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The scattering problem

Incident field

~

Scatterer

Scattered field

Forward Problem: Given properties of the scatterer, the incident field,

and the background, predict the scattered field.
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Maxwell’s Equations: Metallic Scatterer

Let D be a bounded domain (scatterer) with connected complement,
boundary I and unit outward normal v.

Suppose E™ is a given incident wave (solution of Maxwell’s equations
vanishing on D for time t < 0). The scattered electric field E = E(x, t)
satisfies

l2E+V><vXE = 0inQ:=R3\ Dforte (0,T),
c

Exv = gonf'lfort>D0,

E=E = Oatt=0inQ.

Here E = 62E /912, c is the speed of light, and g = —E™ x v.
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Towards a time domain integral equation

We now derive the Convolution Quadrature semi-discrete boundary
integral equation for the solution.

Write the problem as a first order system. Let (E, H) satisfy
1H = _VxE, inQfort>0,

1E =V x H, inQfort>0,

E(x,0) =H(x,0)=0, inQ,
Exv =g,onlfort>0.
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Discretize only in time

For simplicity, consider the Backward Euler scheme (not the best in
practice!). Define time steps t, = nAt,n=10,1,..., At > 0, then let
E" := E"(x) =~ E(x,t;) and H" := H"(x) ~ H(x, t,) for n > 0:

( n+1 _ pqn
H™ -H =-V x E™ inQforn>0,
C1At
n+1 _ pen
ET - E =V x H"' inQforn>0,
CAt
E° —H°=0, inQ,
E' xv =g :=g(- t,y1), OnT.
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Formal series

Let&:=> o E"¢"and H := ) 72 o H"¢" where € € C is a complex
parameter.

Multiplying each discrete equation by ¢"+' and adding these
equations, as well as using the initial conditions:

10;5 H =-VxE&, inQ,
Lgf E =VxH, inQ,
Exv =G xv:=(3709,¢") xvonT.
NIVERSITY or
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Single Layer Ansatz
Eliminating  we obtain

1(1=¢ 2E+V><(V><S)—O in Q
2 \ At o

We seek a solution using the following Anstaz:

1-¢
& =S(s)e, S = <At> )
where ¢ is an unknown tangential vector field on I,

s? .
(S(8)8)0) = =55 [ K(x=.8)0()doy + ¥ [ K(x—y.)dvr o
and the fundamental solution of the Helmholtz equation is

_ exp(=s|d|//c)
A=l
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Boundary integral equation

Taking the tangential trace on the boundary I' of D we see that ¢

satisfies -
C(At)¢:g

S

2
C(s)o :-—_ﬂKu—naaWXVU)

where

c2
+Vr / K(x —y,s)divr ¢(y) x v(x)
r
This is the electric field integral equation (EFIE).
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Important Previous Work on the EFIE

A. Bendali, Numerical analysis of the exterior boundary value
problem for the time harmonic Maxwell equations by a boundary
finite element method. Part 1: The continuous problem,
Mathematics of Computation, 43, pp. 29-46 (1984).

A. Bendali, Numerical analysis of the exterior boundary value
problem for the time harmonic Maxwell equations by a boundary
finite element method. Part Il: The discrete problem, Mathematics
of Computation, 43, pp. 47-68 (1984).
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Marching on in Time

To write the integral equation as a discrete convolution, we expand the
operator and ¢ as Taylor series:

C <1A_t£) => wp'¢", and ¢ = ¢né".
n=0

Using these representations
n=0 n=0

()¢
3 (3wt

n=0 \m=0
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Backward Euler CQ weights
Recall K(d, s) = exp(—s||d||/c)/4x|/d||. Expanding

K(x —y,(1-¢)/(At)) as a Taylor series in &:

wAt K2At —V K,?,’At — ) di
Btg(x / (X — y)é ' /r (x — y)divr $(y)

where

_Ix-yI
KA (x — y) = exp( ] ) x —yl\™
m m!4z||x — y|| cAt

and K,%’At(x — y) is obtained by differencing using the underlying
ordinary differential equation solver (here Backward Euler).
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Two approaches to solving the TDBIE

Marching on in Time (MoT): solve sequentially boundary integral
equations

n-1
At At
Wo d’n*gn_ an—m m
m=0

We have arrived at an application of Convolution Quadrature’
(CQ) to approximating the time domain electric field integral
equation..

Parallel “frequency domain” approach: Choose a discrete set of &.
Solve the corresponding frequency domain problem, and
synthesize the time domain solution.?

Compare to the space-time Galerkin approach3.

2L. Banjai and S. Sauter, SIAM J. Numer. Anal. 47 (2008), pp. 227-249.
3|. Terrasse, PhD Thesis, Ecole Polytechnique, France (1993).
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Semi-discrete weak form

After integration by parts, we get the following weak form: for each n
we seek ¢, € H='/2(Div; T') such that

0 (x y)
Z | { L d) - €00 + K2 = (V- 6)(Vr s)(x)} dA(y) dA(x)

- 7/u><gn-£dA
A

forall¢ € H'/2(Div;T)and n=0,1,2,--- ,N.

Spatial discretization on I is by mth order Raviart-Thomas elements in

H(Div; I') using the basis of Graglia, Wilton and Peterson (IEEE AP,
1997) or Rao, Wilson, Glisson (at lowest order).
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Analysis of CQ

Classically, CQ is analyzed in the Laplace domain. Let £ = S(s)¢
where Rs = 0 — iw, 0 > og > 0. This satisfies

2
VXVX5+%5:0inQandD

Critically, if
YN (E) = (¢/S)V x Elq x v, (€)= (¢c/s)V x &|p x v,

then [yn(€)] = 1y (€) — W (€) = (s/¢)¢ and 1p(€) x v = C(s)¢ s0
since

_ 1
_ / n(E)] - 10(E) x v dA = / SIEZ + L)V x £ av
r QUD S

we obtain

S — o
R - -C(8)¢p,dA :/ alEl? + =5V x &||? IVERSITYor
(5 [0 om0 =~ [ ool s 17 <2
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Analysis of CQ, continued
This previous results show that C(s) is coercive and that as a map
from H=1/2(divr,T) to H=1/?(divr, ") the following bound holds
Ic=M < Clsl', |l < ClsP.
This is sufficient to apply Lubich’s theory to the semi discrete problem

and find that for a pth order A-stable and L-stable method, then for
m2>p+3,

tn
IE(-, t) = E™|| y=1/2(dive.ry < C(At)p/o 10" g/ 0™ (| h-1/2(givrry Ot

The analysis can be extended to the fully-discrete problem*, and to
IRK CQ discretization.®

2 NIVERSITY or
Q. Chen, P. Monk, D. Weile, Communications in Computational Physics, 11 (2012):383-399 EIAWARE
5Ballani et al., Numer. Math. (2013) 123, pp. 643-670
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Convergence: 1m Diameter Conducting Sphere

Numerical results for the far field pattern®

0

10
10 %\S\ m Error is in the Ly norm for
\ B\S\S\( the RCS
E 10~ m BE convergence is linear
£ \ m BDF2 convergence is
é 102 quadratic
\ m BDF3 convergence is cubic
il iggn and conditional
——BDF3 \ m The BDF3 kernel was
, computed using FFT.
10

1 10 100
Oversampling Factor
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Model multiplasmonic solar cell
Thin film solar cell”

Wavelength of light of interest: Incident light 1 0

400-1 200nm ; Reflected light
Grating period L ~ 400nm
Height ~ 2000nm

At this size and frequency, the
field enters the metal.

Physical properties are gen-
erally frequency dependent
(we assume a passive causal
medium).

_1' Transmitted light ITYor

Ly VARE
7
M. Solano et al, Applied Optics, 52 (2013) 966-979
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The Mathematical Model

Assume p = pg constant and e, := (e(x, z,t)/¢y). We seek solutions of
Maxwell's equations that are independent of y. We can then split the
solution into two polarizations. We shall consider the simplest:

m s-polarization: u := E, satisfies

e 0%u

AU=2* 5

Here x denotes time convolution and
u=u+us
where u' is a known incident field and uS is an unknown scattered field.

NIVERSITYor
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Incident field

We assume that u' is a plane wave satisfying the wave equation with
er = 0(t). In particular

u(x,z,t) = f(t—x-d/c)

where d = (sin#, cos ), and f is such that u/(x, z,t) = 0 for t < 0 and
(x,2) € [0, L] x [0, H] (H is the height of the grating).
The incident field v’ is not periodic in x, but

U(x+ Lz t)y=Ff(t—diL/c—d-x/c)=u'(x,z,t—diL/c)
for any x, z and t so we impose, for all x and z,
ux+ Lz t)=u(x,z,t—dL/c).

This is the time domain counterpart of quasi-periodicity in the VERSITYor
frequency domain. [ﬂ)EIAWARE
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The Time Domain (s-polarization)

Let S = (0, L) x R. We obtain the following equations for s-polarized
light: given the incident field v’ = u'(x, z, t), the scattered field
u® = u%(x, z, t) satisfies

1 1 -
gﬁr*ug = AUS+?(6r—5)*Uh|nSXR
u’(-,0) = 0inS
ui(-,0) = 0inS
u’(L,z,t) = u®0,z,t—diL/c)inR x R,
ou® —(L,z,t) = a—uS(OZt—dL/c)inRxR
Ox - OX y &y 1 .

NIVERSITYor
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Change of variables

Use the change of variables®
w(x,z,t) = u(x,z,t+ (x — L)d;/c)

Then recalling S = (0, L) x R we see that with
w'(x,z,t) = f(t — dbz/c):

2
r—dso d; 6
021 *Wy = Aw-—2— Wxt—i- *Whin S xR
w(-,0) = 0inS
wi(-,0) = 0inS
W(L z,t) = w(0,z,f)forzeR, t>0
ow .
(L z,t) = —(0,z,t)in forzeR, t> 0.
ox
8M. Veysoglu, R. Shin, J. Kong, A finite-dfference time-domain analysis of wave scattering from periodic NIVERSITY o
surfaces: Oblique incidence case, Journal of Electromagnetic Waves and Applications 7 (1993) 1595—-1607 and EIAW/

V. Mathis, Etude de la diffraction d’ondes électromagnétiques par des réseaux dans le domaine temporel,
Ecole Polytechnique, 1996.
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Analysis in the time domain

We again use Lubich’s Convolution Quadrature technique® and tools
from Bamberger and Ha Duong’s Laplace transform approach.®

To use the Laplace transform
w(x,z,8) = / w(x,y,t)exp(—st)dt, s=o0—iw,
0

where o € R is fixed and o > 0, while w € R.

IVERSITY or

9C. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary i al
equations, Numer. Math. 67 (1994) 365-89. N
ion

10A. Bamberger, T. H. Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retarde de la
d’'une onde acoustique (I), Math. Meth. Appl. Sci. 8 (1986) 405—?435.
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Laplace domain problem

Let ©2 denote a bounded domain. We will use the following Sobolev
space:

HI(Q) = {v € H'(Q) | v(L,.) = v(0,.)}

Recalling s € C and s # 0 the norm is

HVH’Z-I];(Q):/Q |:‘VV|2 | | |V|2:|

Problem: Find w*® € H!(S) such that

d2

- Fas — sin 25ty 2 wins
2/S
aavr((L’zvt) = gx(o,z,t) in R x R.
Here W/(x, y) = f(s) exp(—sd z/c). [ﬁgﬁ%ﬁé
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The weak Laplace domain problem

For ws,¢ € H)(S) define
a(ws ¢) = / (Vw VE+ 82 'Cd1 AS§+23d1 7 §>
S

. &1\
and F = &2 <6r02 )W'.

Then w* € H}(S) satisfies

a(ws,¢) :/SﬁgdA for all ¢ € H)(S).

NIVERSITYor
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Coercivity

Coercivity (Bamberger & HaDuong): Select ¢ = sw*® then

P on er —d? . R
a(ws sws) = /(s]sz|2+s]s\2€rC] S\2+2\s]2 o sws> dA
s

Then provided R(s(é- — d?)) > ao > 0 for some constant a
~S oS ~ 512 2 as2
Ra(w®, sw )_J/S(WW |+ |8 02|W | ) dA

S0
e . ~ 512
Ra(w®, sw®) > omin(1, o) W[l q)

NIVERSITYor
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Laplace domain result'’

Lax-Milgram gives:

Foreach s = o — iw, 0 > 0, suppose R(s(ér — d12)) > ao > 0, then
there exists a unique solution W® & HI} (S) of the Laplace domain
problem and

. 1 4
W2y (s) < ClIFllizs)

Provided ¢, is analytic in the right half of the complex plane, the inverse
Laplace transform establishes existence of the time domain solution in
suitable weighted space-time function spaces (time weight is

exp(—2ct)). A good choice might be o = 1/T where T is the final time

of interest.
NIVERSITY o
EIAWARE
™ Fan and P. Monk, Journal of Computational Physics, 302 (2015) 97-113
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Reduction to a bounded domain

S_
Y_
z
Q
. z=H
S
x=0 X=1L

A cartoon illustrating the parts of S. One period of the grating occupies
Q. In S_ and S, the parameters are constant. @gﬁg\%ﬁ
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Next we derive a Galerkin formulation for this elliptic problem? .
Multiplying by a smooth test function ¢ that is periodic in x, and
integrating by parts we obtain

- —d? oy oW
_ [ aq
/QngA = /Qs (( = ) — AW 25— )§dA
_/ dmws
Q

V WS- VE + &2 b df W + 2s 3
c? ox

2/S
—/ ow £adx.
Y Uz, ov

To complete the derivation we need to use the fact that w® is an Hg,
solution of the Helmholtz problem below ¥ _ and above ...

dA

NIVERSITYol
12Li Fan and P. Monk, Time Dependent Scattering from a Grating using Convolution Quadrature and the EIAWARE
Dirichlet-to-Neumann map, (2017) submitted for publication.
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Towards the D-t-N map

Let x, be defined by

S 2inte 2

where we choose «, such that ®R(x,) > 0. Then for y <0

Wo(x,z) =Y Wy exp(i2rnx/L) exp(rnz), for z < 0.
neN

Then

ows
ov

= = Wikpexp(i2mnx/L).

- neN

NIVERSITYor
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We then have the following expression for the D-t-N map T_(s) on X_

Wol—o = > Wiexp(i2mnx/L),
neN

T (s)% = —> Wiknexp(i2rnx/L).

neN

Then
Lemma

The D-t-N map T_(s) : HQ,/Z(Z_) — HP_VZ(Z_) and there is a constant
C independent of s such that

1/2
IT-(S)ullyrozy < Cllullyrze ) YU € Hp*(E0).

This result also holds for T,.(s).

v

NIV IEOLL X OF
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We can now write a Galerkin formulation for the Laplace domain
scattering problem. We seek w° e HS(Q) such that

bmﬁazéﬁummmme%m%

where, for any g,¢ € H}(Q), we have

b(g,6) = /Q
—/(leKm—/(nwmgm.
bl pail

AP

Vq-V§+sz<

NIVERSITYor
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Spatial discretization

Qp: mesh of quadrilaterals of maximum diameter h obtained by
mapping from a reference square element using a bilinear
mapping

Qp: continuous finite elements on Q@ obtained by mapping a
polynomial of degree at most q in each variable on the reference
element by a bilinear mapping.

Trigonometric subspace of dimension 2N + 1 given by
Py :=span{exp(i2rnx/L)| —N<n<N, neZ}

L?(X ) orthogonal projection Py : L2(X_) — Py (similarly on ¥ ).

NIVERSITYor
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Time Dependent Integral Equations Pau 2017 34 /50



The discrete Laplace transformed field wj ,, € Qp is defined to satisfy

bN(Wﬁ’Nafh) = /Si:_gdAv V{h S Qh'

where

X X _ e\ .
bn (Wi nsEn) = /Q [V Wo - VEy + 82 ( ! 2 1) Wi NEh

dy 0 ) _
+2s-1 ih] - ) T_(8)PnWj N PNnEp dx
- T (8) PnWw N PnEp OX.
pauE
NIVERSITYor
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Multistep discretization in time

Suppose we use a k-step multistep method in time using a uniform
time step At > 0. Let {, = mAt, m € Z. In particular, suppose that
when applied to the initial value problem for the ordinary differential
equation y’ = f(t,y), t > 0 where y(0) = 0, the method is

k k
Z%Ym—/:AtZB/f(tm—p}/m—j)a m= 1727"'
pars =0

where we assume ag/Sy > 0, ym = 0 if m < 0 and we expect
¥m =~ y(tm). Then define the rational function ~ of { € C by

k k
. Zj:o ;¢
S0 B¢
BE:v(¢) =(1-¢) [ﬁ%ﬁ%{%
Time Dependent Integral Equations Pau 2017 36 /50
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The time-discrete Laplace transform domain scattered field W,f ,@’ € Qy
satisfies the weak problem with s replaced by ~(¢{)/At:

~ s, At
csat oz (VONE (& —df N ﬁﬂa""iw—
./Q|:VW V§+<Al> c2 AN ETE T T S|
—/z T_(+(¢)/ A1) PNA;ﬁtgdx—/ T4 (4(C)/ APy BTE o

/Q F(+(C)/ADEdA, V€ € Q.

This equation holds for all || < 1 and ¢ € C.

NIVERSITYor
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Now we have fully discrete error estimate:

Theorem

Suppose we use a pth-order A-stable method such that v({) has no
poles on the unit circle to discretize in time. For sufficiently smooth F,

the time discrete finite element solution wi \(t,), n=0,1,-- -, satisfies
estimate
T | oPt2F
IWion' () = W)l o) < € ((At)" /0 iwz ot 1w" = Vill 2 0, 7. 2

PN = Wl 0 ryt2e_y + IPNW = Wz /e, y) -

for any vy, € H3((0, T), Qn). Here the constant C depends on T and
> _ butis independent of u, h, N, At and v.

NIVERSITYor
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Time stepping

For simplicity assume that ¢, is frequency independent. We prefer to
compute using the total field W = W* + W'. The total field W € H!(Q)
satisfies

b(w,g)z/z (%"Z - T_(s)W’>§dx, VE € H) (Q).

The corresponding fully discrete Laplace domain problem is to find
Wik € Qp such that

ou(ih ) = [ (%~ T /anPu | Eak v ey

with s = (y(¢)/(At). To simplify the derivation we set

S At

ZhN = (’Y(C)/(At))"AVhA,IIV @gﬁg\;\l]ﬁ{{ﬁ
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The fully discrete Laplace domain problem becomes the problem of
finding (WfN, 24%) € Qn x Qp such that

3 _ g2 _ 9ZBL
/ VWA, - VE + <7(O> (b % ) 284 + 22 ”’Ngl dA
Q

At c? ¢ Ox
- T_(v(C)/ At) PNWENE — g T (v(C)/ At) Py WANE

— /Z <%"Z' — T(y(g)/At)PNI?Vi) £, VEe Qp,
(V(Q)/(AD) WY = 2ok

forall |(| < 1and ¢ € C.

NIVERSITYor
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To take the inverse discrete Laplace transform of the above equation
set
~ AL At,m S At At,m
WhN—ZWhN ZhN—ZZhN
At,m

where wy " € Qp and th € Qp are independent of ¢. Equating
terms in ¢ shows that the above equation gives the multistep scheme
applied to ow /ot = z or

At,m—j _ Atm/
ZaJWhN Atzﬁjth

The same process gives the time stepping equivalent of the first
equation. The only remaining difficulty is to expand
(Z,l-(:o Bi¢!) TL(v(¢)/At) as a power series in ¢.

NIVERSITYor
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This requires finding the Taylor series of

K il ; 2 o
ROE_ Z/=ZO‘IC % _ (Tj&?t - d1> SR,

(=0

At level ¢ the discrete in time operator TALE. Pn — Py is given for
N
u= Y upexp(2rnx/L)
n=—N
by
) N
T2y = 3" &eMu,exp(2nmix/L)
n=—N

- =AY
and similarly for 7.7,

NIVERSITYor
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The first fully discrete equation gives, at the mth timestep,

K (b—df At,m—jz L (wbtip  Atm—]\ =
/QZ< 2 )"‘/zh,l(/ 5_/Z Z(Tf'PNWh,K/ )5
j=0 — j=0

m : .
[ S (i)
=

azAt,m—j

AI/Ek:,B wwitm—i gy 2N TN g +At/ f:ﬁawi( tn_)E
— _ . w2b . - > . ot
ol / N c ax b i m=

— j=0

m . .
7/ SO TAYPNWI( ty_)E forall € € Qp,
o

form=1,2,---. The fields vanish if the index m —j < 0.

NIVERSITYor
[ﬂ)EIAWARE

Time Dependent Integral Equations Pau 2017 43 /50



We need the coefficients # 2. For BDF2

\/4m2C3(A12r2 + (47)Lrcdh (At)n — L2 + L2

RAL =
n,0 o ’
gAt g (—ZWZCQ(AZ‘)Zn2 — (5/)Lwed; (At)n + 2L2d12 _ 2L2)

3 Loy /an2c2(At)2n? + (4i)Lrcdy (At)n — [202 + L2

In general we follow Banjai and Sauter and approximate the
coefficients using a discrete approximation to the Cauchy integral

formula:
~s At
~S,At
Fne = o0 / Ce+1
where C is a circle of radius A < 1 centered at the origin in the
complex plane (using their choice of )).
NIVERSITYor
[ﬂ)EIAWARE
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Frequency dependent model problem

L Ny
Ir-
LS~
n2
L

xr "
o) Mg
SITYor
WWARE
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Metallic grating, Drude model

Incoming wave with 6 = 0°

(1) = 0 fort<Oort>m,
~ | sin*(4t) forO<t<m/4.

In the fictitious “metal” we use
the artificial choice

10

= ST 1 e/2)

otherwise ¢, = 1

IVERSITY or
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Some references to CQ

m The CQ technique for TDIEs was first suggested by C. Lubich3. For a
thorough introduction see the book of F.-J. Sayas.'3

m Practical use in elastodynamics: M. Schanz and H. Antes'4.
m W. Kress and S. Sauter '®, and W. Hackbusch, W. Kress and S. Sauter'8.

m Error estimates for general Helmhotz problems have been proved by A.
Laliena and F.-J. Sayas'’.

13Francisco-.Javier Sayas, Retarded Potentials and Time Domain Boundary Integral Equations, Springer 2016.
4Computational Mechanics, 20, 452-9 (1997)

15 MA J. Numer. Anal. 28 162-185, (2008) NIVERSIT Yop
"8 1A J. Numer. Anal. 29 158-79,(2009)

7 Numer. Math., 112 (2009), 637-78
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Further contributions to CQ-TDBIE for Maxwell

m First application to PEC Maxwell'®, and then to penetrable
problems with requency dependent coefficients and IRK for
Maxwell®

m Convergence of Maxwell Electric Field Integral Equation®®

m Convergence of IRK for Maxwell?!, and penetrable homogeneous
problems 22.

m Combined Field Integral Equation method for Maxwell’s
equations?3

m Waveguides®*

18X. Wang, D. Weile, R. Wildman and P. Monk: |EEE Trans. Ant. and Propagat., 56 2442-2452 (2008)

19Two papers by D. Weile and X. Wang, IEEE Transactions on Antennas and Propagation.

200. Chen, P. Monk, D. Weile, Communications in Computational Physics, 11 (2012):383-399

21 Ballani et al., Numer. Math. (2013) 123:643-670

22F.C. Chan and P. Monk, BIT Numerical Mathematics, 55 (2015), pp. 5-31.

23Q. Chen and P. Monk, Applied Numerical Methods, 79 (2014), pp. 62-78. NIVERSITY or
[ﬂ)EIAWARE

24L. Fan, P. Monk and V. Selgas, in Trends in Differential Equations and Applications (2016) F. Ortegén,
M. Redondo and J.R. Rodriguez, Eds., Springer, pp. 321-337.

Time Dependent Integral Equations Pau 2017 48 /50



Current work

m Inverse problems for penetrable media (with V. Selgas)
m 3D time dependent grating structures (i.e. full Maxwell).
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Best wishes Professor Bendali!
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