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@ Work in permanent progress
@ Laplace domain analysis

@ General Galerkin (FEM) discretization

Analysis of FE semidiscretization in space of a class of
elastic wave models where the strain-to-stress relation
includes memory terms (even using fractional derivatives in
time, because fractional derivatives are all the rage)
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Model

The model equations
and the Laplace domain framework




Model equations
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Upper dots are time derivatives
u is displacement
o is stress Model

pu=divo +f (Conservation of momentum)
o=Dxé (convolutional material law)

e=5(Vu+(Vu)")  (linear strain)

Homogeneous mixed boundary conditions (for simplicity)
and homogeneous initial conditions



A simple example
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Zener’s classical viscoelastic model waves
o

o+ aoc =Cpe +Cqé

Model
@ Cy, Cq are 4-order Hookean tensors
@ ac L>®(Q) is strictly positive
® Cyit :=Cy1 —aCo >0
In plain symbols
0,1 _ ~0,1 _ A0, o0
Cjia = Cuij = Cjig € L=(Q)
0,1 0,1 —
Cijkl €jjekl = C " €ji€jj Ve,'j = €ji

1 0
Cl'jkleijekl 2 aCijkleijek/ VEU

Coupled elastic and
viscoelastic materials are
covered with this




Same thing, bigger words

Viscoelastic

The tensors C°, C' define bounded linear operators waves

LZ(Q;Rg;Fnd) — LZ(Q; ngT]’]d)?
Model

which:

@ are selfadjoint

@ and strictly positive definite

@ and commute with multiplication by scalar functions

@ and satisfy Cyit := C1 —aCyg >0
If Qo C Qis such that

Caiff
LZ(QeI FRg;;nd)

the subdomain Qg is purely elastic.



Laplace domain hypotheses
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o=Dxé  C(s):=sL{D}(s) ’ @

Model

@ Well definedin C; := {s : Res > 0}
@ Cijii(s) = Cjii(s) = Cui(s)

® [[Cii(8)[lLoe(y< 1/ min{1, Re s}

@ Positivity

Re (§ Cijk/(S)fija) > cg Re Sfij?fj vfij = fji

Zener's model: C(s) = (1 +as)~"(Co + sCy)

And | didn’t forget a conjugation... )




A generalization
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Fractional Zener's model waves
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In the Laplace domain @UuD

Model

C(s) = Czener(s”) = (1 + aSV)q(Co + 5"Cq) ve(0,1)

and in the time domain

o+ ad’oc =Cpe + Ci10%¢

Simple observations... (1) The Laplace domain bounds
for the Fractional Zener Model are exactly those for the
classical model. (2) The analysis allows for combinations of
different fractional models on different subdomains.

Which fractional derivative?
The distributional kind
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FEM semi-discretization
and transfer function analysis




Finite element discretization

Viscoelastic

V;, — Finite element space satisfying the homogeneous e
Dirichlet boundary conditions o

Forall t > 0,

up(t) € Vp
(pun(t),V)a + (o(1),e(v))a = (f(t), V) WV eV,
o(t) = D+ e(un(t))
us(0) =ux(0)=0

How do you handle the
convolution term? CQ.
Plenty of advantages




Laplace transform of the above

Viscoelastic
Forallse C, fear
Un(s) € Vy
(p52Un(s), V)a + (C(8)e(Un(s)), e(v))a = (F(s), V)a

Yv € Vy

Sesquilinear form

a(u,v; s) := (ps2u,v)q + (C(s)e(u), e(v))q

If there are non-vanishing IC, they appear
on the right hand side, but again... J




Stability
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Energy norm (kinetic + elastic)
FEM
2 1/2,,112 2
Iullfy = s p?ulld + le(u)

Laplace Domain Estimate

1UA(S)lis S mag | F(S)le



The proof
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(Res)|Un(s)I% < Re (S (C(s)e(Un(s). e(Un(s))a
+ 5[s(p Un(s), Un(s))a)
= Re((C(s)(Un(s)). £(sUn(s)))a

+ (s*0Un(s), sUn(s))a)
= Re(F(s), sUx(s))a
< [F(s)llallUn(s)ls

Solvability from Lax-Milgram J




Semidiscretization ‘error’

Laplace Domain Estimate SR
1 TeanJP ho
U(s) — Ux(s <
IU(s) = Un(s)lljs) < Resmin{1, Re s}2 IsU(s)lijs
Proof: FEM

(Res)[[U(s) — Un(s)Ilfy
S [a(U(s) — Un(s), s(U(s) — Un(s)); s)|
= [a(U(s) — Un(s), sU(s)): s)|
< 1/min{1,Re s} U(s) — Un(s)ljs IsU(S)lls
[

You can easily get bounds for

IC(s)Un(s)lla  and  [|C(s)U(s) — C(s)Un(s)lla



Viscoelastic
waves

Team Pancho

Found in
translation

Time domain estimates J




Laplace 2 Time (an inversion theorem)

Abstract linear system: Viscoelastio

waves

X-valued data g — Y-valued solution v e

Transfer function (preprocess data, solve):
A(S)V(S) - B(S)G(S) Found in

translation

Hypothesis:
|IA~(s)B(s)||x_y < m(Res)|s|, VseC,

with 12 non-negative integer and m: (0, 00) — (0, 00)
non-increasing and rationally unbounded at zero.
Thesis:

u+2

N ’
VOl < ()3 5 [ 160l
l=p



Stability

Recall the energy norm

1/24/12 2
|||Um\s| Isp'2ull + [le(u)Z

Laplace Domain Estimate
IUA(S)lisl = mg SHF( )lle

Time Domain Estimate

2
12
I i+ el 5 7573 [ 180)lage
=0
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Semidiscrete error estimate
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1
U(s) — Ux(s < : sU(s
1U) = Un(S)lis) S R grmingr- o sz U (Nis
Time Domain Estimate e

l"/2(a(t) — an() o + lle(u)(t) — e(un)()lls

t2 2 S (+1) (0)
1+fmax{u}; /0 U () adr + [le(u®)(r) dr

S

That doesn’t look like an
error estimate... J




Well, it is!
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By ‘Galerkin orthogonality, it doesn’t really matter to study
the error when u(t) is the exact solution, or when
u(t) — mpu(t) is the exact solution... Foundin

translation

l'/2(u(t) — an()) o + lle(u)(t) — e(un)()llg

2 5.t
< 12 Z (£+1) _ (£+1)
Sy madnt }4—1/0 ) = ey

+_|ys(u(f))(7) — e(mpuD)(7) || dT




What else?

@ Non-homogeneous Dirichlet and Neumann boundary
conditions (Neumann simpler than Dirichlet)

@ Full discretization using MS-CQ (use results from
Lubich 1994) or RK-CQ (Banjai, Lubich, Melenk 2010)
@ Nice features:
e extremely easy to change the viscoelastic model
@ joint treatment of classical viscoelastic models and their
fractional counterparts
e coupled problems handled naturally
@ Time domain analysis, only available at the
semidiscrete stage so far for the classical viscoelastic
model (with possible purely elastic zones)

@ Pending: visco-poroelastic model
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Experiment # 1
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Experiments

Uniform mesh of a cube with P, elements. Trapezoidal rule.
Refinement in time and not in space




Experiment # 2
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Sequence of uniform meshes for a cube. P> elements.
Trapezoidal rule with 500 time steps.




One-dimensional examples
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One dimensional viscoelastic ‘beam, no loads, shaken on foam Pencho

one side, end left free on the other. We observe the
displacement on the free tip. High order in space FEM with
TR-CQ in time.

Experiments

i

1D code by Connor Swalm and Hugo Diaz



One-dimensional examples

One dimensional viscoelastic ‘beam, no loads, single pulse on 0
one side, end left free on the other. We observe the displacement

in space-time for four different material properties. High order in

space FEM with TR-CQ in time.

elastic Zener fractional piecewise
4 40 40 .
Experiments

time
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One-dimensional examples
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One dimensional viscoelastic ‘beam, no loads, train of pulses on fearRareto

one side, end left free on the other. We observe the change from
transient to time-harmonic regime. High order in space FEM with
TR-CQ in time.
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Several snapshots of a simulation
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time step = 2/101 waves

Experiments
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The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step =12/101 waves

Experiments

The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step =23/101 waves

Experiments

The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step =34/101 waves

Experiments

The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step =45/101 waves

Experiments

The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step =56/101 waves

Experiments

The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step =67/101 waves

Experiments

The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step =78/101 waves

Experiments

The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step =89/101 waves

Experiments

The bottom of the squared donut is gently shaken with a
plane wave. No volume forcing. All other boundaries are
traction free.




Several snapshots of a simulation
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time step = 100/101 waves

Experiments

plane wave. No volume forcing. All other boundaries are

The bottom of the squared donut is gently shaken with a
traction free. J




Conclusions
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@ Easy treatment of a large class of viscoelastic models )

(FEM-CQ discretization), including coupled models
@ Joint analysis using Laplace transform tools

@ Improved estimates in some cases using energy
techniques (semigroup theory)

@ Tested 3D code and 1D toy-code with parameter
derivatives

@ To do: integrated fractional model, visco-poroelastic
problems (theory and simulation), model adjustment
(using optimization tools),...

Experiments



What do you get with Google-Image?
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This photo from a couple of websites )

Experiments
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hat do you get with Google-Image?

iving a talk with Jean-Claude Nédélec in the audience
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What do you get with Google-Image?
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Some matheux who happen to work in Pau... J

Experiments
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And then there’s ‘comedy stage hypnotist’ Ben Dali ]

Experiments
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Bon Anniversaire!
ou
Bonne retraite!

Experiments

Thanks to Hélene, Julien,
and Sébastien J
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