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Outline of the talk

e Motivations and goals

e The PDE model, issues and method

e Stability and stabilization issues - Eigenvalue analysis
e Control strategy adapted to numerical approximation

e Numerical simulations (2D).
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e Stabilization of aerodynamic flows around an unstable stationary
solution.

Given a fluid flow around an obstacle. Can we determine a control
located at the boundary of the obstacle able to stabilize it in
presence of disturbances.

Other project

e Autoregulation of either cerebrospinal flows or blood flows in the
brain.

Can we model the autoregulation phenomenon by a feedback
control corresponding to deformation of vessels ?

e In both cases we have to deal with mixed boundary conditions.
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Wind tunnel - Stabilization of a flow over a thick plate

4/49



Inflow Perturbation of a stationary flow
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The geometrical configuration
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with Dirichlet-Neumann and Navier boundary conditions.
((Vu+Vu")=pl)n=0c(u,p)n=0 on T, x(0,00),
on T x(0,00) either Navier or Neumann B.C.

For simplicity in writing we shall impose Neumann B.C. on I..
e(u) = 5(Vu+Vu).
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Due to the displacement 7(t) of the structure, the fluid equation is
written in a time dependent geometrical domain

L

-

-

Sl

We introduce

Q = U0 Q) X {t},

Y= Ut>0 Fn(t) X {t}
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The model

The fluid equation

us+ (u-V)u—divo(u,p) =0, divue=0 inQ,
u=r1€& on is, u=gst+gqg on%;, o(u,p)n=0 onkX,
u(0) = us + v in Qo,
o(u,p)=v(Vu+VuT)—pl.
The beam equation 7y + A2y — yAgny = - - -
M,t =172 on Xs,
N2, + aim — Dsi
= —O'(U, P)(—Ul,x51 + €2) & —fs +fX|'c on X,
m =0 and % =0 on dlg x (0,00),

n(0)=n? and 72(0)=nd onTs.
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The stationary solution

Fluid equation
(us - V)us —divo(us,ps) =0, divus=0 in Q,
us=m& onls, us=gs onl;, o(us,ps)n=0 onT,,
Beam equation
0=mn only,
alZny = —o(us, ps)(— €L + &) - & — f on Ty,
nm =0 and % =0 on dls x (0,00).
If f¢ = ps, then 11 =12 =0 and
(us - V)us —divo(us,ps) =0, divus=0 in Q,
us=0 onTls, us=gs onl;, o(us,ps)n=0 onTl,.
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The change of variable is associated with the structure
displacement:

: . Tn : :
Reference configuration 29 Deformed configuration
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ﬁ(X7Z7 t) = U(7;7(t1)(X,Z), t)v 5()(72 t) - p(7;7(t1)(X,Z), t)'



The system in the reference configuration

Fluid equation

Gy —divo(d,p) + (4 - V)a = Fla, p, i, m],

divid = Gld,m] in @ =Q x (0, 00),
d=mé&onXs=Isx(0,00), d=gs+gqo0nX;=T;x(0,00),
o(0,p)n=00n %, =T, x (0,00), a(0)=a°inQ,
Beam equation

Mt =12 onXs,

e+ alim — 7Agp

= —o(u,p)(— & + &) & — ps+f xr. on L,
m =0 and % =0 on dlg x (0,00),
m(0)=n and 12(0)=73 onT,.
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Control strategy

e Linearize the system around the unstable stationary solution.
e Study the stabilizability of the control system.

For numerical guarantee, we look for a feedback control of finite
dimension

e Project the control system onto a finite dimensional subspace
containing the unstable subspace of the linearized model.

e Determine (numerically) a feedback for which we can guarantee
that, when it is applied to the nonlinear PDE system, we still have
a local stabilization result.
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The system linearized around (us, ps, 0, 0)

The linearized system statisfied by
(Va q77717772) = (Z’\_ Us, ,3_ Psﬂ71ﬂ72) is

Fluid equation

ve —divo(v,q) + (us - V)v + (v - V)us—Ain — Ao = 0,
divv=As3m; in Q,

V=16 OnXs, Vv=g4 oONZX

o(v,q)n=0 on X, v(0)=v"inQ,

Beam equation

Mt =172 on Xs,

Mt + al2n —yAgmp—Asm = q+f  on X,

m =0 and % =0 on dls x (0,00),

m(0) =77 and m(0)=n3 onTs.
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Spectrum of the coupled system — Re

20 T T T T T

T
coupled system  +
flid system

Are we sure that what we compute is correct ?
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The direct eigenvalue problem

Fluid equation
Av —diva(v,q) + (us- V)v+ (v - V)us — Aimi — Aarp = 0,
divv=Asm in Q,
v=1me onlg, v=0 only
o(v,q)n=0 on T,
Beam equation
Am =12 onls,
Ao + alZm — Qs — Ay =q on T,
om

m=0 and F1 =0 ondls.

Algebraic constraints divv = Asn; and v = 1 es.
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The adjoint eigenvalue problem

Fluid equation

Ap — divo(p, v) — (us - V) + (Vus) ¢ =0,

divg =0 inQ,

¢=G& on s, ¢=0 on Iy,
o(g,v)n+us-np=0 on [,

Beam equation

MG+ a(AZ) MG + Ay — Afg — AjQ) =0 in T,
Ao — 0050 — alZG — Asp =4 in T,

¢1=0 and %:0 on Or,.

Algebraic constraints divgp = 0 and ¢ = (2 e>. The algebraic
constraints for the direct and adjoint systems are different.
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The discrete direct eigenvalue problem

M, 0 A A,
am | M al M = A=| T
2 2 0 0 Al 0
(7] 0
where 6 stands for the pressure p and the multiplier A
Mvv 0 0 Avv Avm AVT]z
MZZ — O Mn'/] O 9 AZZ = O O A771772 ?
0 0 My, 0 Apm A
and
- Avo . Avg
Az@ = 0 ) A29 - Am@
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The discrete adjoint eigenvalue problem

M,, 0 0 0 10 - ¢
A 0 My 0 0 ¢1 _ Az Az C1
0 0 My 0| ¢ AL 0 C2

0 0 0 0 p ‘ p

We need to rewrite these problems in the form of equivalent
problems with the same algebraic constraints.

We use the Leray projector for the infinite dimensional problems
and its discrete counterpart for the discrete problems.
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Leray Projector / Direct and adjoint eigenvalue pbs

vH (@)

Pv Vor(Q)

VO

n,ly

(Q):{VE L2(Q;R2)] divv=0, v-n=0o0n rd},

[2(;R?) = VO, (Q) & V HE (Q).
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Leray Projector / Direct and adjoint eigenvalue pbs

vH (@)

(V<, ., 712)

VI (Q)

H3(Is) = L(Ts) ~

VO

n,ly

(Q):{VE L2(Q;R2)] divv=0, v-n=0o0n rd},

[2(;R?) = VO, (Q) & V HE (Q).
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Leray Projector / Direct and adjoint eigenvalue pbs

VHE (Q)
(V:TIIJIZ)
V%m(Q)
T L (Pv,m,m)

L(QR?) = VP (Q) & V HE ().
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Leray Projector / Direct and adjoint eigenvalue pbs

vH (@)

H3(Is) < L(T)

VO

n,ly

(Q) = {v € L2(Q;R2) | divv=0, v-n=0on rd},

[2(;R?) = VO, (Q) & V HE (Q).
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The fluid equations

ve —divo(v,q) + (us - V)v+ (v - V)us—Ain — A =0,
divv=As3m in Q,

V=1pe OnXs, Vv=g4 oONZX

o(v,q)n=0 on X, v(0)=v2inQ.

A the Oseen operator, P the Leray projector,

The algebraic differential system

Pv' = APv + CouplingTerms(n1,12) + NonHom Term(gy),
Pv(0) = Pv°, (I — P)v = (I — P)L(n2, Asm).

L is a lifting operator.
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The Oseen operator

The Stokes operator

D(A0) = {v € V(@) |
Jp € L%(Q) s. t. diva(v, p) € L?(Q;R?)
and dive(v,p)n=0 on F,,},

Aov = P(diva(v,p)) (does not depend on p).
The Oseen operator (A, D(A)) is defined by
D(A) = D(Ag) and Av =Agv+ P((us-V)v+(v-V)us).
Due to the corners, we have
D(Ag) C H¥?+50(Q; R?), &9 > 0.
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The beam equation
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M, =172 on Xs,

Mt — BAs + al2n; — YA —Asm = q+f  on I,
771 = 0 and % e 0 on ars X (07 00)7

m(0)=n and 72(0)=n3 onTs.

The evolution equation for the beam

C <Z;> - <A4 Can? le> (Zi) " <qi f) |
(r0) = ()



Expression of the pressure - 1

—Aq = Asni ¢ +div((us - Vv + (v - V)us) — div(Aim) — div(Aane)
g=2ve(v)n-n on Iy,
dq ) .
I 2vdive(v)-n— vy - n=2vdive(v)-n—1: on T\,
n :
Thus

qg=—Ns(m2¢) + Ng(As 1) + Ny (v) + N(A1m) + N(Agm).
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Expression of the pressure - 2

—Aq =div((us - V)v + (v - V)us),
g=2ve(v)n-n on [, d—q 2udive(v)-n on T\ T,

Find g € L2(Q) such that

| a6 =20, 2002 @z e~ 2 [ n

o
—2V/ e(v)n-Vx + / [(us -V)v+(v- V)us} - VX,
Mo Q
for all ¢ € L3(Q),
where Ay = ( in Q, %zOon r'\r,, x=0onTl,.

A posteriori g € H/2+20(Qq) for some £g > 0.
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Coming back to the beam equation

TERAKIIE
dt \ 1y Ay —al? A ) \np

0
" (f — Ns(12,¢) + Na(Azm1e) + Ny (v) + N(Aim) + ’V(A2772)> ’

The added mass operator

d

m
at (’Vs(nz) — Ng(Asm) + 772>

T \Ag+ NA; — a2 NA©A) \m f+N,(v))"
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Equivalent formulation of the fluid-structure system

Differential algebraic formulation versus PDE formulation
M,z = Az + Bf, z(0) = z,
(I = P)v(t) = (I = P)L(n2(t) e2, Az (1)),
z=(Pv,m, )", B=(00xr)",

L is the lifting operator of the divergence and Dirichlet boundary
condition.

For numerical purpose —> PDE system

For the control strategy and stability analysis —> Differential
algebraic evolution equation
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Equivalent formulation of the fluid-structure system

M,z = Az + Bh, z(0) = z,
(I = P)v(t) = (I = P)L(n2(t) e2, Az (1)),

z=(Pv,m,m)", B=(00xr)",
L is the lifting operator of the divergence and Dirichlet boundary
condition, and

A (PAL— APL(0,A3)) (PAs — APL(-,0))

A= 0 0 / :
and
/ 0 0
M,=10 / 0
0 YsNgAs |+ ~sNs

)1 /40 The added mass operator, M,, is no longer symmettric.
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We set

and, due to the corners
D(A) =
{(Pv,m,m2) € HY2He0(Q:R2) x (H* 1 HR)(Ts) x HB(T)

| Pv — PL(1j2 &, Asip) € D(Ao)}.



Analyticity + Compact resolvent

Theorem. The operator (A, D(A)) is the infinitesimal generator
of an analytic semigroup on Z = V2 (Q) x Hg(Is) x L*(T).

Analyticity of the Oseen operator + Analyticity for the structure
(Chen-Triggiani) + perturbation arguments

Theorem. The resolvent of (A, D(A)) is compact in Z.

Consequence. To stabilize the linearized model - with a prescribed
exponential decay rate - it is necessary and sufficient to control a
finite dimension space.

Project the Differential algebraic evolution equation onto a finite
dimensional subspace to determine a feedback control law: Jordan
decomposition of an algebraic differential system — Link between
PDE and DAE.
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Come back to the control strategy

o Z=V0 () x H3(Ts) x L3(Ts)

e Choose
Z, = ®jes,Gr(\) with Z=2,®Z,
and

Z; = ®jey,Gp(Nj) with Z*=7Z=2;® Z;.

e Determine a basis {e1, -+, eq4,} of Z, and a basis {®q,--- , Py, }
of Z satisfying
(&1, ®j)z = di).

e These bases are used to determine the projected linearized
system and therefore the feedback operator.
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Relationship between PDE and Operator Eig. Pbs.

(Pv,n1,172) is an eigenvector (or a generalized eigenvector) for A
associated with X and (I — P)v = (I — P)L(n2, Asn1) iff

(v,m1,1m2) is an eigenvector (or a generalized eigenvector) for the
direct PDE system, associated with \.

Mz (P, C1,(2) is an eigenvector (or a generalized eigenvector) for
A* associated with A and (I — P)¢ = (I — P)L((2,0) iff

(¢,(1,C2) is an eigenvector (or a generalized eigenvector) for the
adjoint PDE system, associated with .
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Bi-orthogonality conditions

The bi-orthogonality condition for eigenfunctions of the PDE
systems is equivalent to the bi-orthogonality condition for
eigenfunctions of A and A*.

((vismu,ism,i)s (0, €y, C2j)) 2 = 0ij
is equivalent to

((Pviym,ism2,i)s M3 (Pj, CujyC2j))z = 0ij
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Stabilizability of the linearized F-S system

e The boundary control is chosen of the form

Nec
Flx, 1) = > fi(t) &(x).
i=1

e The functions (&;)1<j<n, can be chosen to prove that the
linearized system around an unstable stationary solution is
stabilizable (under investigation — verified by numerical
calculations).
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Stabilizability of the linearized F-S system

We have to check the following unique continuation property.

If (A, @,1,(1,(2) is solution to the following eigenvalue problem
Ao — divo(p, ) — (us - V)p+ (Vus) "¢ =0 and diveg=0 inQ,
b= on T, ¢=0on I, o(p,Y)n+us-np=0 on I,
MNa+G+AG+ AW+ Bi=0 inTs,
A2+ BAsCL — 0AC — aA2(y — Asp =1 in T,
(1=0 and %1 =0 onar..

with Re A > —w and

B*(P¢,¢1,¢2) = @ xr. =0,

then

¢:07 ¢:07 61242:0-
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Regularity results in the presence of mixed B.C.

If vp € H#i(Q;R2), divvg = 0, 17? e H3(rs) N Hg(l_s), 778 € H&(rs),
Vo = 77852 on [5, the solution to the linearized system belongs to
v e L2(0, T; HA(Q; R?)) N HY(0, T; LA R?)) = HH(Qr; R?),
p € L%(0, T; H}(; R?)),
m € L2(0, T; H*(T5)) N H?(0, T; L2(Ts)) = H*2(Z]),

m € L2(0, T; H2(T5)) N HY(0, T; L2(Ts)) = H>Y(ZT).

2 2
||VH$-[§(Q;R2) = Z|k|:0 dic fsz r25]8kv\2dx,
1 2
HPH%(Q) = Z|k|:0 > i1 fQ ’26|3kp|2d><,
where r stands for the distance to the corners.
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Due to the right angles at the Neumann-Dirichlet junctions and
Dirichlet-Dirichlet junctions, we have

Hg(Q;R2) C H3/2+€°(Q;R2),
HY(Q) c HY/2%50(Q; R?), for some g > 0.
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Local stabilization of the closed loop nonlinear F=S system

If up € HE (4R?), nY =0, n3 € H3(T's), uo =n3 & on T,

and if (up — us,n9) is small enough in H}i(Q;R2) x H3(Ts),

if g4 is small enough in an appropriate space,

then the closed loop nonlinear system admits a solution decaying

exponentially to the stationary solution in

H2M (@ R?) x HY2(X,) x H21(Zs).
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Numerical results
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P> x Py x Py or P, x P; x P, for the velocity, the pressure, the
Lagrange multipliers, and H3 for the beam displacement.

The Inf-Sup condition for this system reduces to an Inf-Sup
condition for the fluid, that is satisfied.

We have performed numerical tests with triangular meshes of
89418 cells, 75846 cells and 283956 cells to study the convergence
of the numerical spectrum of the linearized model.

89418 cells corresponds to 406339 dof.



Numerical results

The spectrum of the controlled system — Re = % = 200.
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Numerical results

The spectrum of the controlled system — Re = % = 200.
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Numerical results

The spectrum of the controlled system — Re = % = 200.
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Numerical results

Method.

e We project the linearized system onto the sum of the generalized
eigenspace generated by the 2 unstable eigenvalues (4 unstable
eigenvalues). It is of dimension 2 and the control is of dimension 4
(2 controls on each beam). (When the projected system is of
dimension 4, the control space is of dimension 2.)

e We determine a feedback stabilizing the projected system.

e The feedback law is next applied to the full nonlinear system.
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