Setting	Axisymmetry	Diagonalization	<i>m</i> = 0	Torus	$m \neq 0$	Conclusion

Eigenpairs of the curl operator on axisymmetric tori

Monique Dauge with Martin Costabel and Yvon Lafranche IRMAR, Université de Rennes 1, FRANCE

+ ongoing project with Ana Alonso Rodríguez and Alberto Valli (Trento)

Conference in honor of Abderrahmane Bendali

December 12-14, 2017, Pau

http://perso.univ-rennes1.fr/monique.dauge

Setting	Axisymmetry	Diagonalization	m = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion
Outline						

- 1 The problem under investigation
- 2 Axisymmetric domains
- 3 Diagonalization
- 4 The axisymmetric mode
- 5 Torus
- 6 Non axisymmetric modes

Conclusion

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	<i>m ≠</i> 0 00	Conclusion
Outline						

- Axisymmetric domains
- 3 Diagonalization
- The axisymmetric mode
- 5) Torus
- Non axisymmetric modes
- Conclusion

Setting ●000000	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	<i>m ≠</i> 0 ○○	Conclusion
Force-fr	ee magne	tic fields				

Let Ω be a bounded three-dimensional domain.

• Problem: Find eigenpairs of the curl operator in Ω

(\blacklozenge) **curl** $\boldsymbol{u} = \kappa \boldsymbol{u}$ and div $\boldsymbol{u} = 0$ in Ω

with $\kappa \in \mathbb{R}$, $\boldsymbol{u} \neq 0$. Field \boldsymbol{u} called Beltrami field or force-free magnetic field.

• Difficulty:

Find complementary conditions on $\partial \Omega$ so that (\blacklozenge) is the eigen-equation associated with a (unbounded) self-adjoint operator.

- Theoretical contributions: PICARD (1976, 1998), YOSHIDA, GIGA (1990), BOULMEZAOUD, MADAY, AMMARI (1999), NICAISE (2013), HIPTMAIR, KOTIUGA, TORDEUX (2012)
- Computational / Numerical contributions: CANTARELLA (2000), MORSE (2007), RODRÍGUEZ, VENEGAS (2014), LARA, RODRÍGUEZ, VENEGAS (2016), <u>ALONSO RODRÍGUEZ</u>, CAMAÑO, RODRÍGUEZ, VALLI, VENEGAS (2016).

Setting ○●○○○○○	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	<i>m ≠</i> 0 00	Conclusion
Recent	reference	es				

The paper

A. ALONSO RODRÍGUEZ, J. CAMAÑO, R. RODRÍGUEZ, A. VALLI, P. VENEGAS, Finite element approximation of the spectrum of the curl operator in a multiply-connected domain. UDEC preprint (2016).

summarizes theory from

R. HIPTMAIR, P. R. KOTIUGA, S. TORDEUX, Self-adjoint curl operators. Ann. Mat. Pura Appl. (4), 191 (2012), pp. 431–457.

proposes and analyzes a numerical method.

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	m ≠ 0 00	Conclusion

Boundary and circulation conditions

Let $b_1(\mathcal{O})$ be the first Betti number of \mathcal{O} .

Simply connected domains

(♥)

If Ω is simply connected, i.e. its homotopy group is trivial ($\Leftrightarrow b_1(\Omega) = 0$), then the normal (or perfect conductor magnetic) boundary condition

 $\boldsymbol{u}\cdot\boldsymbol{n}=0$ on $\partial\Omega$

is sufficient for (\blacklozenge) - (\heartsuit) to have a well-defined real and discrete spectrum.

Admissible circulation conditions in non-simply connected domains

If $b_1(\Omega) =: g > 0$, then (\diamondsuit) - (\heartsuit) has to be completed by g "admissible" circulation conditions (\mathscr{C}_{ℓ} = cycle and t unit tangent vector field to \mathscr{C}_{ℓ})

$$\oint_{\mathscr{C}_{\ell}} \boldsymbol{u} \cdot \boldsymbol{t} = 0, \quad \ell = 1, \dots, g$$

to have a well-defined real and discrete spectrum.

Setting ○○○●○○○	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	<i>m ≠</i> 0 00	Conclusion
Cononi						

Canonical set of cycles

As soon as g > 0, the choice of cycles \mathscr{C}_{ℓ} is non-unique! Denote by $H_1(\mathcal{O})$ the first homology group of \mathcal{O} .

For a large family of domains : (exceptions do exist !)

There exist 2g cycles with the following properties

• $\{\gamma_\ell\}_{\ell=1}^g \cup \{\gamma'_\ell\}_{\ell=1}^g$ generators of $\mathrm{H}_1(\partial\Omega)$ and

$$\gamma_{\ell} \cap \gamma'_{\ell'} \neq \emptyset \quad \text{iff} \quad \ell = \ell'.$$

- $(\mathbf{Y}_{\ell})_{\ell=1}^{g} \text{ generators of } \mathrm{H}_{1}(\Omega^{\complement}).$
- $\{\gamma'_{\ell}\}_{\ell=1}^{g}$ generators of $\mathrm{H}_{1}(\Omega)$.
- The γ_{ℓ} are the boundaries of cutting surfaces $\Sigma_{\ell} \subset \Omega$ such that $\Omega \setminus \cup_{\ell=1}^{g} \Sigma_{\ell}$ is simply connected.
- The γ'_{ℓ} are the boundaries of cutting surfaces $\Sigma'_{\ell} \subset \Omega^{\complement}$ such that $\Omega^{\complement} \setminus \cup_{\ell=1}^{g} \Sigma'_{\ell}$ is simply connected.

Setting ○○○○●○○	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion
Borrow	ed Fiaure	a 1 in IACR	VV1			

Setting ○○○○○●○	Axisymmetry	Diagonalization	m = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion

Distinct choices of circulation conditions

Theorem

Let $g \neq 0$. Choose $g_1 \in \{0, \dots, g\}$ and a subset $\mathfrak{L} \subset \{1, \dots, g\}$ of cardinal g_1 . Set $\mathfrak{L}' := \{1, \dots, g\} \setminus \mathfrak{L}$. Then the set of cycles

 $\{\gamma_{\ell}, \ \ell \in \mathfrak{L}\} \cup \{\gamma'_{\ell}, \ \ell \in \mathfrak{L}'\}$

defines admissible circulation conditions.

A finite set of realizations for Beltrami fields

For each subset $\mathfrak{L} \subset \{1, \ldots, g\}$ (including trivial ones), the problem

$$\begin{cases} (\blacklozenge) \ \operatorname{curl} u = \kappa u \ \text{ and } \ \operatorname{div} u = 0 & \text{ in } \Omega \\ (\blacktriangledown) \ u \cdot n = 0 & \text{ on } \partial\Omega \\ (\diamondsuit) \ \oint_{\gamma_{\ell}} u \cdot t = 0, \ \forall \ell \in \mathfrak{L} \quad \oint_{\gamma'_{\ell}} u \cdot t = 0, \ \forall \ell \in \mathfrak{L}' \end{cases}$$

has a well-defined real and discrete spectrum denoted $\mathfrak{S}(\Omega, \mathfrak{L})$.

Setting ○○○○○●	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion
Questi	ons					

Dependence on \mathfrak{L} of the spectrum $\mathfrak{S}(\Omega, \mathfrak{L})$:

- Does S(Ω, L) vary with L?
- 2 Does $\mathfrak{S}(\Omega, \mathfrak{L})$ depend on the cardinal $\#\mathfrak{L} := g_1$ only?
- If S(Ω, L₁) and S(Ω, L₂) are distinct, do they differ by a finite or infinite set of eigenvalues?
- Oo there exist other ways of defining admissible circulation conditions?

We try to bring answers by addressing axisymmetric domains Ω .

Nota bene:

 \implies

From now on, we concentrate on non-zero κ 's.

We drop the gauge condition div $\boldsymbol{u} = 0$. Boundary condition $\boldsymbol{u} \cdot \boldsymbol{n} = 0$ is equivalent to $\boldsymbol{n} \cdot \operatorname{curl} \boldsymbol{u} = 0$. We do not discuss *harmonic fields*.

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion
Outli	ne					

Axisymmetry		

Denote by \mathbb{T} the 1D torus $\mathbb{R}/(2\pi\mathbb{Z})$.

- Ω ⊂ ℝ³ axisymmetric ⇒ ∃ a symmetry axis 𝔄 such that Ω invariant by rotations around this axis.
- $(r, \theta, z) \subset \mathbb{R}_+ \times \mathbb{T} \times \mathbb{R}$ cylindrical coordinates associated with \mathfrak{A}
- $\omega \subset \mathbb{R}_+ \times \mathbb{R}$ meridian domain of Ω , i.e.

 $\Omega = \{ \boldsymbol{x} \in \mathbb{R}^3, (r, z) \in \omega \text{ and } \theta \in \mathbb{T} \}.$

Assume for simplicity that $\overline{\Omega} \cap \mathfrak{A}$ is empty.

A canonical set of cycles

The number *g* is the number of connected components $\partial_{\ell}\omega$ of $\partial\omega$ Choose $\theta_{\ell} \in \mathbb{T}$ and $(r_{\ell}, z_{\ell}) \in \partial_{\ell}\omega$, for $\ell = 1, \dots, g$.

- Set $\gamma_{\ell} = \{ \boldsymbol{x} \in \mathbb{R}^3, (r, z) \in \partial_{\ell} \omega, \theta = \theta_{\ell} \}$

This set is a canonical set of cycles for Ω .

Setting	Axisymmetry	Diagonalization	m = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion
	rl equatio	n				
	n equalio					

Let (u_r, u_{θ}, u_z) be the cylindrical components of $\boldsymbol{u} = (u_1, u_2, u_3)$:

 $u_r = \cos \theta \ u_1 + \sin \theta \ u_2, \quad u_{\theta} = -\sin \theta \ u_1 + \cos \theta \ u_2, \quad u_z = u_3.$

The eigen-equation **curl** $\boldsymbol{u} = \kappa \boldsymbol{u}$ becomes

$$\begin{cases} \frac{1}{r}\partial_{\theta}u_{z} - \partial_{z}u_{\theta} &= \kappa u_{r} \\ \partial_{z}u_{r} - \partial_{r}u_{z} &= \kappa u_{\theta} \quad \text{for} \quad (r, z, \theta) \in \omega \times \mathbb{T} \\ \partial_{r}u_{\theta} + \frac{1}{r}u_{\theta} - \frac{1}{r}\partial_{\theta}u_{r} &= \kappa u_{z} \end{cases}$$

We can diagonalize this system by angular Fourier transformation

$$u\mapsto u^m(r,z)=rac{1}{2\pi}\int_{\mathbb{T}}e^{-\mathrm{i}\,m\theta}u(r, heta,z)\,d heta,\quad m\in\mathbb{Z}$$

and obtain

$$\begin{cases} \frac{1}{r} \operatorname{im} u_z^m - \partial_z u_\theta^m &= \kappa u_r^m \\ \partial_z u_r^m - \partial_r u_z^m &= \kappa u_\theta^m \quad \text{for} \quad (r, z) \in \omega, \quad \forall m \in \mathbb{Z} \\ \partial_r u_\theta^m + \frac{1}{r} u_\theta^m - \frac{1}{r} \operatorname{im} u_r^m &= \kappa u_z^m, \end{cases}$$

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	<i>m</i> ≠ 0 00	Conclusion

Boundary and circulation conditions

The normal \boldsymbol{n} to $\partial\Omega$ has no angular component: $\boldsymbol{n} = n_r \boldsymbol{e}_r + n_z \boldsymbol{e}_z$ The boundary condition $\boldsymbol{u} \cdot \boldsymbol{n} = 0$ on $\partial\Omega$ is transformed into

$$(\P^m) \qquad n_r u_r^m + n_z u_z^m = 0 \quad \text{for} \quad (r, z) \in \partial \omega, \quad \forall m \in \mathbb{Z}$$

2 A unit tangent field to the cycle $\gamma_{\ell} = \partial_{\ell}\omega$ is given by $\mathbf{t} = n_r \mathbf{e}_z - n_z \mathbf{e}_r$ The circulation condition $\oint_{\gamma_{\ell}} \mathbf{u} \cdot \mathbf{t} = 0$ is transformed into

$$(\bigstar_{\ell}^{m}) \qquad \qquad \oint_{\partial_{\ell}\omega} n_{r} u_{z}^{m} - n_{z} u_{r}^{m} = 0 \qquad \forall m \in \mathbb{Z}$$

• For $\gamma'_{\ell} = (r_{\ell}, z_{\ell})\mathbb{T}$, we find $\boldsymbol{t} = \boldsymbol{e}_{\theta}$ and the condition $\oint_{\gamma'_{\ell}} \boldsymbol{u} \cdot \boldsymbol{t} = 0$ is

$$(\bigstar_{\ell}'^{m}) \qquad \oint_{\mathbb{T}} u_{\theta}(r_{\ell}, \theta, z_{\ell}) \, d\theta = 0, \quad \text{with} \quad u_{\theta} = \sum_{m \in \mathbb{Z}} e^{i \, m\theta} u_{\theta}^{m}$$

Hence

Lemma

The condition $\oint_{\gamma'_{\ell}} \boldsymbol{u} \cdot \boldsymbol{t} = 0$ is equivalent to condition $(\boldsymbol{\phi}'_{\ell}^{0}) : u_{\theta}^{0}(r_{\ell}, z_{\ell}) = 0$

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	m eq 0 00	Conclusion		
Elimination								

Recall equations (\blacklozenge^{m} .1) and (\diamondsuit^{m} .3)

 $\frac{1}{r}\mathrm{i}m\,u_z^m - \partial_z u_\theta^m = \kappa u_r^m \quad \text{and} \quad \frac{1}{r}\partial_r(ru_\theta^m) - \frac{1}{r}\mathrm{i}m\,u_r^m = \kappa u_z^m$

This can be viewed as the system

$$\begin{cases} \frac{1}{r} \mathrm{i} m \, u_z^m - \kappa u_r^m = \partial_z u_\theta^m \\ \kappa u_z^m + \frac{1}{r} \mathrm{i} m \, u_r^m = \frac{1}{r} \partial_r (r u_\theta^m) \end{cases}$$

whose solution provides

Elimination formulas

$$\begin{cases} u_z^m = d_m[\kappa] \Big(\frac{1}{r^2} \mathrm{i} \, m \, \partial_z(\Phi) + \frac{1}{r} \kappa \, \partial_r(\Phi) \Big) \\ u_r^m = d_m[\kappa] \Big(-\frac{1}{r} \kappa \, \partial_z(\Phi) + \frac{1}{r^2} \mathrm{i} \, m \, \partial_r(\Phi) \Big) \end{cases}$$

where we have set

(♣^{*m*})

$$d_m[\kappa] = \frac{1}{\kappa^2 - \frac{m^2}{r^2}}$$
 and $\Phi = r u_{\theta}^m$.

Setting 0000000	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	<i>m</i> ≠ 0 00	Conclusion
Outline						

Setting 0000000	Axisymmetry	Diagonalization ●○○	<i>m</i> = 0 000	Torus 0000	<i>m ≠</i> 0 00	Conclusion
Diagon	alization					

For each $m \in \mathbb{Z}$, investigate problem (\blacklozenge^m)-(\P^m) possibly completed by a mixture of circulation conditions (\diamondsuit^m) and (\bigstar'^m).

Remark for non-zero *m*

For $m \neq 0$, conditions (\bigstar'^m) are automatically satisfied.

- We expect that the problem (♦^m)-(♥^m) will be self-adjoint by itself...
- Are conditions (\diamondsuit^m) redundant?

The road map (visiting possibly the points in a different order):

- We choose $m \in \mathbb{Z}$
- We set $\Phi(r, z) = r u_{\theta}^{m}(r, z)$, for $(r, z) \in \omega$
- Using elimination formulas (♣^m) we transform problem (♦^m)-(♥^m) into a problem set on Φ.
- We complete by circulations conditions (\diamondsuit) read on Φ .

Setting 0000000	Axisymmetry	Diagonalization ○●○	m = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion
Elimina	ation in b	oundary ar	nd circı	lation c	onditior	IS
Denot	e $\partial_n =$	$n_r\partial_r + n_z\partial_z$ at	nd $\partial_t = n$	$n_r\partial_z - n_z\partial_r$	on $\partial \omega$	
 Elimin 	ation formula	s inserted in Bou	ndary Con	d. $n_r u_r^m + r$	$u_z u_z^m = 0$	\implies
(♥ ^m)	i <i>m∂</i> nΦ	$- r \kappa \partial_t \Phi = 0$	on $\partial \omega$	(oblique d	erivative)	
2 Elimin	ation formula	s in Circulation C	ond. $\oint_{\partial_\ell \omega}$	$(n_r u_z^m - n_z u_z^m)$	$u_r^m) = 0 =$	\Rightarrow
(\blacklozenge^m_ℓ)		$\oint_{\partial_\ell \omega} d[\kappa] \Big(\frac{1}{r^2} \mathrm{i} m \partial_\ell d[\kappa] \Big) \Big) = 0$	$\partial_t \Phi + \frac{1}{r} \kappa \partial$	$(\Phi_n,\Phi)=0$		
3 If <i>m</i> ,	$\neq 0$, (\mathbf{V}^m) =	$\Rightarrow \frac{1}{r} \kappa \partial_{\boldsymbol{n}} \Phi = -\mathrm{i}$	$\frac{1}{m}\kappa^2 \partial_t \Phi$ o	n $\partial \omega$. There	fore	
$\oint_{\partial J}$	$d[\kappa] \Big(\frac{1}{r^2} \mathrm{i} m \Big)$	$\partial_t \Phi + \frac{1}{r} \kappa \partial_n \Phi \Big) =$	$=\oint_{\partial_\ell\omega}d[\kappa$	$\left[\left(\frac{1}{r^{2}}\mathrm{i}m\partial_{t}\Phi\right)\right]$	$-\mathrm{i}\frac{1}{m}\kappa^2\partial_t\Phi$)
		:	$=\mathrm{i}\frac{1}{m}\oint_{\partial_\ell\omega}$	$d[\kappa] \Big(\frac{m^2}{r^2} \partial_t \Phi$	$-\kappa^2 \partial_t \Phi \Big)$	
		:	$= -\mathrm{i}\frac{1}{m}\oint_{\partial_{\ell}}$	$\partial_t \Phi = 0$		

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	<i>m ≠</i> 0 00	Conclusion

Boundary and circulation conditions when $m \neq 0$

We put together results concerning

- boundary conditions (\P^m)
- circulation conditions $(\blacklozenge_{\ell}^{m})$ and $(\blacklozenge_{\ell}^{\prime m})$

Proposition

Assume that $\overline{\omega}$ is disjoint from the rotation axis \mathfrak{A} . Let **u** satisfy the boundary condition (\P) : $\mathbf{u} \cdot \mathbf{n} = 0$. Let $m \neq 0$ and set

$$\Phi = r u_{\theta}^{m}$$
 and $\boldsymbol{u}^{m} = \boldsymbol{e}^{im\theta} (u_{r}^{m} \boldsymbol{e}_{r} + u_{\theta}^{m} \boldsymbol{e}_{\theta} + u_{z}^{m} \boldsymbol{e}_{z})$

Then

Φ satisfy the complex oblique derivative condition

 $(\mathbf{\Psi}^m) \qquad \qquad \mathbf{i} \, m \, \partial_{\mathbf{n}} \Phi - \mathbf{r} \, \kappa \, \partial_{\mathbf{t}} \Phi = \mathbf{0} \quad \text{on} \quad \partial \omega$

• \boldsymbol{u}^m satisfies all circulation conditions $(\boldsymbol{A}_{\ell}^m)$ and $(\boldsymbol{A}_{\ell}^{\prime m}) \quad \forall \ell$.

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	m ≠ 0 00	Conclusion
Outline						

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 ●○○	Torus 0000	$m \neq 0$ 00	Conclusion		
0	D							
m = 0: Boundary and circulation conditions								
Boun	dary conditio	ns						
The boundary condition (\P^0) is								
		$\partial_t \Phi = 0$) on $\partial \omega$					

Therefore Φ is constant on each connected component $\partial_{\ell}\omega$ of $\partial\omega$.

Circulation conditions

Assume boundary conditions (\mathbf{V}^0) .

• Take m = 0 in $(\diamondsuit_{\ell}^{m})$:

$$(\clubsuit^0_{\ell}) \qquad \qquad \oint_{\partial_{\ell}\omega} \partial_n \Phi \, \frac{1}{r} \, \mathrm{d}\sigma = 0$$

• Condition (\bigstar'^0_{ℓ}) is $\Phi(r_{\ell}, z_{\ell}) = 0$ for a $(r_{\ell}, z_{\ell}) \in \partial_{\ell} \omega$. With (\clubsuit^0) :

 $(\spadesuit_{\ell}^{\prime\,0}) \qquad \qquad \Phi\Big|_{\partial_{\ell}\omega} = 0$

Setting	Axisymmetry	Diagonalization	m = 0 $\bigcirc \odot \bigcirc \bigcirc$	Torus 0000	m eq 0 00	Conclusion

m = 0: Variational spaces

$$H^1_{ullet}(\omega) := ig\{ \Phi \in H^1(\omega), \quad \partial_t \Phi = 0 \quad ext{on} \quad \partial \omega ig\}$$

For $\Phi \in H^1_{\checkmark}(\omega)$ let

$$\mathfrak{B}: \Phi \longmapsto (b_{\ell})_{\ell=1}^{g} \quad \text{with} \quad b_{\ell} = \oint_{\partial_{\ell}\omega} \partial_{n} \Phi \, \frac{1}{r} \, \mathrm{d}\sigma$$
$$\mathfrak{C}: \Phi \longmapsto (c_{\ell})_{\ell=1}^{g} \quad \text{with} \quad c_{\ell} = \Phi \big|_{\partial_{\ell}\omega}$$

and denote for $\Phi, \Psi \in H^1_{\clubsuit}(\omega)$

$$\langle \mathfrak{B}\Phi, \mathfrak{C}\Psi \rangle := \sum_{\ell=1}^{g} b_{\ell}(\Phi) c_{\ell}(\Psi)$$

A family of variational spaces

Let us choose a subspace \mathfrak{E} of \mathbb{R}^g (possibly trivial).

Define the variational space $V = V[\mathfrak{E}]$ as

 $V[\mathfrak{E}] := \{ \Phi \in H^1_{ullet}(\omega), \quad \mathfrak{C}\Phi \in \mathfrak{E} \}.$

Setting	Axisymmetry	Diagonalization	m = 0	Torus 0000	m eq 0 00	Conclusion
<i>m</i> = 0:	Self-adio	ions				

Elimination formulas are

$$(\clubsuit^{0}) \qquad \qquad u_{z}^{m} = \frac{1}{r} \frac{1}{\kappa} \partial_{r} \Phi \quad \text{and} \quad u_{r}^{m} = -\frac{1}{r} \frac{1}{\kappa} \partial_{z} \Phi$$

Equation (\blacklozenge .2) is $\partial_z u_r^m - \partial_r u_z^m = \kappa u_{\theta}^m$. It yields

(*)
$$-\partial_z \frac{1}{r} \partial_z \Phi - \partial_r \frac{1}{r} \partial_r \Phi = \kappa^2 \frac{1}{r} \Phi$$

Theorem

The variational eigen-problem: Find $\kappa \in \mathbb{R}$ s.t. \exists non-zero $\Phi \in V[\mathfrak{E}]$

$$(\blacklozenge_{[0]}) \qquad \forall \Psi \in V[\mathfrak{E}], \quad \int_{\omega} \nabla \Phi \, \nabla \Psi \, \frac{1}{r} \, \mathrm{d}r \, \mathrm{d}z = \kappa^2 \int_{\omega} \Phi \, \Psi \, \frac{1}{r} \, \mathrm{d}r \, \mathrm{d}z$$

has a discrete set of solutions denoted by $\mathfrak{S}(\omega, \mathfrak{E})$. The eigenvectors Φ satisfy the eigen-equation (*) and the natural condition

 $\langle \mathfrak{B}\Phi, \mathfrak{C}\Psi \rangle = 0 \quad \forall \Psi \in V[\mathfrak{E}]$ i.e. $\mathfrak{B}\Phi \in \mathfrak{E}^{\perp}$

Setting	(A 000 00	tisymmetry	Diagonalization	m = 0 1 000 0	Torus	m ≠ 0 0 00 ·	Conclusion
Ou	tline						

Setting	Axisymmetry	Diagonalization	m = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion

m = 0: Example of a circular torus

The meridian domain ω is a disk, with center $(r_0, 0)$ and radius $R < r_0$. The boundary $\partial \omega$ has one connected component.

So g= 1 and we have only two distinct choices for the space $\mathfrak E$

• If
$$\mathfrak{E} = \{0\}$$
, $V = H_0^1(\omega)$,
 \Rightarrow Circulation along cycle γ'_1 is 0, $g_1 = 0$ Defines problem P0

• If
$$\mathfrak{E} = \mathbb{R}$$
, $V = \{ \Phi \in H^1(\omega), \ \partial_t \Phi = 0 \text{ on } \partial \omega \},$

 \Rightarrow Circulation along cycle γ_1 is 0, $g_1 = 1$ Defines problem P1

P0 As standard for a Dirichlet problem: On $H_0^1(\omega)$

$$\int_{\omega} \nabla \Phi \, \nabla \Psi \, \frac{1}{r} \, \mathrm{d}r \, \mathrm{d}z = \kappa^2 \int_{\omega} \Phi \, \Psi \, \frac{1}{r} \, \mathrm{d}r \, \mathrm{d}z$$

P1 Penalize the tangential derivative: On $H^1(\omega)$, with large Λ ,

$$\int_{\omega} \nabla \Phi \,\nabla \Psi \,\frac{1}{r} \,\mathrm{d}r \,\mathrm{d}z + \Lambda \int_{\partial \omega} \partial_t \Phi \,\partial_t \Psi \,\mathrm{d}\sigma = \kappa^2 \int_{\omega} \Phi \,\Psi \,\frac{1}{r} \,\mathrm{d}r \,\mathrm{d}z$$

Circular torus: radius R = 0.5 and center $r_0 = 1$

The mesh for Q1 elements

Circular torus: radius R = 0.5 and center $r_0 = 1$

(m = 0) Circular torus R = 0.5, $r_0 = 1$. E-vector Φ

eigs_2, eigvec_u, lambda_{2} = 53.371

8-digit coincidence

(m = 0) Circular torus R = 0.5, $r_0 = 1$. E-vector Φ

(m = 0) Circular torus R = 0.5, $r_0 = 1$. E-vector Φ

Odd

0

-2

Setting	Axisymmetry	Diagonalization	m = 0 000	Torus 0000	<i>m</i> ≠ 0 ○○	Conclusion
Outl	ine					

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus	$m \neq 0$ \odot	Conclusion	
$m \neq 0$: Figenproblem							

Non-linear with respect to κ .

(

Note that
$$\kappa^2 \tau(\kappa) = \frac{1}{r^2 - \frac{m^2}{\kappa^2}}$$
 and set $\rho := \frac{m}{\kappa}$

Introduce the forms $a[\rho]$ and $b[\rho]$

$$a[\rho](\Phi,\Psi) = \int_{\omega} (r^2 - \rho^2)^{-1} \left\{ \nabla \Phi \cdot \nabla \Psi + i\rho(r^2 - \rho^2)^{-1} \left(\partial_z \Phi \Psi - \Phi \partial_z \Psi \right) \right\} r \, \mathrm{d}r \, \mathrm{d}z$$
$$b[\rho](\Phi,\Psi) = i \frac{1}{2\rho} \int_{\partial \omega} (r^2 - \rho^2)^{-1} \left\{ \partial_t \Phi \Psi - \Phi \partial_t \Psi \right\} r^2 \mathrm{d}\sigma$$

 $[\rho]$ - eigenproblem: Find non-zero $\Phi \in H^1(\omega)$ and $\lambda \in \mathbb{R}_+$ s.t.

$$\bullet_{[\rho]}) \qquad \forall \Psi \in H^1(\omega), \quad a[\rho](\Phi, \Psi) + b[\rho](\Phi, \Psi) = \lambda \int_{\omega} \Phi \Psi \; \frac{1}{r} \, \mathrm{d} r \mathrm{d} z \, .$$

Set $\kappa = \sqrt{\lambda}$ and look for ρ such that $\kappa \rho =: \mathbf{m} \in \mathbb{N}^*$.

$(m \neq 0)$ Circular torus R = 0.5, $r_0 = 1$: κ versus ρ

$(m \neq 0)$ Circular torus R = 0.5, $r_0 = 1$: κ versus ρ

Setting	Axisymmetry	Diagonalization	m = 0 000	Torus	<i>m ≠</i> 0 00	Conclusion
Outli	ne					

Setting	Axisymmetry	Diagonalization	<i>m</i> = 0 000	Torus 0000	$m \neq 0$ 00	Conclusion ●○

Circular torus R = 0.5, $r_0 = 1$: Comparison of results

Compare

- our results obtained by 2D parametric FEM computations ([ρ]-method)
- those of [ACRVV] obtained by 3D computations incorporating circulation conditions

	# DOF	κ_1	κ2	κ_3	κ_4	κ_5
Finest mesh	247239	4.9151	6.2717	6.2724	6.3256	6.3256
Extrapolated		4.8956	6.2306	6.2276	6.2798	6.2811
2D	5185	4.8955	6.225*	6.225*	6.275*	6.275*
Angular freq.		<i>m</i> = 0	<i>m</i> =	= 2	<i>m</i> =	= 3

The next (visible) κ is $\kappa \simeq 6.682$ with m = 1

Setting	Axisymmetry	Diagonalization	m = 0 000	Torus	<i>m ≠</i> 0 00	Conclusion ○●
New au	Jestions					

We are very curious of what happens in the parametric region

 $\rho \in [\mathit{r_{\min}}, \mathit{r_{\max}}]$

where r_{\min} and r_{\max} are the minimum and maximal values of r for $(r, z) \in \overline{\omega}$. We do not yet know if computations are possible to solve problem (\blacklozenge_{r_0})

- Question of the dependence on circulation conditions on the spectrum for axisymmetric domains:
 - (a) No influence on non-axisymmetric modes.
 - (b) In presence of horizontal symmetry, no influence on odd axisymmetric modes.
 - (c) For all remaining ones (infinitely many) the spectrum does depend on circulation conditions.
- Series Performances of the *p*-version of FEM (debugging of library necessary)

Still under investigation.

Setting	Axisymmetry	Diagonalization	m = 0 000	Torus	<i>m ≠</i> 0 00	Conclusion ○●
New au	Jestions					

We are very curious of what happens in the parametric region

 $\rho \in [r_{\min}, r_{\max}]$

where r_{\min} and r_{\max} are the minimum and maximal values of r for $(r, z) \in \overline{\omega}$. We do not yet know if computations are possible to solve problem (\blacklozenge_{r_0})

- Question of the dependence on circulation conditions on the spectrum for axisymmetric domains:
 - (a) No influence on non-axisymmetric modes.
 - (b) In presence of horizontal symmetry, no influence on odd axisymmetric modes.
 - (c) For all remaining ones (infinitely many) the spectrum does depend on circulation conditions.
- Series Performances of the *p*-version of FEM (debugging of library necessary)

Still under investigation.

Thank you for your attention