxwell’s equations and they remain bounded at

low frequency.

Submitted : X. Claeys and R. Hiptmair, First kind boundary integral

formulation for the Hodge-Helmholtz equation, SAM ETHZ report available.

Questions

• Discrete inf-sup condition holding uniformly at low frequency (forthcoming)

• Numerical experiments (work in progress with E.Demaldent CEA List)

• Transmission problems ?

• Effective stabilisation strategy at low frequency ?

• Precise connections with other existing approaches?

• Compuation of nonbounding cylces ?
• Formulation remaining well conditionned for wide frequency range ?
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