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Force-free magnetic fields

Let ©2 be a bounded three-dimensional domain.

@ Problem: Find eigenpairs of the curl operator in Q
(#) culu=ru and divu=0 in Q

with x € R, u # 0. Field u called Beltrami field or force-free magnetic field.

o Difficulty:
Find complementary conditions on 92 so that () is the eigen-equation
associated with a (unbounded) self-adjoint operator.

@ Theoretical contributions:
PICARD (1976, 1998), YOSHIDA, GIGA (1990), BOULMEZAOUD, MADAY,
AMMARI (1999), NICAISE (2013), HIPTMAIR, KOTIUGA, TORDEUX (2012)

@ Computational / Numerical contributions:
CANTARELLA (2000), MORSE (2007), RODRIGUEZ, VENEGAS (2014), LARA,
RODRIGUEZ, VENEGAS (2016), ALONSO RODRIGUEZ, CAMANO, RODRIGUEZ,
VALLI, VENEGAS (2016).
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Recent references

The paper
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Boundary and circulation conditions

Let by (O) be the first Betti number of O.

Simply connected domains

If Q is simply connected, i.e. its homotopy group is trivial (< by (2) = 0),
then the normal (or perfect conductor magnetic) boundary condition

(¥) u-n=0 on 09

is sufficient for (4)-(¥) to have a well-defined real and discrete spectrum.

Admissible circulation conditions in non-simply connected domains

If b1(Q2) =: g > 0, then (#)-(¥) has to be completed by g “admissible”
circulation conditions (%, = cycle and t unit tangent vector field to %)

(&) }{ u-t=0, £=1,...g
e

to have a well-defined real and discrete spectrum.
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Canonical set of cycles

As soon as g > 0, the choice of cycles %, is non-unique!
Denote by H;(O) the first homology group of O.
For a large family of domains: (exceptions do exist!)
There exist 2g cycles with the following properties

Q@ {v}9_, U{v,}9_, generators of H(9R2) and

YeN vy 0 iff £=1.

Q {/}9_, generators of H;(Q2°).

Q@ {/}7_, generators of H(Q).

© The v, are the boundaries of cutting surfaces >, C Q such that
Q\ UY_, %, is simply connected.

© The ~, are the boundaries of cutting surfaces ¥,  QF such that
QP \ UY_, ¥, is simply connected.
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Distinct choices of circulation conditions

Theorem

Let g # 0. Choose g; € {0,...,g} and asubset £ C {1,...,g} of
cardinal gy. Set £ := {1,...,g} \ £. Then the set of cycles

{ve, Le LY U{y, L€ £}

defines admissible circulation conditions.

A finite set of realizations for Beltrami fields

For each subset £ C {1,..., g} (including trivial ones), the problem
() culu=rxu and divu=0 in Q
(¥) u-n=0 on 09

e

(W) u-t=0, Weg ?{u-tzo, Ve e g
,y/

has a well-defined real and discrete spectrum denoted &(£2, £).
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Dependence on £ of the spectrum &(£2, £):
@ Does 5(Q, £) vary with £?

© Does 5(£2, £) depend on the cardinal #£ := gy only?

Q 1 &(Q, £1) and S(Q, £2) are distinct, do they differ by a finite or
infinite set of eigenvalues?

© Do there exist other ways of defining admissible circulation conditions?
We try to bring answers by addressing axisymmetric domains 2.

Nota bene:

From now on, we concentrate on non-zero «’s.

——

We drop the gauge condition divu = 0.

Boundary condition u - n = 0 is equivalentto n- curlu = 0.
We do not discuss harmonic fields.
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Axisymmetry

Denote by T the 1D torus R/(27Z).

@ Q C R® axisymmetric = 3 a symmetry axis 2 such that Q invariant

by rotations around this axis.

@ (r,0,z) C Ry x T x R cylindrical coordinates associated with 2

@ w C R4 x R meridian domain of €, i.e.

Q={xcR® (r,z)cw and 0 €T}

Assume for simplicity that Q N 2 is empty.

A canonical set of cycles

The number g is the number of connected components dyw of dw
Choose 0y € T and (rg, z) € Opw, for £ =1,...,g.

Q Sety,={xeR3 (r,z)edw, 0=0,}
2] Set7é={X€R3, (I’,Z):(fg,Zg), GET}
This set is a canonical set of cycles for €.

8/25



The curl equation

Let (ur, Ug, u;) be the cylindrical components of u = (uy, Us, U3):
ur=cosf uy +sinf up, Uy =—sinf uy +cosb ux, U, = Us.
The eigen-equation curl u = xu becomes
10pu; — 9,up = KU,
O,ur — Oruy =ruy for (r,z,0) ewxT
Ortp + Tup — 10pu, = ku;

We can diagonalize this system by angular Fourier transformation

1 .
u—u"(r,z) = — / e "™u(r,0,2z)dd, meZ
2m T

and obtain

1 m m — m
simul — 0, ug = KU,

(™) ou" — our =ruy for (r,z)ew, VYmelZ
ouf + tuff — limu™ = kU,
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Boundary and circulation conditions

The normal n to 9Q2 has no angular component: n = n,e, + n,e,
@ The boundary condition u - n = 0 on 99 is transformed into

(™) nul+nul’ =0 for (r,z) € 0w, VYmeZ

@ A unit tangent field to the cycle v, = dyw is given by t = n.e, — n,e,
The circulation condition 39,” u -t = 0 is transformed into

(a7 ]{n,uzm—nzu,m:o Vmez
agw

@ For v, = (rs, z)T, we find t = e and the condition f% u-t=20is

CYi) %U@(fg,@,Zg) d) =0, with up=Y em™uy
T mez
Hence

Lemma
The condition ¢, u - t = 0 is equivalent to condition (&°) : uj(re, z¢) = 0 J
4

10/25



Recall equations (¢.1) and (¢™.3)
limul — 0,uf = ku and 19,(ruf’) — timu]’ = ku
This can be viewed as the system
limul — kUl = 0,u
cUl + Limu = 19,(ru)
whose solution provides

Elimination formulas
Ul = d[4] (:—zimaz(¢) + 1;/-@8,(<D))
U™ = d[K] (—1;/@82(<D) n :—zima,(dD))

where we have set

(%7)

1
dm[k] = = and ¢ = ruy.

re
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Diagonalization

For each m € Z, investigate problem (4™)-(¥™) possibly completed by a
mixture of circulation conditions (&™) and (&'™).

Remark for non-zero m

For m # 0, conditions (#’™) are automatically satisfied.
@ We expect that the problem (4™)-(%™) will be self-adjoint by itself...
@ Are conditions (#™) redundant?

The road map (visiting possibly the points in a different order):
@ We choose me Z
Q Weset d(r,z) =rup(r,z),for(r,z) ew
@ Using elimination formulas (&™) we transform problem (47)-(¥™)
into a problem set on .

@ We complete by circulations conditions (#) read on &.
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Elimination in boundary and circulation conditions

Denote |6,, =n0, +n,0, and Oy =nd, — n,0, on Ow |

@ Elimination formulas inserted in Boundary Cond. n,u” + n;ul =0 —

(™ imop® —rkd®=0 on Jw (oblique derivative)
© Elimination formulas in Circulation Cond. faew(n, u'—nu") =0 =
(&7) j{ d[n]( imoy® + 1k 0p® ) =0
Oyw

QIf , (P7) = 1k 0p® = —i-L K2 9P on Juw. Therefore

%dwd[fi]( imoy® + 1k 0, CD) ?{a d[m]( Lim o, _inlﬁza:‘b)

W

—il ?i dl] (% 0 — v 010)
o w

— _;1
= —1 m 8t¢ —
Opw
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Boundary and circulation conditions when m = 0

We put together results concerning
@ boundary conditions (¥™)
@ circulation conditions (#7’) and (&™)

Proposition

Assume that w is disjoint from the rotation axis 2.
Let u satisfy the boundary condition (¥) : u- n = 0.
Let m # 0 and set

d=rg and u"=eM(u"e, + uley + ule,)
Then
@ O satisfy the complex oblique derivative condition
(™ imop® —rko®=0 on Ow

o u" satisfies all circulation conditions (#7") and (&;™) V.
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m = 0: Boundary and circulation conditions

Boundary conditions
The boundary condition (¥°) is

0P =0 on OJw

Therefore ® is constant on each connected component Oyw of Ow.

Circulation conditions
Assume boundary conditions (¥°).
@ Take m = 0in (A]):

(A9) On®ldo =0

Opw
@ Condition (#/°) is ®(rg, z;) = 0 fora (re, z;) € dew. With (¥°):
C 7 ®[,,, =0
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m = 0: Variational spaces

Hy(w) = {® € H'(w), P =0 on dw}
For ® € Hy(w) let

B:d— (b))_, with b= On® Ldo

Dpw
C:d— (c)y_, with ¢ = <1>|6M

and denote for ®, W € Hy(w)

(BO, CW) = Z; be(®) co(W)

A family of variational spaces
Let us choose a subspace € of RY (possibly trivial).
Define the variational space V = V[¢&] as

V[€] := {® € Hy(w), € € ¢}
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m = 0: Self-adjoint realizations

Elimination formulas are

(&°) u =119 and u'=-110,0
Equation (4.2) is 0 u” — 0,u] = kug. It yields

(%) 0,10, — 0,1 9,0 = K*10
Theorem

The variational eigen-problem: Find x € R s.t. 3 non-zero ® € V[¢]
(4) YV e vie], /Vd)VW%drdz:HZ/d)w%drdz

has a discrete set of solutions denoted by S (w, €). The eigenvectors ¢
satisfy the eigen-equation (*) and the natural condition

(B, CW) =0 YWeV[E] ie Boeet
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m = 0: Example of a circular torus

The meridian domain w is a disk, with center (rp, 0) and radius R < r,.
The boundary dw has one connected component.

So g = 1 and we have only two distinct choices for the space ¢

o If ¢ ={0}, V=H W),

= Circulation along cycle 74 is 0, Defines problem

o If¢=R,V={deH (), 6;®=00ndw},
= Circulation along cycle v, is 0, Defines problem

As standard for a Dirichlet problem: On HJ (w)
/ VO VY ldrdz = 52/ ®Vldrdz
w w
Penalize the tangential derivative: On H'(w), with large A,

P OV do = m2/ oV ldrdz

Ow w 18/25

/VdJV\IJ‘;drdz—i—/\



._|
I
&
E ™
(]
=)
c
(]
(3]

e
c
«©
-
(@)
I

c

radius

Circular torus

o
Way,

777

LT <O%
e .h#»«wh«wn#%\h 5
..-...:..«&««wmmwm
L
iz

CRE5

oS

7
/1
1

-
=
SSS
SSS.
NN
NSNS
AR
AR
NRRRRRAZERRS
ANRARREEERELAXS,
ARRRRRRRERT RIS
AL XIS
A RRRIRLIIIKIEX S
R RIITKIEIIEA XS
SR XSS NS
e sssustysSestes
e
st
RIS Sy
OSSR S
s .

R

I R R s e T
————————%%mmmm%m«mmm”mmw.,.,.,,m..u .......w..wmuam«m»«wmmw&«?.....
ut I R R S Ao tran
[EEE R R = e ]

LR s oot
SRR S
L XL &
f&&f&&&&noo"o“ox&&%,ﬁz? WHISAK S %:%n#u%%“hhﬂ
0 O e e N N 2 e 0005 0 0 0y 0 s
S st
SRR RIS SES SN
RN S
S IO OSSN IN11595%%% %% 8 e%!
RN oSS58
NS SSSSSN 2
‘ RN
WISSSSSSSS
L S8
5 SS!
=~
=S
C L L L L L
< o o o <
S 5 =3 =

16

14

1.2

0.8

0.6

0.4

The mesh for Q1 elements

19/25



Circular torus: radius R = 0.5 and center r;, = 1

16
141 x @ o)
x @ O
12¢ 1
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Positive «; versus rank j for problems and

O< kI <=kp<=... hasonenullev:mozo
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(m = 0) Circular torus R = 0.5, r, = 1. E-vector ¢

eigs_1_, eigvec_u, lambda_{1} = 23.966 sigs_2, eigvec_u, lambda_{2} = 53.371

eigvect. 1 eigvect. 1
K1 = 4.8943 K1 = 7.3024

Compare with
K1 = 4.89561 (extrapolated, [ACRVV])
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(m = 0) Circular torus R = 0.5, r, = 1. E-vector ¢

eigs_2_ eigvec_u, lambda_(2} = 59.591

04

02

02

04

eigvect. 2
Ko = 7.7165

04

02

02

04

eigs_3, eigvec_u, lambda_{3} = 59.591

06 08 1 12 1.4

eigvect. 2
Kp = 7.7165

8-digit coincidence
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(m = 0) Circular torus R = 0.5, r, = 1. E-vector ¢

eigs_3_, eigvec_u, lambda_{3} = 59.706

eigs_4, eigvec_u, lambda_{4} = 64.958

04

04

eigvect. 3

K = 7.7239

08 1 12 1.4

eigvect. 3
k3 = 8.0558



(m = 0) Circular torus R = 0.5, r, = 1. E-vector ¢

eigs_4_, eigvec_u, lambda_{4} = 106.557 eigs_5, eigvec_u, lambda_{5} = 106.557

02

eigvect. 4 eigvect. 4
ke = 10.3162 k4 = 10.3162

Odd
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m # 0: Eigenproblem
Non-linear with respect to k.
! > andset |p:= m
R

Note that «%7(k) = 5

Introduce the forms a[p] and b[p]
alp)(®, V) :/ (r? — p?)! {th-v\li—i—ip(r2 —p?) (0,0 V-0 5‘2\Il)} rdrdz
blol(®, W) =i / (2= p?)! {a,cb v-—o a,\u} rPdo
2:0 ow

[p] - eigenproblem: Find non-zero ® € H'(w) and X € R, sit.

22/25

) W e (W), alp](®, W)+ b[](®, W) = A / ov ;drdz.

(‘[p]
Set = \/\ and look for p such that kp =: m & N*.




(m # 0) Circular torus R=0.5,rp = 1:

K Versus p
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(m # 0) Circular torus R=0.5,r, =1: K versus p

. For
p € ]0.05,0.5]
sort the positive
evs.

Presence of
spurious evs

Plotpr—>’;"
m=1,...
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(m # 0) Circular torus R=0.5,r, =1: K versus p

?  For
3 p €[0.05,0.5]

» sort the positive
evs

. and eliminate

% Spurious evs

P Plotpr—>’;"
m=1,2,...

Intersection
points give
the k's and m’s
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Circular torus R = 0.5, , = 1: Comparison of results

Compare
@ our results obtained by 2D parametric FEM computations ([p]-method)

@ those of [ACRVV] obtained by 3D computations incorporating
circulation conditions

# DOF KA Ko K3 K4 Ks
Finest mesh | 247239 | 4.9151 | 6.2717 6.2724 | 6.3256 6.3256
Extrapolated 4.8956 | 6.2306 6.2276 | 6.2798 6.2811
2D 5185 4.8955 | 6.225% 6.225% | 6.275% 6.275b%*
Angular freq. m=20 m=2 m=3

The next (visible) k is x ~ 6.682 with m = 1
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@ We are very curious of what happens in the parametric region

pEc [rmin, rmax]

where rin and rmax are the minimum and maximal values of r for (r, z) € w.
We do not yet know if computations are possible to solve problem (Q[p])

© Question of the dependence on circulation conditions on the spectrum for
axisymmetric domains:

(a) No influence on non-axisymmetric modes.

(b) In presence of horizontal symmetry, no influence on odd axisymmetric modes.

(c) For all remaining ones (infinitely many) the spectrum does depend on circulation
conditions.

@ Performances of the p-version of FEM (debugging of library necessary)
Still under investigation.
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@ We are very curious of what happens in the parametric region

pEc [rmin, rmax]

where rin and rmax are the minimum and maximal values of r for (r, z) € w.
We do not yet know if computations are possible to solve problem (Q[p])

© Question of the dependence on circulation conditions on the spectrum for
axisymmetric domains:

(a) No influence on non-axisymmetric modes.

(b) In presence of horizontal symmetry, no influence on odd axisymmetric modes.

(c) For all remaining ones (infinitely many) the spectrum does depend on circulation
conditions.

@ Performances of the p-version of FEM (debugging of library necessary)
Still under investigation.

Thank you for your attention
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