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An application : propagation of acoustic waves in humans lungs 
(to detect crackles).

             -  dyadic tree with 23 generations,

             -  over than 8 million slots,

             -  the geometry is «almost» self similar.
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Introduction

Molding obtained by Ewald R. Wiebel, 
University of Berne, Switzerland

10

Example : the lung 

Can be modeled mathematically
as an infinite quasi-self similar tree

B. Maury, D. Salort, C. Vannier, Trace theorems for trees, applications for the human lung,
Network and Heterogeneous Media 1 (3), 469-500 (2009)



Goal : study the propagation of acoustic waves in a network of thin 
slots and particularly in infinite trees (seen as a limit case of a very 
large number of slots)
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Introduction
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By a tree, we mean a graph with the additional notion of 
branches and successive generations

10
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Wave propagation in a tree 

natural numbering of edges with two indices i ⌘ (n, j)
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 The retained 1D model
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Notation : s denotes a generalized abcissa along the tree   

µ @2
t u� @s(µ @su) = 0

Wave propagation in a tree 

µ : T �! R+ µ(s) = µi along the edge no i

⇠ �

This model is justified by an asymptotic analysis of the 3D
acoustic wave equation in a thin network (          )  with 
homogeneous Neumann boundary conditions 

� ! 0

The transverse cross section of the thin slot       is         .��
i µi �

2

+ Continuity

ui = uj , 8 (i, j) 2 B`
`

i 2 B`

1D wave equations

X

i2B`

µi @siui = 0

+ Kirchoff conditions
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Numerical simulations - simulations
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Zoom with amplified color scale

A complex phenomenon : reflections up to infinity 
Solution computer with many 
generations and brute force
(one week of computation)
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Difficulties of the problem
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@su = T 1 u

@su = T 2 u

@su = T 3 u

How to characterize and compute
the operators       ?

How to discretize and implement
them (in time) ?

Main questions

Tm

A general geometry Major difficulty : Treat numerically the fact that the tree is infinite

Transparent DtN 
conditions at nodes 

can be done under the assumption
that after a certain generation, all 
the subtrees are self-similar

Y. Achdou, C, Sabot, N. Tchou, Diffusion and propagation problems in some ramified 
domains with a fractal boundary,ESAIM : M2AN 40(4), 623-652 (2006)

Similar questions were adressed in the following article, as a part of a 
series of works devoted to elliptic boundary value problems in fractal domains
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e0,1
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e1,1

e1,2

e2,2

e2,1

e2,3

e2,4

Example with
and    

p = 2
↵1 = ↵2

⌫22

⌫21

⌫1⌫2

⌫2⌫1

⌫1

⌫2

Self-similarity of the coefficients :                               such that                9 (⌫1, · · · , ⌫p) > 0

µ
�
sk(en,j)

�
= ⌫k · µ(en,j)

The tree is
bounded

A self-similar p-adyc tree 

Example : the human lung p = 2, ↵1 = ↵2 ' 0.85, ⌫k = ↵2
k

p strictly contractant direct 
similitudes          of ratio                  .sj ↵j < 1

Σ : a root segment of length `

e1,k = sk(e0,1), 1  k  p

en+1,p(j�1)+k = sk(en,j), 1  j  pn, 1  k  p

The branches of the tree are

e0,1 = ⌃

`

1
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The reference DtN operator

⇤'(t) := @su'(0, t)The Dirichlet-to-Neumann operator :

The reference DtN operator 

⇤'

` = 1

Reference tree

+ some condition          at infinity (to be made precise)(C1)

(C1)

along   ,T u'(0, t) = '(t)µ @2
t u' � @s(µ @su') = 0

'
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⇤'(t) := @su'(0, t)

The reference DtN operator

It is a convolution operator characterized by its Fourier Laplace symbol

F : '(t) �! '(!), ! 2 C+ F
�
⇤')(!) = ⇤(!)'(!)

The Dirichlet-to-Neumann operator :

The reference DtN operator 

+ some condition          at infinity (to be made precise)(C1)

along   ,T u'(0, t) = '(t)µ @2
t u' � @s(µ @su') = 0

Re!

Im!

C+

C�

'(!) =

Z +1

0
'(t) ei!t dt
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⇤'(t) := @su'(0, t)

The reference DtN operator

It is a convolution operator characterized by its Fourier Laplace symbol

F : '(t) �! '(!), ! 2 C+ F
�
⇤')(!) = ⇤(!)'(!)

The Dirichlet-to-Neumann operator :

= @su(0,!)⇤(!) ⇤ ⌘ ⇤(@t)symbolic notation :

The reference DtN operator 

+ some condition          at infinity (to be made precise)(C1)

along   ,T u'(0, t) = '(t)µ @2
t u' � @s(µ @su') = 0

u(0,!) = 1along   ,@s(µ @su) + µ!2 u = 0 T
+ some condition          at infinity (to be made precise)(C1)



+ some condition          at infinity (to be made precise)(C1)
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⇤'(t) := @su'(0, t)The Dirichlet-to-Neumann operator :

1

⇤'

'

Scaling of the reference DtN operator

`

Scaling of the DtN operator 

along   ,T u'(0, t) = '(t)µ @2
t u' � @s(µ @su') = 0

s ! s/`

⇤(!) `�1⇤(!`)

@s `�1@s ! ` !
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The reference DtN operatorThe transparent boundary condition 

⇤'(t) := @su'(0, t)The Dirichlet-to-Neumann operator :

q = 1

q = Q

··
·

··
·

⇤'

'

u

(u1, T1)

(uQ, TQ)
T = µ�1

0

QX

q=1

µq ⇤q(@t)

µ0 @su =
QX

q=1

µq @suq

µ0 @su =
QX

q=1

µq ⇤q(@t)u

+ some condition          at infinity (to be made precise)(C1)

end point of the cut tree

along   ,T u'(0, t) = '(t)µ @2
t u' � @s(µ @su') = 0

µ0

µ1

µQ
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⇤'(t) := @su'(0, t)

The reference DtN operator

It is a convolution operator characterized by its Fourier Laplace symbol

F : '(t) �! '(!), ! 2 C+ F
�
⇤')(!) = ⇤(!)'(!)

The Dirichlet-to-Neumann operator :

= @su(0,!)⇤(!) ⇤ ⌘ ⇤(@t)symbolic notation :

The reference DtN operator 

Dirichlet or Neumann condition at       are defined in a variational way1

+ some condition          at infinity (to be made precise)(C1)

along   ,T u'(0, t) = '(t)µ @2
t u' � @s(µ @su') = 0

u(0,!) = 1along   ,@s(µ @su) + µ!2 u = 0 T
+ some condition          at infinity (to be made precise)(C1)
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Weighted Sobolev spaces on s.s. p-adyc trees
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Associated Sobolev spaces

H1
µ(T ) =

�
v 2 C0(T ) / kvk2H1

µ
< 1

 
(for Neumann)

H1
µ,c(T ) =

�
v 2 H1

µ(T ) such that 9 N / v = 0 in T \ TN
 

where

H1
µ,0(T ) H1

µ,c(T )
H1

µ(T )
= (for Dirichlet)

Z

T
µ f ds :=

X

n�0

pnX

j=1

µn,j

Z

en,j

f dsNotation :                                                 

Weighted Sobolev spaces in p-adyc s.s. trees 

kuk2H1
µ

Weighted broken      - norm :H1 =

Z

T
µ |@su|2 ds+

Z

T
µ |u|2 ds
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The Dirichlet and Neumann Helmhotz problems
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Z

T
µu0v0 � !2

Z

T
µuv = 0, 8 v 2 H1

µ(T ) such that v(0) = 0

u 2 H1
µ(T ) / u(0) = 1Find                                           , such that(Pn)

Z

T
µu0v0 � !2

Z

T
µuv = 0, 8 v 2 H1

µ,0(T ) such that v(0) = 0

u 2 H1
µ,0(T ) / u(0) = 1Find                                             , such that(Pd)

ud(!, ·) un(!, ·)

For each             ,           ( resp.          )  admits a unique solution denoted! /2 R (Pd) (Pn)

( resp.                ) 

Dirichlet and Neumann Helhmoltz problems 

⇤d(!) := @sud(!, 0) ⇤n(!) := @sun(!, 0)Definition :

Given             , we define the Dirichlet and Neumann (at     ) problems! /2 R 1
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Mathematical analysis

>
�
max

1ip
↵i < 1

�
h ⌫ ↵�1i :=

X
⌫i ↵i

�1 h ⌫ ↵i :=
X

⌫i ↵i

Some mathematical analysis 

1

1

H1
µ(T ) ⇢ L2

µ(T )
c

h ⌫ ↵�1i

h ⌫ ↵i

⇢lung

L2
µ(T ) =

�
v : (T ) 7! C / µ |v|2 < +1}

Z

T

H1
µ(T ) 6= H1

µ,0(T )

un(!, ·) 6= ud(!, ·)
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Mathematical analysis

>
�
max

1ip
↵i < 1

�
h ⌫ ↵�1i :=

X
⌫i ↵i

�1 h ⌫ ↵i :=
X

⌫i ↵i

Some mathematical analysis 

1

1 h ⌫ ↵�1i

h ⌫ ↵i

⇢lung

H1
µ(T ) 6= H1

µ,0(T )

un(!, ·) 6= ud(!, ·)

H1
µ(T ) ⇢ L2

µ(T )
c

un(!, ·) ⌘ ud(!, ·)

H1
µ(T ) = H1

µ,0(T )

H1
µ(T ) ⇢ L2

µ(T )
c
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Mathematical analysis
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⇤d(!) := @sud(!, 0) ⇤n(!) := @sun(!, 0)Definition :

Some mathematical analysis 

!�1⇤a(!), a = d, n                                                 are Herglotz functionsfa(!) :=Theorem :

f ()is a Herglotz function is analytic from       intoC+ C+f

Re!

Im!

C+

Re!

Im!

C+f

Time domain version :  8 T > 0, 8 '(t)

Z T

0
⇤a'(t) @t'(t) dt � 0
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Mathematical analysis
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    and         are well-posed(Pd) (Pn) except for a sequence of realTheorem :

± !n
d 2 R+

⇤ , !
n
d ! +1 ± !n

n 2 R+
⇤ , !

n
n ! +1frequencies                                      and                                       and

and  ! ! ud(!, ·) and are meromorphic, poles {± !n
n}{± !n

d}un(!, ·)

⇤d(!) := @sud(!, 0) ⇤n(!) := @sun(!, 0)Definition :

                                                 are Herglotz functionsfa(!) :=Theorem : !�1⇤a(!), a = d, n

Proof : spectral theory of self-adjoint operators with compact resolvent

Some mathematical analysis 

Re!

Im!
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Mathematical analysis
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⇤d(!) := @sud(!, 0) ⇤n(!) := @sun(!, 0)Definition :

                                                 are Herglotz functionsfa(!) :=Theorem : !�1⇤a(!), a = d, n

Some mathematical analysis 

⇤a(!) = ⇤a � !2
+1X

n=0

⌦2
a,n

!2
a,n � !2Corollary : a = d, nHow to compute

           in practice ?⇤a(!)

    and         are well-posed(Pd) (Pn) except for a sequence of realTheorem :

± !n
d 2 R+

⇤ , !
n
d ! +1 ± !n

n 2 R+
⇤ , !

n
n ! +1frequencies                                      and                                       and

and  ! ! ud(!, ·) and are meromorphic, poles {± !n
n}{± !n

d}un(!, ·)

K(t) :=
+1X

n=0

⌦

2
a,n

!2
a,n

cos!a,n(t)

One can make explicit     as an integral time convolution operator 

⇤au = ⇤au+K(0) @2
t u+

Z t

0
K(t� ⌧) @3

t u(⌧) d⌧
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Mathematical analysis
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⇤d(!) := @sud(!, 0) ⇤n(!) := @sun(!, 0)Definition :

                                                 are Herglotz functionsfa(!) :=Theorem : !�1⇤a(!), a = d, n

Some mathematical analysis 

⇤a(!) = ⇤a � !2
+1X

n=0

⌦2
a,n

!2
a,n � !2Corollary : a = d, nHow to compute

           in practice ?⇤a(!)

    and         are well-posed(Pd) (Pn) except for a sequence of realTheorem :

± !n
d 2 R+

⇤ , !
n
d ! +1 ± !n

n 2 R+
⇤ , !

n
n ! +1frequencies                                      and                                       and

and  ! ! ud(!, ·) and are meromorphic, poles {± !n
n}{± !n

d}un(!, ·)

This is where we shall  really exploit the self-similar nature of the tree
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⇤'(t) := @su'(0, t)

+ some condition at infinity (to be made precise)

along   ,T@2
t u' � @s(µ @su') = 0 u'(0, t) = '(t)

The Dirichlet-to-Neumann operator :

1

⇤'

'

Scaling of the reference DtN operator

`

Scaling of the DtN operator 

⇤(!) `�1⇤(!`)



A characterization of the function
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⇤

1Kirchhoff condition at point    : u0(1,!) =
X

⌫i u
0
i(1,!)

{ u0(0,!) = ⇤(!)

{u(1,!) = cos(!) +
⇤(!)

!
sin(!)

u0
(1,!) = ⇤(!) cos(!)� ! sin(!)

=)

...0 1

u

u1

u2

up

T1

T2

Tp

@s(µ @su) + µ!2 u = 0 T

u(0,!) = 1

Scaling argument (previous slide) : u0
j(1,!) = ↵�1

j ⇤(↵j!)u(1,!)

=)

Along the first branch : @2
su+ !2 u = 0

u(s,!) = cos(! s) +
⇤(!)

!
sin(! s)

A characterization of the function ⇤(!)

⇤(!) cos(!)� ! sin(!) =
X ⌫i

↵i

⇣
cos(!) +

⇤(!)

!
sin(!)

⌘
⇤(↵i !)

DtN for Tj
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⇤

Both functions            and            solve the quadratic functional equation

⇤(!) cos(!)� ! sin(!) =
⇣X ⌫i

↵i
⇤(↵i!)

⌘⇣
cos(!) +

⇤(!)

!
sin(!)

⌘
(E)

A characterization of the function ⇤(!)

⇤ = ⇤d := h⌫↵�1i�1
�
1� h⌫↵�1i

�{⇤ = ⇤n := 0 un(0) = 1()(                          )

⇤d(!) ⇤n(!)

h⌫↵�1i < 1

< 0
=)

The frequency              plays a particular role :                    satisfies! = 0

⇤ = h⌫↵�1i
�
1 +⇤

�
⇤

⇤ = ⇤(0)
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⇤

Both functions            and            solve the quadratic functional equation

⇤(!) cos(!)� ! sin(!) =
⇣X ⌫i

↵i
⇤(↵i!)

⌘⇣
cos(!) +

⇤(!)

!
sin(!)

⌘
(E)

A characterization of the function ⇤(!)

⇤d(!) ⇤n(!)

Theorem:             is the unique meromorphic function solution of (E) s. t.        

is the unique meromorphic function solution of (E) s. t. 

⇤d(0) = ⇤d

⇤d(!)

⇤n(!)

⇤n(0) = ⇤n

=) {⇤ = ⇤n := 0

⇤ = ⇤d := h⌫↵�1i�1
�
1� h⌫↵�1i

�
< 0

un(0) = 1()(                          )

The frequency              plays a particular role :                    satisfies! = 0

⇤ = h⌫↵�1i
�
1 +⇤

�
⇤

⇤ = ⇤(0)



An algorithm for the computation of
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⇤

f b(!) :=
X

⌫i f(↵i!)f(!) =
f b(!) + fN (!)

1� f b(!) fN (!)

Setting                                 and                             , (E) can be rewritten as :f(!) := !�1⇤(!) fN (!) = tan(!)

An algorithm for the computation of ⇤(!)

⇤(!) cos(!)� ! sin(!) =
⇣X ⌫i

↵i
⇤(↵i!)

⌘⇣
cos(!) +

⇤(!)

!
sin(!)

⌘
(E)

(*) considering  as an equation for           , assuming that the              ’s are known   ⇤(↵i!)⇤(!)



An algorithm for the computation of
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⇤

The algorithm transmits (locally) the Herglotz property 

One initiates by a Taylor expansion in        for    small enough B+
� �

Setting                                and knowing          in                                   , this allows to compute   
        in  the larger domain                    :

↵+
= max ↵i < 1

B+
� = {|z| < �} \ C+

(↵+)�1 B+
�

f(!)

f(!)

By induction, one can then determinate          in all C+f(!)

f b(!) :=
X

⌫i f(↵i!)f(!) =
f b(!) + fN (!)

1� f b(!) fN (!)

Setting                                 and                             , (E) can be rewritten as :f(!) := !�1⇤(!) fN (!) = tan(!)

An algorithm for the computation of ⇤(!)

with       known explicitlygn⇤2n = gn(⇤0, · · · ,⇤2n�2)

Substituting                                   in (E) allows to compute        by induction: Taylor expansion : ⇤(!) =
X

⇤2n !2n ⇤2n

This is initiated with                or                which allows to distinct between Dirichlet and Neumann⇤0 = ⇤n⇤0 = ⇤d



An algorithm for the computation of
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⇤p = 2 ↵1 = ↵2 = 0.4 µ1 = µ2 = 0.4

Modulus

Imaginary
part

Neumann case



An algorithm for the computation of

Propagation of acoustic waves in fractal networksAdrien SEMIN 37

⇤p = 2 ↵1 = ↵2 = 0.4 µ1 = µ2 = 0.4

Modulus

Imaginary
part

Neumann case

��⇤(!)� i! sgn

�
Im!)

��  C |!|2 max

�
1, 1

|Im!|2
�
e�2|Im!|



with                                        (non-dissipative and unconditionally stable scheme) 

un
'(0) = 'n

u
n, 14
' :=

un+1
' + 2un

' + un�1
'

4

µ
un+1
' � 2un

' + un�1
'

�t2
� @s

�
µ @su

n, 14
'

�
= 0

' := {'n}The semi-discrete Dirichlet problem : �t �tu' := {un
'(s)}

+ (C1)

Propagation of acoustic waves in fractal networksAdrien SEMIN

The convolution quadrature approach

38

The discrete DtN operator       :⇤
�t �

⇤ '
�n

:= @su
n
'(0)

�t

u'(0, t) = '(t) + (C1)

 The continuous Dirichlet problem : u' := u'(s, t)' := '(t)

Discretization: convolution quadrature approach 

Stability of the discrete DtN condition =)
Z T

0
⇤a'(t) @t'(t) dt � 0Discrete positivity property

�t
N�1X

n=1

�
⇤ '

�n, 14 'n+1 � 'n�1

2�t
�t =

1

2

N�1
X

n=0

Z

T
µ
n

�

�

�

un+1
' � un

'

�t

�

�

�

2
+

�

�

�

@s
⇣un+1

' + un
'

2

⌘

�

�

�

2o

�t

µ @2
t u' � @s(µ @su') = 0



Propagation of acoustic waves in fractal networksAdrien SEMIN

`The convolution quadrature approach

39

|z| < 1! 2 C+ () () 2 C+i

�t

⇣1� z

1 + z

⌘
 (unconditional stablility)

⇤ (!)�t =
X

�m(�t) zm
�t

=)
�
⇤ '

�n
=

nX

q=0

�q(�t) 'n�q

The convolution quadrature approach 
�t �tF

�
⇤ ')(!) = ⇤ (!)'(!) Discrete symbol :  (discrete Fourier)

⇤ (!) =�t i

�t

⇣1� z

1 + z

⌘
⇤
⇣ ⌘

shift operatorz = ei!�t

⇤
⇣ ⌘

i

�t

⇣1� ⇢ ei✓

1 + ⇢ ei✓

⌘
�m(�t) =

⇢�m

2⇡

Z 2⇡

0

d✓e�im✓

 Convolution weights :

 Fourier coefficients

 FFT algorithm
8 ⇢ < 1,

z = ⇢ ei✓, ⇢ < 1  Fourier series in ✓=) )(



 The fully discrete truncated tree problem:

  

Z

Tc

un+1
h � 2un

n + un�1
h

�t2
vh +

Z

Tc

µ @su
n
h @sv

n
h

implicit

explicit

+
X

e2E

�
T�t uh

�n, 14 vh = 0,

  �tq = �t/`q
�
T�t u

�n, 14 = µ�1
0

QX

q=1

�
µq ⇤

�t
q u

�n, 14 ⇤�t
q = `�1

q ⇤�tq ,
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The convolution quadrature approach 

T = µ�1
0

QX

q=1

µq ⇤q(@t) ⇤q(!) = `�1
q ⇤(`q !)

Q

1

2
...

e
0

 Recap : transparent DtN operator at each end point e



p = 2
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↵1 = ↵2 = 0.4

µ1 = µ2 = 0.4h(t� x)

supp h(!) ⇢
�
|!| ⇢ ⌦

max

 

⌦
max

⇡ 20⇡

Tmin ⇡ 0.1

Numerical simulations 
Neumann case

�min ⇡ 0.1

` = 2



This part of the signals contains
reflections from nodes which are
not in the computational domain

An algorithm for the computation of
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⇤Numerical simulations 

The convolution quadrature approach 

Reference solution : computed with brute force (one week of computation) 
Approximate solution : computed with �t = 0.04 (Tmin ⇡ 0.1)
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Reference solution

�t = 0.04



This part of the signals contains
reflections from nodes which are
not in the truncated domain

An algorithm for the computation of
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⇤
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Reference solution

�t = 0.01

Numerical simulations 
Reference solution : computed with brute force (one week of computation) 
Approximate solution : computed with (Tmin ⇡ 0.1)�t = 0.01

The convolution quadrature approach 


