Time Domain Integral Equations for Computational Electromagnetism

Peter Monk University of Delaware, USA monk@udel.edu

Conference in honor of Prof. Abderrahmane Bendali Pau 2017

Research funded in part by AFOSR and NSF

Table of Contents

1 Introduction

- Scattering by a metallic object
- Towards a Time Domain Boundary Integral Equation
- Analysis of TDBIE CQ

2 CQ for gratings

- Backgroud
- Time discretization via CQ
- Discretization in space
- Time Discretization
- Numerics

The scattering problem

Forward Problem: Given properties of the scatterer, the incident field, and the background, predict the scattered field.

Let *D* be a bounded domain (scatterer) with connected complement, boundary Γ and unit outward normal ν .

Suppose \mathbf{E}^{inc} is a given incident wave (solution of Maxwell's equations vanishing on *D* for time t < 0). The scattered electric field $\mathbf{E} = \mathbf{E}(\mathbf{x}, t)$ satisfies

$$\frac{1}{c^2} \ddot{\boldsymbol{E}} + \nabla \times \nabla \times \boldsymbol{E} = 0 \text{ in } \Omega := \mathbb{R}^3 \setminus \overline{D} \text{ for } t \in (0, T),$$
$$\boldsymbol{E} \times \boldsymbol{\nu} = \boldsymbol{g} \text{ on } \Gamma \text{ for } t > 0,$$
$$\boldsymbol{E} = \dot{\boldsymbol{E}} = 0 \text{ at } t = 0 \text{ in } \Omega.$$

Here $\ddot{\boldsymbol{E}} = \partial^2 \boldsymbol{E} / \partial t^2$, *c* is the speed of light, and $\boldsymbol{g} = -\boldsymbol{E}^{inc} \times \boldsymbol{\nu}$.

We now derive the Convolution Quadrature semi-discrete boundary integral equation for the solution.

Write the problem as a first order system. Let $(\boldsymbol{E}, \boldsymbol{H})$ satisfy

$$\begin{cases} \frac{1}{c}\dot{\boldsymbol{H}} &= -\nabla \times \boldsymbol{E}, \text{ in } \Omega \text{ for } t > 0, \\ \frac{1}{c}\dot{\boldsymbol{E}} &= \nabla \times \boldsymbol{H}, \text{ in } \Omega \text{ for } t > 0, \\ \boldsymbol{E}(\boldsymbol{x}, 0) &= \boldsymbol{H}(\boldsymbol{x}, 0) = 0, \text{ in } \Omega, \\ \boldsymbol{E} \times \boldsymbol{\nu} &= \boldsymbol{g}, \text{ on } \Gamma \text{ for } t > 0. \end{cases}$$

Discretize only in time

For simplicity, consider the Backward Euler scheme (not the best in practice!). Define time steps $t_n = n\Delta t$, $n = 0, 1, ..., \Delta t > 0$, then let $\mathbf{E}^n := \mathbf{E}^n(\mathbf{x}) \approx \mathbf{E}(\mathbf{x}, t_n)$ and $\mathbf{H}^n := \mathbf{H}^n(\mathbf{x}) \approx \mathbf{H}(\mathbf{x}, t_n)$ for $n \ge 0$:

$$\begin{cases} \frac{\boldsymbol{H}^{n+1} - \boldsymbol{H}^n}{c\Delta t} &= -\nabla \times \boldsymbol{E}^{n+1}, \text{ in } \Omega \text{ for } n \ge 0, \\ \frac{\boldsymbol{E}^{n+1} - \boldsymbol{E}^n}{c\Delta t} &= \nabla \times \boldsymbol{H}^{n+1}, \text{ in } \Omega \text{ for } n \ge 0, \\ \boldsymbol{E}^0 &= \boldsymbol{H}^0 = 0, \text{ in } \Omega, \\ \boldsymbol{E}^{n+1} \times \boldsymbol{\nu} &= \boldsymbol{g}^{n+1} := \boldsymbol{g}(\cdot, t_{n+1}), \text{ on } \Gamma. \end{cases}$$

Formal series

Let $\mathcal{E} := \sum_{n=0}^{\infty} \mathbf{E}^n \xi^n$ and $\mathcal{H} := \sum_{n=0}^{\infty} \mathbf{H}^n \xi^n$ where $\xi \in \mathbb{C}$ is a complex parameter.

Multiplying each discrete equation by ξ^{n+1} and adding these equations, as well as using the initial conditions:

$$\begin{cases} \left(\frac{1-\xi}{c\Delta t}\right)\mathcal{H} &= -\nabla \times \mathcal{E}, \text{ in } \Omega, \\ \left(\frac{1-\xi}{c\Delta t}\right)\mathcal{E} &= \nabla \times \mathcal{H}, \text{ in } \Omega, \\ \mathcal{E} \times \boldsymbol{\nu} &= \mathcal{G} \times \boldsymbol{\nu} := \left(\sum_{n=0}^{\infty} \boldsymbol{g}_{n} \xi^{n}\right) \times \boldsymbol{\nu} \text{ on } \Gamma. \end{cases}$$

Single Layer Ansatz

Eliminating \mathcal{H} we obtain

$$\frac{1}{c^2} \left(\frac{1-\xi}{\Delta t}\right)^2 \mathcal{E} + \nabla \times (\nabla \times \mathcal{E}) = 0, \text{ in } \Omega.$$

We seek a solution using the following Anstaz:

$$\mathcal{E} = \mathrm{S}(\boldsymbol{s}) \boldsymbol{\phi}, \qquad \boldsymbol{s} = \left(\frac{1-\xi}{\Delta t} \right),$$

where ϕ is an unknown tangential vector field on Γ ,

$$(\mathbf{S}(s)\phi)(x) = -rac{s^2}{c^2}\int_{\Gamma} K(x-y,s)\phi(y)\,d\sigma_y +
abla \int_{\Gamma} K(x-y,s)\,\mathrm{div}_{\Gamma}\,\phi$$

and the fundamental solution of the Helmholtz equation is

$$\mathcal{K}(oldsymbol{d},oldsymbol{s}):=rac{\exp(-oldsymbol{s}\|oldsymbol{d}\|/oldsymbol{c})}{4\pi\|oldsymbol{d}\|},\qquad \Re(oldsymbol{s})>0.$$

Boundary integral equation

Taking the tangential trace on the boundary Γ of *D* we see that ϕ satisfies

(

$$\mathbb{C}\left(\frac{1-\xi}{\Delta t}\right)\phi=\mathcal{G}.$$

where

$$\begin{split} \mathbb{C}(\boldsymbol{s})\phi &= -\frac{\boldsymbol{s}^2}{\boldsymbol{c}^2}\int_{\Gamma} \mathcal{K}(\boldsymbol{x}-\boldsymbol{y},\boldsymbol{s})\phi(\boldsymbol{y})\times\boldsymbol{\nu}(\boldsymbol{x}) \\ &+ \nabla_{\Gamma}\int_{\Gamma} \mathcal{K}(\boldsymbol{x}-\boldsymbol{y},\boldsymbol{s})\operatorname{div}_{\Gamma}\phi(\boldsymbol{y})\times\boldsymbol{\nu}(\boldsymbol{x}) \end{split}$$

This is the electric field integral equation (EFIE).

- 1 A. Bendali, Numerical analysis of the exterior boundary value problem for the time harmonic Maxwell equations by a boundary finite element method. Part 1: The continuous problem, *Mathematics of Computation*, **43**, pp. 29-46 (1984).
- 2 A. Bendali, Numerical analysis of the exterior boundary value problem for the time harmonic Maxwell equations by a boundary finite element method. Part II: The discrete problem, *Mathematics* of Computation, **43**, pp. 47-68 (1984).

Marching on in Time

To write the integral equation as a discrete convolution, we expand the operator and ϕ as Taylor series:

$$\mathbb{C}\left(\frac{1-\xi}{\Delta t}\right) = \sum_{n=0}^{\infty} \boldsymbol{w}_n^{\Delta t} \xi^n, \quad \text{and } \phi = \sum_{n=0}^{\infty} \phi_n \xi^n.$$

Using these representations

$$\mathbb{C}\left(\frac{1-\xi}{\Delta t}\right)\phi = \left(\sum_{n=0}^{\infty} \boldsymbol{w}_{n}^{\Delta t}\xi^{n}\right)\left(\sum_{n=0}^{\infty} \phi_{n}\xi^{n}\right)$$
$$= \sum_{n=0}^{\infty}\left(\sum_{m=0}^{\infty} \boldsymbol{w}_{n-m}^{\Delta t}\phi_{m}\right)\xi^{n}.$$

Backward Euler CQ weights

Recall $K(\boldsymbol{d}, \boldsymbol{s}) = \exp(-\boldsymbol{s} \|\boldsymbol{d}\|/\boldsymbol{c})/4\pi \|\boldsymbol{d}\|$. Expanding $K(\boldsymbol{x} - \boldsymbol{y}, (1 - \xi)/(\Delta t))$ as a Taylor series in ξ :

$$\boldsymbol{w}_{m}^{\Delta t}\phi(\boldsymbol{x}) = -\frac{\Pi_{T}}{c^{2}}\int_{\Gamma}K_{m}^{2,\Delta t}(\boldsymbol{x}-\boldsymbol{y})\phi(\boldsymbol{y}) - \nabla_{\Gamma}\int_{\Gamma}K_{m}^{0,\Delta t}(\boldsymbol{x}-\boldsymbol{y})\operatorname{div}_{\Gamma}\phi(\boldsymbol{y})$$

where

$$\mathcal{K}_m^{0,\Delta t}(\boldsymbol{x} - \boldsymbol{y}) = \frac{\exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{y}\|}{c\Delta t}\right)}{m! \, 4\pi \|\boldsymbol{x} - \boldsymbol{y}\|} \left(\frac{\|\boldsymbol{x} - \boldsymbol{y}\|}{c\Delta t}\right)^m$$

and $\mathcal{K}_m^{2,\Delta t}(\boldsymbol{x} - \boldsymbol{y})$ is obtained by differencing using the underlying ordinary differential equation solver (here Backward Euler).

Two approaches to solving the TDBIE

 Marching on in Time (MoT): solve sequentially boundary integral equations

$$\boldsymbol{w}_0^{\Delta t}\phi_n = \boldsymbol{g}_n - \sum_{m=0}^{n-1} \boldsymbol{w}_{n-m}^{\Delta t}\phi_m$$

We have arrived at an application of Convolution Quadrature¹ (CQ) to approximating the time domain electric field integral equation.

Parallel "frequency domain" approach: Choose a discrete set of *ξ*. Solve the corresponding frequency domain problem, and synthesize the time domain solution.²

Compare to the space-time Galerkin approach³.

¹C. Lubich, Numer. Math. 67, 365-389 (1994).

²L. Banjai and S. Sauter, SIAM J. Numer. Anal. 47 (2008), pp. 227-249.

³I. Terrasse, PhD Thesis, Ecole Polytechnique, France (1993).

Semi-discrete weak form

After integration by parts, we get the following weak form: for each *n* we seek $\phi_n \in H^{-1/2}(\text{Div}; \Gamma)$ such that

$$\sum_{j=0}^{n} \int_{\Gamma} \int_{\Gamma} \left\{ \frac{K_{n-j}^{2,\Delta t}(\boldsymbol{x}-\boldsymbol{y})}{c^{2}} \phi_{j}(\boldsymbol{y}) \cdot \boldsymbol{\xi}(\boldsymbol{x}) + K_{n-j}^{0,\Delta t}(\boldsymbol{x}-\boldsymbol{y})(\nabla_{\Gamma} \cdot \phi_{j})(\boldsymbol{y})(\nabla_{\Gamma} \cdot \boldsymbol{\xi})(\boldsymbol{x}) \right\} dA(\boldsymbol{y}) dA(\boldsymbol{x})$$

$$= -\int_{\Gamma} \boldsymbol{\nu} \times \boldsymbol{g}_{n} \cdot \boldsymbol{\xi} dA$$

for all $\boldsymbol{\xi} \in H^{-1/2}(\text{Div}; \Gamma)$ and $n = 0, 1, 2, \cdots, N$.

Spatial discretization on Γ is by *m*th order Raviart-Thomas elements in $H(\text{Div}; \Gamma)$ using the basis of Graglia, Wilton and Peterson (IEEE AP, 1997) or Rao, Wilson, Glisson (at lowest order).

UNIVERSITY OF ELAWARE

Analysis of CQ

Classically, CQ is analyzed in the Laplace domain. Let $\mathcal{E} = S(s)\phi$ where $\Re s = \sigma - i\omega$, $\sigma > \sigma_0 > 0$. This satisfies

$$abla imes
abla imes \mathcal{E} + rac{s^2}{c^2} \mathcal{E} = 0$$
 in Ω and D

Critically, if

$$\gamma_N^+(\mathcal{E}) = (\mathbf{C}/\mathbf{s}) \nabla \times \mathcal{E}|_{\Omega} \times \mathbf{\nu}, \qquad \gamma_N^-(\mathcal{E}) = (\mathbf{C}/\mathbf{s}) \nabla \times \mathcal{E}|_D \times \mathbf{\nu},$$

then $\llbracket \gamma_N(\mathcal{E}) \rrbracket = \gamma_N^-(\mathcal{E}) - \gamma_N^+(\mathcal{E}) = (s/c)\phi$ and $\gamma_D(\mathcal{E}) \times \nu = \mathbb{C}(s)\phi$ so since

$$-\int_{\Gamma} \llbracket \gamma_{\mathcal{N}}(\mathcal{E}) \rrbracket \cdot \gamma_{\mathcal{D}}(\overline{\mathcal{E}}) \times \nu \, d\mathcal{A} = \int_{\Omega \cup D} s \|\mathcal{E}\|^2 + \frac{1}{s} \|\nabla \times \mathcal{E}\|^2 \, dV$$

we obtain

$$\Re\left(\frac{s}{c}\int_{\Gamma}\phi\cdot\overline{\mathbb{C}(s)\phi},dA\right)=-\int_{\Omega\cup D}\sigma\|\mathcal{E}\|^{2}+\frac{\sigma}{|s|^{2}}\|\nabla\times\mathcal{E}\|^{2}\phi_{\text{ELAWARE}}$$

Analysis of CQ, continued

This previous results show that $\mathbb{C}(s)$ is coercive and that as a map from $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ to $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ the following bound holds

$$\|\mathbb{C}^{-1}\| \leq C|s|^1, \quad \|\mathbb{C}\| \leq C|s|^3.$$

This is sufficient to apply Lubich's theory to the semi discrete problem and find that for a *p*th order A-stable and L-stable method, then for $m \ge p + 3$,

$$\|\boldsymbol{E}(\cdot,t_n)-\boldsymbol{E}^n\|_{H^{-1/2}(\mathsf{div}_{\Gamma},\Gamma)} \leq C(\Delta t)^p \int_0^{t_n} \|\partial^m \boldsymbol{g}/\partial t^m\|_{H^{-1/2}(\mathsf{div}_{\Gamma};\Gamma)} \, dt$$

The analysis can be extended to the fully-discrete problem $^{\rm 4},$ and to IRK CQ discretization. $^{\rm 5}$

⁴Q. Chen, P. Monk, D. Weile, Communications in Computational Physics, 11 (2012):383-399
 ⁵Ballani et al., Numer. Math. (2013) **123**, pp. 643-670

Convergence: 1m Diameter Conducting Sphere

⁶X. Wang, D. Weile, R. Wildman and P. Monk.: *IEEE Trans. Ant. and Propagat.*, **56** 2442-2452 (2008).

Table of Contents

1 Introduction

- Scattering by a metallic object
- Towards a Time Domain Boundary Integral Equation
- Analysis of TDBIE CQ

2 CQ for gratings

- Backgroud
- Time discretization via CQ
- Discretization in space
- Time Discretization
- Numerics

Model multiplasmonic solar cell

Thin film solar cell⁷

Wavelength of light of interest: 400-1200nm Grating period $L \approx$ 400nm Height \approx 2000nm

At this size and frequency, the field enters the metal.

Physical properties are generally frequency dependent (we assume a passive causal medium).

⁷M. Solano et al, Applied Optics, **52** (2013) 966-979

The Mathematical Model

Assume $\mu = \mu_0$ constant and $\epsilon_r := (\epsilon(x, z, t)/\epsilon_0)$. We seek solutions of Maxwell's equations that are independent of *y*. We can then split the solution into two *polarizations*. We shall consider the simplest:

• s-polarization: $u := E_2$ satisfies

$$\Delta u = \frac{\epsilon_r}{c^2} \star \frac{\partial^2 u}{\partial t^2}$$

Here \star denotes time convolution and

$$u = u^i + u^s$$

where u^i is a known incident field and u^s is an unknown scattered field.

Incident field

We assume that u^i is a plane wave satisfying the wave equation with $\epsilon_r = \delta(t)$. In particular

$$u^{i}(x,z,t) = f(t - \mathbf{x} \cdot \mathbf{d}/c)$$

where **d** = $(\sin \theta, \cos \theta)$, and *f* is such that $u^i(x, z, t) = 0$ for t < 0 and $(x, z) \in [0, L] \times [0, H]$ (*H* is the height of the grating). The incident field u^i is not periodic in *x*, but

$$u^{i}(x+L,z,t) = f(t-d_{1}L/c - d \cdot x/c) = u^{i}(x,z,t-d_{1}L/c)$$

for any x, z and t so we impose, for all x and z,

$$u(x+L,z,t)=u(x,z,t-d_1L/c).$$

This is the time domain counterpart of quasi-periodicity in the frequency domain.

The Time Domain (s-polarization)

Let $S = (0, L) \times \mathbb{R}$. We obtain the following equations for s-polarized light: given the incident field $u^i = u^i(x, z, t)$, the scattered field $u^s = u^s(x, z, t)$ satisfies

$$\frac{1}{c^2} \epsilon_r \star u_{tt}^s = \Delta u^s + \frac{1}{c^2} (\epsilon_r - \delta) \star u_{tt}^i \text{ in } S \times \mathbb{R}$$

$$u^s(\cdot, 0) = 0 \text{ in } S$$

$$u_t^s(\cdot, 0) = 0 \text{ in } S$$

$$u^s(L, z, t) = u^s(0, z, t - d_1 L/c) \text{ in } \mathbb{R} \times \mathbb{R},$$

$$\frac{\partial u^s}{\partial x}(L, z, t) = \frac{\partial u^s}{\partial x}(0, z, t - d_1 L/c) \text{ in } \mathbb{R} \times \mathbb{R}.$$

Change of variables

Use the change of variables⁸

$$w(x, z, t) = u^{s}(x, z, t + (x - L)d_{1}/c)$$

Then recalling $S = (0, L) \times \mathbb{R}$ we see that with $w^i(x, z, t) = f(t - d_2 z/c)$:

$$\frac{\epsilon_r - d_1^2 \delta}{c^2} \star w_{tt} = \Delta w - 2 \frac{d_1}{c} w_{xt} + \frac{\epsilon_r - \delta}{c^2} \star w_{tt}^i \text{ in } S \times \mathbb{R}$$

$$w(\cdot, 0) = 0 \text{ in } S$$

$$w_t(\cdot, 0) = 0 \text{ in } S$$

$$w(L, z, t) = w(0, z, t) \text{ for } z \in \mathbb{R}, \ t > 0$$

$$\frac{\partial w}{\partial x}(L, z, t) = \frac{\partial w}{\partial x}(0, z, t) \text{ in for } z \in \mathbb{R}, \ t > 0.$$

⁸M. Veysoglu, R. Shin, J. Kong, A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique incidence case, Journal of Electromagnetic Waves and Applications 7 (1993) 1595–1607 and V. Mathis, Etude de la diffraction d'ondes électromagnétiques par des réseaux dans le domaine temporel, École Polytechnique, 1996.

We again use Lubich's Convolution Quadrature technique⁹ and tools from Bamberger and Ha Duong's Laplace transform approach.¹⁰

To use the Laplace transform

$$\hat{w}(x,z,s) = \int_0^\infty w(x,y,t) \exp(-st) dt, \quad s = \sigma - i\omega,$$

where $\sigma \in \mathbb{R}$ is fixed and $\sigma > 0$, while $\omega \in \mathbb{R}$.

⁹C. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations, Numer. Math. 67 (1994) 365–89.

¹⁰ A. Bamberger, T. H. Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retarde de la diffraction d'une onde acoustique (I), Math. Meth. Appl. Sci. 8 (1986) 405–?435.

Laplace domain problem

Let Ω denote a bounded domain. We will use the following Sobolev space:

$$H^1_p(\Omega) = \{ \boldsymbol{v} \in H^1(\Omega) \mid \boldsymbol{v}(L,.) = \boldsymbol{v}(0,.) \}$$

Recalling $s \in \mathbb{C}$ and $s \neq 0$ the norm is

$$\|oldsymbol{v}\|_{\mathcal{H}^1_p(\Omega)}^2 = \int_\Omega \left[|
abla oldsymbol{v}|^2 + rac{|oldsymbol{s}|^2}{c^2}|oldsymbol{v}|^2
ight]\,dA.$$

Problem: Find $\hat{w}^s \in H^1_p(S)$ such that

$$s^{2} \frac{\hat{\epsilon}_{r} - d_{1}^{2}}{c^{2}} \hat{w}^{s} = \Delta \hat{w}^{s} - 2s \frac{d_{1}}{c} \hat{w}_{x}^{s} + s^{2} \frac{\hat{\epsilon}_{r} - 1}{c^{2}} \hat{w}^{i} \text{ in } S,$$

$$\frac{\partial \hat{w}^{s}}{\partial x} (L, z, t) = \frac{\partial \hat{w}}{\partial x} (0, z, t) \text{ in } \mathbb{R} \times \mathbb{R}.$$

Here $\hat{w}^i(x, y) = \hat{f}(s) \exp(-sd_1z/c)$.

The weak Laplace domain problem

For $\hat{w}^{s}, \xi \in H^{1}_{p}(\mathcal{S})$ define

$$\begin{aligned} a(\hat{w}^{s},\xi) &= \int_{\mathcal{S}} \left(\nabla \hat{w}^{s} \cdot \nabla \overline{\xi} + s^{2} \frac{\hat{\epsilon}_{r} - d_{1}^{2}}{c^{2}} \hat{w}^{s} \overline{\xi} + 2s \frac{d_{1}}{c} \hat{w}_{x}^{s} \overline{\xi} \right) \, dA \\ \text{and } \hat{F} &= s^{2} \left(\frac{\hat{\epsilon}_{r} - 1}{c^{2}} \right) \hat{w}^{i}. \end{aligned}$$

Then $\hat{w}^s \in H^1_p(S)$ satisfies

$$a(\hat{w}^{s},\xi)=\int_{\mathcal{S}}\hat{F}\,\overline{\xi}\,dA$$
 for all $\xi\in H^{1}_{\mathrm{p}}(\mathcal{S}).$

Coercivity

Coercivity (Bamberger & HaDuong): Select $\xi = s\hat{w}^s$ then

$$a(\hat{w}^s,s\hat{w}^s) = \int_{\mathcal{S}} \left(\overline{s}|\nabla\hat{w}^s|^2 + s|s|^2 \frac{\hat{\epsilon}_r - d_1^2}{c^2}|\hat{w}^s|^2 + 2|s|^2 \frac{d_1}{c}\hat{w}_x^s \overline{\hat{w}^s}\right) dA$$

Then provided $\Re(s(\hat{\epsilon}_r - d_1^2)) > \alpha \sigma > 0$ for some constant α

$$\Re a(\hat{w}^s, s\hat{w}^s) = \sigma \int_{\mathcal{S}} \left(|\nabla \hat{w}^s|^2 + |s|^2 \frac{\alpha}{c^2} |\hat{w}^s|^2 \right) \, dA$$

SO

$$\Re a(\hat{w}^s, s\hat{w}^s) \geq \sigma \min(1, \alpha) \|\hat{w}^s\|_{H^1_p(\Omega)}^2.$$

Laplace domain result¹¹

Lax-Milgram gives:

Theorem

For each $s = \sigma - i\omega$, $\sigma > 0$, suppose $\Re(s(\hat{\epsilon}_r - d_1^2)) > \alpha\sigma > 0$, then there exists a unique solution $\hat{w}^s \in H_p^1(S)$ of the Laplace domain problem and

$$\|\hat{w}^{s}\|_{\mathcal{H}^{1}_{\mathrm{p}}(\mathcal{S})} \leq C \frac{1}{\sigma} \|\hat{F}\|_{L^{2}(\mathcal{S})}$$

Provided $\hat{\epsilon}_r$ is analytic in the right half of the complex plane, the inverse Laplace transform establishes existence of the time domain solution in suitable weighted space-time function spaces (time weight is $\exp(-2\sigma t)$). A good choice might be $\sigma = 1/T$ where T is the final time of interest.

¹¹L.Fan and P. Monk, Journal of Computational Physics, **302** (2015) 97–113

Reduction to a bounded domain

A cartoon illustrating the parts of *S*. One period of the grating occupies Ω . In *S*₋ and *S*₊ the parameters are constant.

Next we derive a Galerkin formulation for this elliptic problem¹². Multiplying by a smooth test function ξ that is periodic in x, and integrating by parts we obtain

$$\int_{\Omega} \hat{F}\overline{\xi} \, dA = \int_{\Omega} s^2 \left(\left(\frac{\hat{\epsilon}_r - d_1^2}{c^2} \right) \hat{w}^s - \Delta \hat{w}^s + 2s \frac{d_1}{c} \frac{\partial \hat{w}^s}{\partial x} \right) \overline{\xi} \, dA$$
$$= \int_{\Omega} \left[\nabla \, \hat{w}^s \cdot \nabla \overline{\xi} + s^2 \left(\frac{\hat{\epsilon}_r - d_1^2}{c^2} \right) \hat{w}^s \overline{\xi} + 2s \frac{d_1}{c} \frac{\partial \hat{w}^s}{\partial x} \overline{\xi} \right] \, dA$$
$$- \int_{\Sigma_- \cup \Sigma_+} \frac{\partial \hat{w}^s}{\partial \nu} \overline{\xi} \, dx.$$

To complete the derivation we need to use the fact that \hat{w}^s is an H_p^1 solution of the Helmholtz problem below Σ_- and above Σ_+ .

¹²Li Fan and P. Monk, Time Dependent Scattering from a Grating using Convolution Quadrature and the Dirichlet-to-Neumann map, (2017) submitted for publication.

Towards the D-t-N map

Let κ_n be defined by

$$\kappa_n = \frac{s}{c} \sqrt{1 - \left(\frac{2in\pi c}{sL} - d_1\right)^2}$$

where we choose κ_n such that $\Re(\kappa_n) > 0$. Then for y < 0

$$\hat{w}^s(x,z) = \sum_{n \in \mathbb{N}} \hat{w}^s_n \exp(i2\pi nx/L) \exp(\kappa_n z), \text{ for } z < 0.$$

Then

$$\frac{\partial \hat{w}^s}{\partial \nu}\Big|_{\Sigma_-} = -\sum_{n \in \mathbb{N}} \hat{w}_n^s \kappa_n \exp(i2\pi nx/L).$$

We then have the following expression for the D-t-N map $T_{-}(s)$ on Σ_{-}

$$\hat{w}^{s}|_{z=0} = \sum_{n \in \mathbb{N}} \hat{w}_{n}^{s} \exp(i2\pi nx/L),$$

$$T_{-}(s)\hat{w}^{s} = -\sum_{n \in \mathbb{N}} \hat{w}_{n}^{s} \kappa_{n} \exp(i2\pi nx/L).$$

Then

Lemma

The D-t-N map $T_{-}(s): H_p^{1/2}(\Sigma_{-}) \to H_p^{-1/2}(\Sigma_{-})$ and there is a constant C independent of s such that

$$\|\mathcal{T}_{-}(s)u\|_{\mathcal{H}^{-1/2}_{\mathrm{p}}(\Sigma_{-})}\leq C\|u\|_{\mathcal{H}^{1/2}_{\mathrm{p}}(\Sigma_{-})},\qquad orall u\in \mathcal{H}^{1/2}_{\mathrm{p}}(\Sigma_{-}).$$

This result also holds for $T_+(s)$.

We can now write a Galerkin formulation for the Laplace domain scattering problem. We seek $\hat{w}^s \in H^1_p(\Omega)$ such that

$$b(\hat{w}^{s},\xi)=\int_{\Omega}\widehat{F}\,\overline{\xi}\,dA$$
 for all $\xi\in H^{1}_{\mathrm{p}}(\Omega),$

where, for any $q, \xi \in H^1_p(\Omega)$, we have

$$b(q,\xi) = \int_{\Omega} \left[\nabla q \cdot \nabla \overline{\xi} + s^2 \left(\frac{\hat{\epsilon}_r - d_1^2}{c^2} \right) q \overline{\xi} + 2s \frac{d_1}{c} \frac{\partial q}{\partial x} \overline{\xi} \right] dA$$
$$- \int_{\Sigma_-} (T_-(s)q) \overline{\xi} \, dx - \int_{\Sigma_+} (T_+(s)q) \overline{\xi} \, dx.$$

- Q_h: mesh of quadrilaterals of maximum diameter h obtained by mapping from a reference square element using a bilinear mapping
- 2 Q_h : continuous finite elements on Q_h obtained by mapping a polynomial of degree at most q in each variable on the reference element by a bilinear mapping.
- 3 Trigonometric subspace of dimension 2N + 1 given by

$$\mathcal{P}_N := \operatorname{span} \left\{ \exp(i2\pi nx/L) \mid -N \le n \le N, \ n \in \mathbb{Z} \right\}$$

4 $L^2(\Sigma_-)$ orthogonal projection $P_N : L^2(\Sigma_-) \to \mathcal{P}_N$ (similarly on Σ_+).

The discrete Laplace transformed field $\hat{w}^{s}_{h,N} \in \mathcal{Q}_{h}$ is defined to satisfy

$$b_{\mathcal{N}}(\hat{w}^{s}_{h,\mathcal{N}},\xi_{h})=\int_{\mathcal{S}}\hat{F}\,\overline{\xi}\,d\mathcal{A},\qquadorall\xi_{h}\in\mathcal{Q}_{h}.$$

where

$$\begin{split} b_{N}(\hat{w}_{h,N}^{s},\xi_{h}) &= \int_{\Omega} \left[\nabla \ \hat{w}_{h,N}^{s} \cdot \nabla \overline{\xi}_{h} + s^{2} \left(\frac{\hat{\epsilon}_{r} - d_{1}^{2}}{c^{2}} \right) \hat{w}_{h,N}^{s} \overline{\xi}_{h} \right. \\ &+ 2s \frac{d_{1}}{c} \frac{\partial \hat{w}_{h,N}^{s}}{\partial x} \overline{\xi}_{h} \right] dA - \int_{\Sigma_{-}} T_{-}(s) P_{N} \hat{w}_{h,N}^{s} P_{N} \overline{\xi}_{h} dx \\ &- \int_{\Sigma_{+}} T_{+}(s) P_{N} \hat{w}_{h,N}^{s} P_{N} \overline{\xi}_{h} dx. \end{split}$$

Multistep discretization in time

Suppose we use a *k*-step multistep method in time using a uniform time step $\Delta t > 0$. Let $t_m = m\Delta t$, $m \in \mathbb{Z}$. In particular, suppose that when applied to the initial value problem for the ordinary differential equation y' = f(t, y), t > 0 where y(0) = 0, the method is

$$\sum_{j=0}^{k} \alpha_j \mathbf{y}_{m-j} = \Delta t \sum_{j=0}^{k} \beta_j f(t_{m-j}, \mathbf{y}_{m-j}), \quad m = 1, 2, \cdots$$

where we assume $\alpha_0/\beta_0 > 0$, $y_m = 0$ if $m \le 0$ and we expect $y_m \approx y(t_m)$. Then define the rational function γ of $\zeta \in \mathbb{C}$ by

$$\gamma(\zeta) = \frac{\sum_{j=0}^{k} \alpha_j \zeta^k}{\sum_{j=0}^{k} \beta_j \zeta^j}.$$

BE: $\gamma(\zeta) = (1 - \zeta)$

36 / 50

Pau 2017

The time-discrete Laplace transform domain scattered field $\hat{w}_{h,N}^{s,\Delta t} \in Q_h$ satisfies the weak problem with *s* replaced by $\gamma(\zeta)/\Delta t$:

$$\begin{split} &\int_{\Omega} \left[\nabla \hat{w}_{h,N}^{s,\Delta t} \cdot \nabla \overline{\xi} + \left(\frac{\gamma(\zeta)}{\Delta t} \right)^2 \left(\frac{\hat{\epsilon}_r - d_1^2}{c^2} \right) \hat{w}_{h,N}^{s,\Delta t} \overline{\xi} + 2 \frac{\gamma(\zeta)}{\Delta t} \frac{d_1}{c} \frac{\partial \hat{w}_{h,N}^{s,\Delta t}}{\partial x} \overline{\xi} \right] \, dA \\ &\quad - \int_{\Sigma_-} T_-(\gamma(\zeta)/\Delta t) P_N \hat{w}_{h,N}^{s,\Delta t} \overline{\xi} \, dx - \int_{\Sigma_+} T_+(\gamma(\zeta)/\Delta t) P_N \hat{w}_{h,N}^{s,\Delta t} \overline{\xi} \, dx \\ &= \int_{\Omega} \hat{F}(\gamma(\zeta)/\Delta t) \overline{\xi} \, dA, \qquad \forall \xi \in Q_h. \end{split}$$

This equation holds for all $|\zeta| < 1$ and $\zeta \in \mathbb{C}$.

Now we have fully discrete error estimate:

Theorem

Suppose we use a pth-order A-stable method such that $\gamma(\zeta)$ has no poles on the unit circle to discretize in time. For sufficiently smooth *F*, the time discrete finite element solution $w_{h,N}^{s}(t_{n})$, $n = 0, 1, \cdots$, satisfies estimate

$$\begin{aligned} \|w_{h,N}^{s,\Delta t}(t_{n}) - w^{s}(t_{n})\|_{H^{1}_{p}(\Omega)} &\leq C \left((\Delta t)^{\rho} \int_{0}^{T} \left| \frac{\partial^{\rho+2}F}{\partial t^{\rho+2}} \right| dt + \|w^{s} - v_{h}\|_{H^{2}_{0}((0,T);H^{1}_{p}(\Omega))} \\ &+ \|P_{N}w^{s} - w^{s}\|_{H^{2}_{0}((0,T);H^{1/2}(\Sigma_{-}))} + \|P_{N}w^{s} - w^{s}\|_{H^{2}_{0}((0,T);H^{1/2}(\Sigma_{+}))} \right). \end{aligned}$$

for any $v_h \in H^2_0((0, T), Q_h)$. Here the constant C depends on T and Σ_- but is independent of $u, h, N, \Delta t$ and v_h .

Time stepping

For simplicity assume that ϵ_r is frequency independent. We prefer to compute using the total field $\hat{w} = \hat{w}^s + \hat{w}^i$. The total field $\hat{w} \in H^1_p(\Omega)$ satisfies

$$b(\hat{w},\xi) = \int_{\Sigma_-} \left(rac{\partial \hat{w}^i}{\partial
u} - T_-(s) \hat{w}^i
ight) \overline{\xi} \, dx, \qquad orall \xi \in H^1_p(\Omega).$$

The corresponding fully discrete Laplace domain problem is to find $\hat{w}_{h,N}^{\Delta t} \in Q_h$ such that

$$b_{\mathsf{N}}(\hat{w}_{h,\mathsf{N}}^{\Delta t},\xi) = \int_{\boldsymbol{\Sigma}_{-}} \left(\frac{\partial \hat{w}^{i}}{\partial \nu} - T_{-}(\gamma(\zeta)/\Delta t) \boldsymbol{P}_{\mathsf{N}} \hat{w}^{i} \right) \overline{\xi} \, d\boldsymbol{x}, \qquad \forall \xi \in \boldsymbol{Q}_{h},$$

with $s = (\gamma(\zeta)/(\Delta t))$. To simplify the derivation we set

$$\hat{z}_{h,N}^{\Delta t} = (\gamma(\zeta)/(\Delta t))\hat{w}_{h,N}^{\Delta t}$$

The fully discrete Laplace domain problem becomes the problem of finding $(\hat{w}_{h,N}^{\Delta t}, \hat{z}_{h,N}^{\Delta t}) \in Q_h \times Q_h$ such that

$$\begin{split} \int_{\Omega} \left[\nabla \hat{w}_{h,N}^{\Delta t} \cdot \nabla \overline{\xi} + \left(\frac{\gamma(\zeta)}{\Delta t} \right) \left(\frac{b - d_{1}^{2}}{c^{2}} \right) \hat{z}_{h,N}^{\Delta t} \overline{\xi} + 2 \frac{d_{1}}{c} \frac{\partial \hat{z}_{h,N}^{\Delta t}}{\partial x} \overline{\xi} \right] dA \\ &- \int_{\Sigma_{-}} T_{-}(\gamma(\zeta)/\Delta t) P_{N} \hat{w}_{h,N}^{\Delta t} \overline{\xi} - \int_{\Sigma_{+}} T_{+}(\gamma(\zeta)/\Delta t) P_{N} \hat{w}_{h,N}^{\Delta t} \overline{\xi} \\ &= \int_{\Sigma_{-}} \left(\frac{\partial \hat{w}^{i}}{\partial \nu} - T_{-}(\gamma(\zeta)/\Delta t) P_{N} \hat{w}^{i} \right) \xi, \qquad \forall \xi \in Q_{h}, \\ &(\gamma(\zeta)/(\Delta t)) \hat{w}_{h,N}^{\Delta t} = \hat{z}_{h,N}^{\Delta t} \end{split}$$

for all $|\zeta| < 1$ and $\zeta \in \mathbb{C}$.

To take the inverse discrete Laplace transform of the above equation set

$$\hat{w}_{h,N}^{\Delta t} = \sum_{m=0}^{\infty} w_{h,N}^{\Delta t,m} \zeta^n, \qquad \hat{z}_{h,N}^{\Delta t} = \sum_{m=0}^{\infty} z_{h,N}^{\Delta t,m} \zeta^n$$

where $w_{h,N}^{\Delta t,m} \in Q_h$ and $z_{h,N}^{\Delta t,m} \in Q_h$ are independent of ζ . Equating terms in ζ shows that the above equation gives the multistep scheme applied to $\partial w / \partial t = z$ or

$$\sum_{j=0}^{k} \alpha_j \mathbf{W}_{h,N}^{\Delta t,m-j} = \Delta t \sum_{j=0}^{k} \beta_j \mathbf{Z}_{h,N}^{\Delta t,m-j}$$

The same process gives the time stepping equivalent of the first equation. The only remaining difficulty is to expand $(\sum_{j=0}^{k} \beta_j \zeta^j) T_{\pm}(\gamma(\zeta)/\Delta t)$ as a power series in ζ .

This requires finding the Taylor series of

$$\tilde{\kappa}_n^{\Delta t} = \frac{\sum_{j=0}^k \alpha_j \zeta^j}{c} \sqrt{1 - \left(\frac{2in\pi c \Delta t}{L\gamma(\zeta)} - d_1\right)^2} = \sum_{\ell=0}^\infty \tilde{\kappa}_{n,\ell}^{\Delta t} \zeta^\ell.$$

At level ℓ the discrete in time operator $\tilde{T}_{-}^{\Delta t,\ell}: \mathcal{P}_N \to \mathcal{P}_N$ is given for

$$u = \sum_{n=-N}^{N} u_n \exp(2\pi nx/L)$$

by

$$\tilde{T}_{-}^{\Delta t,\ell} u = \sum_{n=-N}^{N} \tilde{\kappa}_{n,\ell}^{s,\Delta t} u_n \exp(2n\pi i x/L)$$

and similarly for $\tilde{T}_{+}^{\Delta t,\ell}$.

The first fully discrete equation gives, at the *m*th timestep,

$$\begin{split} &\int_{\Omega}\sum_{j=0}^{k}\left(\frac{b-d_{1}^{2}}{c^{2}}\right)\alpha_{j}z_{h,N}^{\Delta t,m-j}\overline{\xi}-\int_{\Sigma_{-}}\sum_{j=0}^{m}\left(\overline{\tau}_{-}^{\Delta t,j}P_{N}w_{h,N}^{\Delta t,m-j}\right)\overline{\xi} \\ &\quad -\int_{\Sigma_{+}}\sum_{j=0}^{m}\left(\overline{\tau}_{+}^{\Delta t,j}P_{N}w_{h,N}^{\Delta t,m-j}\right)\overline{\xi} \\ &= -\Delta t\int_{\Omega}\sum_{j=0}^{k}\beta_{j}\left(\nabla w_{h,N}^{\Delta t,m-j}\cdot\nabla\overline{\xi}+\frac{2d_{1}}{c}\frac{\partial z_{h,N}^{\Delta t,m-j}}{\partial x}\overline{\xi}\right)+\Delta t\int_{\Sigma_{-}}\sum_{j=0}^{k}\beta_{j}\frac{\partial w^{i}}{\partial\nu}(\cdot,t_{m-j})\overline{\xi} \\ &\quad -\int_{\Sigma_{-}}\sum_{j=0}^{m}\overline{\tau}_{-}^{\Delta t,j}P_{N}w^{j}(\cdot,t_{m-j})\overline{\xi} \quad \text{for all } \xi\in Q_{h}, \end{split}$$

for $m = 1, 2, \cdots$. The fields vanish if the index $m - j \leq 0$.

We need the coefficients $\tilde{\kappa}_{\rho,\ell}^{\Delta t}$. For BDF2

$$\begin{split} \tilde{\kappa}_{n,0}^{\Delta t} &= \frac{\sqrt{4\pi^2 c^2 (\Delta t)^2 n^2 + (4i) L \pi c d_1 (\Delta t) n - L^2 d_1^2 + L^2}}{L c}, \\ \tilde{\kappa}_{n,1}^{\Delta t} &= \frac{2}{3} \frac{(-2\pi^2 c^2 (\Delta t)^2 n^2 - (5i) L \pi c d_1 (\Delta t) n + 2L^2 d_1^2 - 2L^2)}{L c \sqrt{4\pi^2 c^2 (\Delta t)^2 n^2 + (4i) L \pi c d_1 (\Delta t) n - L^2 d_1^2 + L^2}}. \end{split}$$

In general we follow Banjai and Sauter and approximate the coefficients using a discrete approximation to the Cauchy integral formula:

$$\tilde{\kappa}_{n,\ell}^{s,\Delta t} = \frac{1}{2\pi i} \int_{C} \frac{\tilde{\kappa}_{n}^{s,\Delta t}(\zeta)}{\zeta^{\ell+1}} \, d\zeta$$

where *C* is a circle of radius $\lambda < 1$ centered at the origin in the complex plane (using their choice of λ).

Frequency dependent model problem

Metallic grating, Drude model

Incoming wave with $\theta = 0^{\circ}$

$$f(t) = \begin{cases} 0 & \text{for } t < 0 \text{ or } t > \pi \\ \sin^4(4t) & \text{for } 0 < t < \pi/4. \end{cases}$$

In the fictitious "metal" we use the artificial choice

$$\epsilon_r = 4 + \frac{10}{s(1+s/2)}$$

otherwise $\epsilon_r = 1$

- The CQ technique for TDIEs was first suggested by C. Lubich³. For a thorough introduction see the book of F.-J. Sayas.¹³
- Practical use in elastodynamics: M. Schanz and H. Antes¹⁴.
- W. Kress and S. Sauter¹⁵, and W. Hackbusch, W. Kress and S. Sauter¹⁶.
- Error estimates for general Helmhotz problems have been proved by A. Laliena and F.-J. Sayas¹⁷.

¹³Francisco-Javier Sayas, Retarded Potentials and Time Domain Boundary Integral Equations, Springer 2016.

¹⁴ Computational Mechanics, **20**, 452-9 (1997)

¹⁵ IMA J. Numer. Anal. **28** 162-185, (2008)

¹⁶ IMA J. Numer. Anal. **29** 158-79,(2009)

¹⁷*Numer. Math.*, **112** (2009), 637-78

Further contributions to CQ-TDBIE for Maxwell

- First application to PEC Maxwell¹⁸, and then to penetrable problems with requency dependent coefficients and IRK for Maxwell¹⁹
- Convergence of Maxwell Electric Field Integral Equation²⁰
- Convergence of IRK for Maxwell²¹, and penetrable homogeneous problems ²².
- Combined Field Integral Equation method for Maxwell's equations²³
- Waveguides²⁴

¹⁹ Two papers by D. Weile and X. Wang, IEEE Transactions on Antennas and Propagation.

- ²⁰Q. Chen, P. Monk, D. Weile, Communications in Computational Physics, 11 (2012):383-399
- ²¹ Ballani et al., Numer. Math. (2013) 123:643-670
- ²² F.C. Chan and P. Monk, BIT Numerical Mathematics, 55 (2015), pp. 5-31.
- 23 Q. Chen and P. Monk, Applied Numerical Methods, 79 (2014), pp. 62-78.

²⁴ L. Fan, P. Monk and V. Selgas, in Trends in Differential Equations and Applications (2016) F. Ortegón, M. Redondo and J.R. Rodríguez, Eds., Springer, pp. 321-337.

¹⁸X. Wang, D. Weile, R. Wildman and P. Monk: *IEEE Trans. Ant. and Propagat.*, **56** 2442-2452 (2008) 19

- Inverse problems for penetrable media (with V. Selgas)
- 3D time dependent grating structures (i.e. full Maxwell).

Best wishes Professor Bendali!

