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What is a BEC

Definition of a BEC
A Bose-Einstein condensate (BEC) is a state of matter of a dilute
gas of bosons cooled to temperatures very close to absolute zero.
Under such conditions, a large fraction of bosons occupy the lowest
quantum state, at which point microscopic quantum phenomena,
particularly wavefunction interference, become apparent. A BEC is
formed by cooling a gas of extremely low density, about
one-hundred-thousandth the density of normal air, to ultra-low
temperatures.

Expected applications to come
Atom lasers
High precision GPS
Quantum computers...
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Figures in the history of BECs

Predicted by Satyendra Nath Bose and Albert Einstein
(1924-25).

Figure: Bose and Einstein.
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Figures in the history of BECs

First experiments (1995) by Cornell, Wieman (Boulder) and
Ketterle (MIT) who received the 2001 Nobel Prize in Physics

Figure: Wieman, Cornell and Ketterle.

6/38



Models

Mathematical modeling
Different mathematical models to describe the complex
physics behind BECs.a b

Here, we consider the Gross-Pitaevskii Equation (GPE) which
is an approximation model for BECs based on averaging

aL. Pitaevskii & S. Stringari, Bose-Einstein Condensation, Oxford Science
Publication, 2003.

bC.J. Pethick & H. Smith, Bose-Einstein Condensation in Dilute Gases,
Cambridge University Press, 2001.
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Figures in the history of BECs

Figure: Gross and Pitaevskii.
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Why numerics?

Motivations for developing numerical methods
These developments are now growing rapidly in theoretical and
experimental physics because of potential long term revolutionary
applications (cold atoms lasers, quantum computers)

The numerical simulations are then extremely important for
predicting the behavior of BECs but also challenging because of the
complexity of the phenomenon and the fact that it is almost
impossible to compare to experimental results

In particular, a BEC is extremely fragile in an experimental setting
because it can easily be affected through exchanges with the
exterior environment, loosing then its interesting features

Here we try to focus on problems related to BEC in rapid rotation
and for strong nonlinearities where giant quantized vortices
(topological defects) are created
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Giant vortex creation: Abrikosov lattice

Figure: BEC under rapid rotation (Cornell group, 2010).
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Time-dependent GPE with rotating term

A possible model for BECs is the (normalized) GP Equation

Time-dependent GPE with rotating term

i∂tψ(x, t) = −1
2∆ψ(x, t) + V (x)ψ(x, t) + ηf(|ψ(x, t)|)ψ(x, t)
−Ω · Lψ(x, t), (x, t) ∈ Rd × R∗+,

(2.1)

where
ψ is the condensate wave function, d = 2, 3,
the Laplace operator is defined as: ∆ = ∇2, where
∇ := (∂x, ∂y, ∂z)t is the gradient operator
the spatial variable is x = (x, y, z)t ∈ R3

for 2d problems we have ∇ := (∂x, ∂y)t and x = (x, y)t ∈ R2

the time is t.
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Time-dependent GPE with rotating term

Time-dependent GPE with rotating term

i∂tψ(x, t) = −1
2∆ψ(x, t) + V (x)ψ(x, t) + ηf(|ψ(x, t)|)ψ(x, t)
−Ω · Lψ(x, t), (x, t) ∈ Rd × R∗+,

(2.2)

where
Function V is the external confining potential (for example
harmonic) (could also be time-dependent in some cases)
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Time-dependent GPE with rotating term

Time-dependent GPE with rotating term

i∂tψ(x, t) = −1
2∆ψ(x, t) + V (x)ψ(x, t) + ηf(|ψ(x, t)|)ψ(x, t)
−Ω · Lψ(x, t), (x, t) ∈ Rd × R∗+,

(2.3)

where
Parameter η is the nonlinearity strength describing the
interaction between atoms of the condensate. This parameter
is related to the s-scattering length (as) and is positive for a
repulsive interaction and negative for attractive interactions.
Function f describes the nonlinearity arising in the problem,
which is fixed e.g. to the cubic case: f(|ψ|) = |ψ|2 (but other
cases could be considered like e.g. cubic-quintic problems or
integral nonlinearities for dipolar gazes).
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Time-dependent GPE with rotating term

Time-dependent GPE with rotating term

i∂tψ(x, t) = −1
2∆ψ(x, t) + V (x)ψ(x, t) + ηf(|ψ(x, t)|)ψ(x, t)
−Ω · Lψ(x, t), (x, t) ∈ Rd × R∗+,

(2.4)

where
For vortices creation, a rotating term is added. The vector Ω
is the angular velocity vector and the angular momentum is
L = (px, py, pz)t = x ∧P, with the momentum operator
P = −i∇. In many situations and all along the talk, the
angular velocity is such that Ω = (0, 0, ω)t leading to

Lx = 0, Ly = 0, Lz = −i(x∂y − y∂x). (2.5)
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Time-dependent GPE with rotating term

Invariants
The mass:

N(ψ) =
∫
Rd
|ψ(x, t)|2dx =

∫
Rd
|ψ(x, 0)|2dx = ||ψ||20 = 1,

(2.6)
for t > 0, where ||ψ||0 is the L2(Rd)-norm of ψ.
The energy (for a cubic nonlinearity here) is

E(ψ) =
∫
Rd

1
2 |∇ψ|

2 + V |ψ|2 + 1
2η|ψ|

4 − ωRe (ψ∗Lzψ) dx
(2.7)

where ψ∗ is the conjugate of ψ. Then the energy for the non
rotating part is conserved and sometimes the whole energy
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GPE equation with rotating term

Questions here before considering the dynamics: computing
the stationary states

Need for a fast, accurate and robust method for computing the stationary
states
The numerical methods can be adapted to more general GPEs
Computing stationary solutions corresponds to stable/metastable physical
solutions (ground states, excited states)
In the sequel, we are also interested in the question of considering strong
general nonlinearities as well as fast rotations: much more complicate to
obtain numerically

The second question is then: what is the real dynamics of a
BEC through the GPE (not discussed in the talk)

High resolution schemes, efficient,...
Need to preserve the physical invariants (mass, energy,...)
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Notations/ground states/rotating GPE∗

Ground states/rotating GPE
The minimization problem is the following: find φ ∈ L2(Rd) such
that

φ ∈ arg min
‖φ‖=1

E(φ). (3.1)

We write ‖φ‖ =
∫
Rd
|φ|2 for the standard L2-norm and the energy

functional E is defined by

E(φ) =
∫
Rd

[1
2 |∇φ|

2 + V (x)|φ|2 + η

2 |φ|
4 − ωφ∗Lzφ

]

∗with A. Levitt and Q. Tang, JCP 2017
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Notations/ground states/rotating GPE

First-order derivative of the energy
A direct computation leads to

∇E(φ) = 2Hφφ, with Hφ = −1
2∇

2 + V + η|φ|2 − ωLz

the mean-field Hamiltonian.

Notations
We introduce

S = {φ ∈ L2(Rd), ‖φ‖ = 1} as the spherical manifold associated to the
normalization constraint.
Its tangent space at a point φ ∈ S is

TφS = {h ∈ L2(Rd),Re 〈φ, h〉 = 0}

The orthogonal projection onto this space is given by

Mφh = h− Re 〈φ, h〉φ
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Notations/ground states/rotating GPE

First-order condition
The Euler-Lagrange equation (1st-order necessary condition)
associated with the problem (3.1) states that, at a minimum
φ ∈ S, the projection of the gradient onto the tangent space is
zero, which is equivalent to

Hφφ = λφ,

where λ = 〈Hφφ, φ〉 is the Lagrange multiplier associated to the
spherical constraint.

First-order condition/eigenvalue problem
Therefore, the minimization problem can be seen as a nonlinear
eigenvalue problem.
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Imaginary Time Method (ITM) (Conjugate Normalized
Gradient Flow)

ITM: Principle
Solve the GPE in imaginary times through the gradient flow

∂tφ = −1
2Mφ∇E(φ) = −(Hφφ− λ(φ)φ). (4.1)

The oscillatory behavior of the eigenmodes of the Schrödinger
equation is damped thus decreasing the energy.
The Lagrange multiplier λ ensures ‖φ‖ = 1
We consider the following semi-implicit Backward Euler (BE)
scheme (Bao & Du, 2004)

φ̃BE
n+1 − φn

∆t = −(Hφ̃BE
n+1 − λ(φn)φn),
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Imaginary Time Method (ITM) (CNGF)

ITM: discretization and solution
This discretization decreases the energy when ∆t > 0 is small enough,
but does not preserve the norm → followed by a projection step

φn+1 = φ̃n+1

||φ̃n+1||
.

To be combined with the PseudoSpectral FFT-based discretization (=
BESP), the solution to the linear system (implicit scheme) for each n
needs a preconditioned iterative MINRES with the tuning parameter ∆t
that can be small and not easy to fixa

Stopping criterion: we always use

Enerr := |E(φn+1)− E(φn)| ≤ ε

which is more adapted for rotating BEC (to include the non uniqueness of
the minimum up to a rotation) (ε = 10−12)

aX.A. and R. Duboscq, JCP 2014
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Optimization on manifolds

Nonlinear gradient/conjugate gradients on manifolds
The previous approach is based on the point of view of discretizing
a PDE and may not converge, or converge slowly for strongly
nonlinear problems and for high rotations (since ∆t must be small)

Nevertheless, the problem can also be solved as an optimization
problem on a manifold (because of the normalization constraint)

Such optimization techniques are developed since many years (and
applied for example in electronic structure computations since about
20 years) but not investigated for the GPE

Here, we apply these methods (nonlinear gradient/conjugate
gradient) which are accelerated by a preconditioner P
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Nonlinear Preconditioned Gradient (PG) method

Formulation
An iteration is given by (with λn = λ(φn))

φ̃n+1 = φn − αnP (Hφn
φn − λnφn) , φn+1 = φ̃n+1/

∥∥∥φ̃n+1

∥∥∥,
(5.1)

which can be recast as

φn+1 = cos(θn)φn + sin(θn) pn
‖pn‖

, pn = Mφn
dn, (5.2)

where dn = −Prn is the descent direction, equals to the negative of
the preconditioned residual rn = Hφnφn − λ(φn)φn. The equations
(5.1) and (5.2) are equivalent when θn or αn is small enough, with
a one-to-one correspondance between θn and αn. To first order, we
have: αn = θn ‖pn‖.
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Nonlinear Preconditioned Gradient (PG) method

Formulation
With a constant αn, and P = I (identity) one gets the Forward
Euler approximation of ITM

Computation of θn: various approaches are available but we retain
here, after a Taylor’s expansion of the energy,

θopt
n = −Re 〈∇E(φn), pn〉 ‖pn‖

Re [∇2E(φn)[pn, pn]− λn] , (5.3)

combined with some tests to check that the energy decays
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Nonlinear Preconditioned Conjugate Gradient (PCG)
method

Formulation
The PCG method is very similar to PG, but uses an update rule of
the form

dn = −Prn + βnpn−1 (5.4)

instead of simply dn = −Prn (parallel version for linear systems).

βn : Polak-Ribière choice βn = max(βPR
n , 0), where

βPR
n = 〈rn − rn−1, P rn〉

〈rn−1, P rn−1〉
. (5.5)

We use βn = max(βPR
n , 0), which is equivalent to restarting the CG

method (simply using a gradient step) when βPR
n < 0 and is a

standard choice in nonlinear CG methods.
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Preconditioners

Probably more important than the iterative method itself!
Kinetic energy preconditioner:

P∆ = (α∆ −∆/2)−1,

with

α∆ = λ̃n :=
∫ (1

2 |∇φn|
2 + V |φn|2 + η|φn|4

)
dx > 0

which is positive and represents the characteristic energy of φn.

Potential energy preconditioner (with αV = λ̃n):

PV = (αV + V + η|φn|2)−1.

Symmetrized combined preconditioner that is the most robust

PC = P
1/2
V P∆P

1/2
V .
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Setting

We only present PCGC: PCG with combined preconditioner PC
which outperforms all the other methods (e.g. 100 times faster on
complicate problems than BESP)

Harmonic-plus-quartic potential for d = 3

V (x) = (1− α)
∑

ν=x,y,z
γνν

2 + κ (x2 + y2)2

4 + γ2
z z

2

Cubic nonlinearity and initialization by the Thomas-Fermi ansatz

2D: γx = γy = 1 (γz = 0), α = 1.2 and κ = 0.3. The
computational domain and mesh sizes are chosen respectively as
[−16, 16]2 and h = 1

16 (M = 512)

3D: γx = γy = 1, γz = 3, α = 1.4 and κ = 0.3. The computational
domain is [−8, 8]3 and the mesh size is: h = 1

8 (M = 128).
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Example 1: fast rotating and strongly nonlinear 2D BEC in
a quadratic-plus-quartic potential
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Example 2: fast rotating and strongly nonlinear 3D BEC in
a quadratic-plus-quartic potential
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Conclusion

What has been done and what we are doing for the stationary
states

Fast iterative preconditioned nonlinear conjugate gradient method for the
computation of the ground states of fast rotating and strongly nonlinear
GPEs
Can be again accelerated through IPiano algorithms which are accelerated
gradient-type techniques recently introduced for image processing
A computation with the standard BESP scheme (see GPELab: Matlab)
has been reduced from a factor 100 → from more than one week to 2-3
hours for complicate cases)
The parallel HPC implementation is almost ended: 2-3 hours → a few
minutes: real-time simulations
The extension to dipolar (nonlocal nonlinear interactions) and to space
fractional GPEs is done
Still need to extend to coupled GP equations (1d is okay) GPELab is used
a lot in physics now

36/38



Conclusion

Dynamics
We have a few advanced high-order methods (splitting, IMEX,
exponential integrators,...)
More applications are coming out
Extensions to time fractional dynamics is ongoing
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... about the influence of Abderrahmane in my life

Huge influence of Abderrahmane on my scientific career always
encouraging me to go deeper in my own ideas, since the beginning

His influence is of course also in terms of scientific topics (OSRCs,
ABCs, integral equations, DDM, finite elements...)

One of the most fundamental elements in a scientific life is people
that you meet, and I’m lucky to have met Abderrahmane in 1993,
who is at the same time my scientific father, my colleague and my
friend
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