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N
Abstract

We introduce variational formulations for the weakly- and hyper-singular
operators (as well as for their corresponding inverses) associated to the
Laplace operator in the domain of R® exterior to a flat open disk in R3. Using
adequate basis functions on the disk, we obtain an exact expression for the
associated kernels. This work is an extension to R° of the article by
Jerez-Hanckes and Nédélec (2012, Explicit variational forms for the inverses
of integral logarithmic operators over an interval ([3])).
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Log-Kernel

Consider first the isotropic space R? divided into two half-planes:

T+ 1= {XGR . O1 (1)
with interface I' given by the line xo = 0. The interface is further divided into
the open disjoint segments 'y, := (—1,1) x {0} and 'y := T\ ['p,.
Consequently, we have defined the domain Q := R? \ T',,. We seek u such
that

—Au =0 for xeQ
. i 1/2 (2)
u=g for xely with ge HY(y).
Then, the potential u can be represented as a single layer potential:
1 1
u(x) =Lip= — [ log

y)d for xeQ, 3
) ‘Xiy‘()v : (3)

Then ¢ is the solution of the logarithmic integral equation:
1/ 1
gx) = — | log——
(x) T Jrm x—y|”
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Log-Kernel

The equation (4) has a variational formulation in the space H, '/*(I',) which is:

/r ) ‘T i o(t) ¢! (7)dtdT = rg(T)pf(T)dT, Vole Hy '3(T ) (5)
This operator is a bijection between H 1/Z(Fm) and the space Hl/z(rm) of
functions in H'/2(T ,,) satisfying - \/1171‘2 g(t)dt = 0.and we have
> [ froo peteidar= el e, Yo F . @

The inverse operator is a bijection of H1/2(I'm) onto FIO_VQ(I'm). This operator

Ny is symmetric and coercive in the space H”Z( 'm). It admits two variational
formulations. Let M(x, y) be the function

M) = 5 (=02 + (VI=2 +VT=72)°) )
teg =+ [ toa { T atv)ay ®)
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Log-Kernel

The first one is:

(g.0) =1 [ [ oo { FEL g ()(6' ) dyae- [ ctgioak (@

Y I'm

1/2

for all g € H, (I‘m) which gives a first norm on the space H1/2( Mm):

~ g(x) g (y)dydx > CllglZe, Vg € HY3(Tm) (10)
\X y\ < (Tm
The second oneis

// M(x,y)
27 Jr . mdxdy |x Y|

for all g' € H/?(Fm),
So we have a second norm on the space HL/3(T ) which is:

<g(x>fg<y>)(gf(x)—gf(y))dydx:/ﬂx)g’(x)dx (11)

Y I'm

1—x
/ / { y 1 dydx>CHgHHw zvaeH”Z( » (12
where the welght funct|on w is given by
w(x) = V1 — x? forx € (—1,1). (13)
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Log-Kernel

We can also consider the Neumann problem

(14)

—-Au =20 for xeQ
VO =Yg = for X eTpm, e H /2y

which can be represent as a double layer potential of harmonic solution in the
domain 2 of the form .

u(x) = 1/ Lza(y)dy, for xeQ, (15)
I ‘X o y‘

Then the unknown « is the solution of the hyper singular integral equation:
1 [ 1
o(X) =No v = — 7{ ——a(y)ady for xerl . (16)
x —y|?

where « is also the jump of the Dirichlet trace of the solution of problem (14).
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Log-Kernel

A variational formulation of the integral equation (16) in the space H'/2(T',) is

/ /Iog =] ‘ (T))/dth:/‘p(T)(xt(T)dT, vdeﬁ‘/?(rm) (17)
[ 7=

s I'm

The associated operator D is a bijection from H'/2(T',,) to H=1/2(T ).
Moreover, this bilinear form is coercive, i.e.,

17 1 , ~
- /r |Og = t\ o (H)a(r) didr>C H(,LH%W(FW) Na e HY2(Tp). (18)

This operator admits a second variational formulation which is

J—W/r /r (a(x)ay)) (@ (ZX)*” ) dxdy+;(‘/ri 7“(1)()_“;(2 ) ax = [o(x)al(x)0x (19)

X =y ar

forall of € ﬁ‘/Z(rm), and the next expression is a norm on H'/2(T',)

(6] 1 .(I(X)z ) ~1/2
> =,
o /r”/r x— y\ dxdy+ ./rm1—X2 ax > CHO‘”HM?(rmyVQGH (Tm) (20)
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Log-Kernel

The inverse operator is a bijection of H="/2(I',) onto H'/2(T',). The

associated operator is symmetric and coercive in the space H="/2(T' ).
It admits the following variational formulation:

//m {x Yl

and thus the following expression is a norm on the space H~'/2(',)

1 / /
- log
"o, r m

p(x )sf(y)dydx:/”(XW(X)de WpeH V/3(Tm)

s 1I'm

M(x,
BN o) dyae > C Il agr, » VioeH (M)
X =y o
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The operators Ly, Lo, Ny, N2, D, D* are linked by the identities

LooNo = —LpoD olioD=1,  lc H'2(m)
LioNy=—-LioDolyoD" =1, le HY3(Tm)
NyolLi=—-DolpaoD"oly =1, e Hy'3(Tm)
Nools——D*olpoDoly=1, le H'2(Fy)

Ly o D is continuous and invertible from H'/2(T ) into Hi/2(I"1»).
L, o D* is continuous and invertible from H./2(I' ) into H'/2(T ).

D* o Ly is continuous and invertible from Hy /(I ) into H="/2(T ).
Do L is continuous and invertible from H=1/2(I",) into Hy '/%(I" ).

The Dirichlet and Neumann Laplacian Ap, Ay are linked to L, L, and Ny, No:

_1 1
Ly = (—Ap) z; —Ny = (-Ap)?;
_1 1
Ly = (7AN) 2 —No = (7AN)2 .
Bendali-65
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The disc in R®

We try now to extend these results to the unit disc in R3.

We Introduce the splitting of the space R? into two half-spaces

T+ = {x €R®: x3 = 0}, by the plane x; = 0 that will be denote as I".

Let ¢ be the circle of center at the origin and of radius 1 in the plane T'.

Let D be the plane disc delimitated by the circle ¢ and D the associated flat
domain in R3.

Now its complement in R?, is Iy := '\ D.

Henceforth, the problem domain is denoted by Q := R3 \ D,

We also consider the sphere S of radius 1 and center at the origin in R®.

The disc D divide this sphere into two half-sphere that we denote respectively
Stand S—.
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The unit sphere in RS and its equatorial disc
The unit sphere in R® and its equatorial disc

We consider the unit sphere S in R3 (Fig. 1) and the spherical coordinates:
(r,0,¢), where ris the radius and 6, ¢ the two Euler angles.

X1 = rsinfcos p,
Xo = rsingsinp, (25)
X3 = rcosé.

T3

o Fig. 1: Spherical coordinates
The vectors ey and e, are unitary. The vector e, directed along Om.is unitary.
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The disc in A3 The unit sphere in RS and its equatorial disc

— A point x on the circular domain D will be defined using its coordinates
(x1, x2) or in circular coordinates by (0 < p < 1,0 < ¢ < 27).

— A point x™ (resp. x~) on the half sphere ST (resp. S™) will be defined using
(0<0<3.0<p<2m)(resp. (3 <0<m0<p<2m)).

—The projection x of a point x* situed on the half sphere S* onto the domain
D has for circular coordinates x : (p = sin(6), ).

— The projection x of a point X~ situed on the half sphere S~ onto the domain
D has for circular coordinates x : (p = sin(9), ).

—To a point x, we associate the points x* and x~ which projections are x.
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Notations

Let © C RY, with d = 1,2, be open. We denote by €*(0) the space of
k-times differentiable continuous functions over O with k € Nj. Its subspace
of compactly supported functions is € (0) and for infinitely differentiable
functions we write 2(0) = ¢5°(D). The space of distributions or linear
functionals over 2(0) is 2'(0). Also, let LP(O) be the standard class of
functions with bounded LP-norm over O. By S'(O) we denote the Schwartz
space of tempered distributions.

Duality products are denoted by angular brackets, (-, -), with subscripts
accounting for the duality pairing. Inner products are denoted by round
brackets, (-, -), with integration domains specified by subscripts. Furthermore,
operators are denoted in mild calligraphic style and complex conjugates by
overline. The adjoint of an operator will be specified by an asterisk.
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Thediscin A3 [RIETISY

The disk D is a Lipschitz domain in R?. For any s > 0, FIS(ID)) is the space of
functions whose extension by zero to I belongs to H3(I'). For s = 1/2, we
have the four following different spaces

H-1/2(D) = (H1/2(D)) and  H™'2(D) = (HVZ(D)) . (26)
Define restrictions over the half-spaces: u* := u|,,. We introduce the trace
operators v* : 2(71) — 2(I) as v*tu : = lim__ g+ u(Xy, Xe,¢) = yTut.
Theorem

We denote by ﬁi the trace operator:

o D(FL) — D(Tp) (27)
o R = e

If s > 1/2, a unique extension to a bounded linear operator
W, Hio(ms) — HS~/2(T'p) can be obtained by density of 7(7) in H ().

4

Let [y] :== " — v~ represent the jump operator across I'. As I' is not
orientable, we set n pointing along the positive x3-axis, i.e. n = X.
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Weighted Sobolev spaces

Since the problem domain Q is unbounded (cf. Section 11), one usually works
in either local Sobolev spaces or in weighted ones such as

u

W) = {ue @)

e L%(Q), Vue LZ(Q)}, (28)

which coincides with the standard H}! () for a bounded part of Q and avoids
specifying behaviors at infinity [5]. Furthermore, these weighted spaces are
Hilbert whereas local Sobolev spaces are only of Fréchet type. We also

define the subspace:

Wy '(Q) = {ue W' 1(Q) : viu =0} . (29)

J.C. Nédélec (CMAP) Bendali-65 12112117 16 /56



The disc in A3 Weighted Sobolev spaces

Lemma ([5], Section 2.5.4)

Define the norm:
o} g = [ VU0 dx. (30)

Then, there exists ¢ > 0 such that

lullyg 1y < cluly_1q. Yue Wy (Q) (31)

Moreover, this norm is also a norm on the space W'-—1(Q). Specifically, there
exists ¢ > 0 such that

[ullwr—1qy < cluly 1o VYUE wh(Q). (32)

Now, traces on T for elements in W'—'(Q) lie in the usual H./?(I"), and their

restriction to a bounded I', generates the subspace H'/2(I"p).

J.C. Nédélec (CMAP) Bendali-65 12112117 17 /56



Dirichlet Problems

Instead of directly considering the standard Laplace problems, we start by
tackling a slightly different Laplace problem with two different Dirichlet
conditions g* from above and below on . These boundary data lie in the
Hilbert space:

X:={g=(g".g7) e H/AD) x H'AD) : g* g~ c H/[D)}  (39)
with norm
91 = 19" 2oy + 197 [z + 197 = ey
Equivalently, we define the Hilbert space for Neumann data:
Vi={p=(¢"¢7) e HAD) x H'3D): " — o~ e HT2D)}  (34)
with similar norm:

2 2 2
H60||§7 = H99+H/-/—1/2(D) +||e ||/-/f1/2(m) +let - HF/—UZ(D)'
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QUL WSl Dirichlet Problems

The Dirichlet problem we consider is:

Problem
Forg € X, find u € W'~1(Q) such that:

—Au = 0, X € Q,

~t 35
Plu =g, x € D. (35)
/\/D

Theorem

Ifg € X, then the Problem (35) has a unique solution in W'-=1(Q).
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The solution to Problem (35) can be split as follows. To any function u in
W' —1(Q), one associates restrictions u* on m. belonging to W'~ (r.).
Denote by i+ € W'—1(R9) the mirror reflection of u* over 7. Average and
jump solutions defined over R? are written as

o+ gt +g-
Uavg = T: . Gavg = Ta

ot associated to the data o Sg (36)
Ump = — %5 Gmp = 5

Normal traces can also be similarly decomposed. Due to the orientation of the
normal, they take the form:

D ()n Uavg =
YD 8n Ujmp =

and we have the associated Green’s formula (as (Vuavg , ijmp)Q =0):

s V(U — U,
Rs - V(UT + U7,

N — D=

. Uavye,
associated to the values{ e (37)
Uimp

(Vu, vV)Q = <")’Danuavg: D Vavg>H1/2(D) + <r\)/Bantmpv D ijp>,2/1/2(m) , (38)

for v ¢ W'—1(RR?) split into average and jump parts.
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The disc in A3 Dirichlet Problems

Theorem

The solution of the Dirichlet Problem 3, is such that its Neumann trace at D
belongs to the space Y. There exists a unique Dirichlet-to-Neumann (DitN)
map D : X — Y satisfying

(Dg,9)x > Cllgl?, (39)

for g in X, and where the vector duality product is given by:

(DY, 9)x = (D Gag - gm’g>H1/2(D) + (D Gjup gjﬂw>ﬁw/2(m) ' (40)

Corollary

For g* =: g € H'/2(ID), the corresponding solution of Problem (35) in Q is
symmetric with respect to I'. Moreover, there exists a unique DtN operator
Ds : H'/2(D) — H~'/2(D) satisfying

(Ds g, Qi) = Csllalin ) - (41)

J.C. Nédélec (CMAP) Bendali-65 12112117
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QUL WSl Dirichlet Problems

Corollary

For g* = +g € H'/2(D), the associated solution of Problem (35) is
antisymmetric with respect to I' and there exists a unique DtN operator
Das : H'/?(D) — H~'/2(D). Moreover, the energy inequality holds

(Das g, Qo) = CasllGlF (o) - (42)
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Neumann Problems

As in the Dirichlet case, we now define the general problem:
Problem

Find u € W'~1(R3) such that

—Au = 0, X e Q,

g 43
<»D0nu> . o (43)
A/D anu

where ¢ belongs to the space Y.

Theorem

The Neumann Problem (43) has a unique solution in the space W'~ (R3) if
andonlyifo €Y.
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The disc in A3 Neumann problems

Theorem

The solution of the Neumann Problem (43), is such that its Dirichlet trace at D
belongs to the space X. There exists a unique Neumann-to-Dirichlet (NtD)
map N : Y — X satisfying

Ne, @)y > Clel?, (44)

for o inY, and where the vector duality product is given by:

<N(10’ ‘P>\y = <N ‘Pm)ga (Pﬂvg>ljlf1/2(rc) + <N Sojmp', onmp>H71/2(rc) . (45)

Symmetric (antisymmetric) Neumann problems can be stated as follows:
Find us, uzs € W'—1(IR®) such that

(46)

—Aus = 0, X € Q, —AUg = 0, xeQ,
and n
[YpOnUs] = o, x €D, Vp Onllas = ¢, X €D,

for data ¢ in the space H=1/2(D) and ¢ in H~/2(D) respectively.
Bendali-65 121217 24/56



The disc in A3 Neumann problems

Corollary

The symmetric Neumann Problem (46) has a unique solution in W'~ (R3) if
andonly if o € H=1/ 2(D. Thus, there exists a unique continuous and invertible
NtD, denoted N's : H=/2(D) — H'/2(D). Moreover, the energy inequality
holds

WNso, 0)p 2 ClelF-120m) - (47)

The inverse of this application is the operator D defined in Corollary 6.

Corollary

The antisymmetric Neumann problem (46)has a unique solution in W'-—1(R3)
if and only if p € H=1/2(D). Hence, there exists a unique continuous and

invertible N zs - H=/2(D) — H'/2(D) satisfying

WNas@, @)p = Clele-zm) - (48)

The inverse of this application is the operator D55 defined in Corollary 7.

v
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The potential operators associated to the Laplace equations

We now present the main results of this work: explicit variational forms or
regularizations for the weakly- and hyper-singular operators over the disk
and their inverses as well as associated Calderdn-type identities. In fact, we
will show that there exist two equivalent forms for the inverse of the weakly
singular operator and two equivalent representations for the hypersingular
operator. Moreover, we study the mapping properties of the underlying
operators and derive useful identities for numerical applications.
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Symmetric problem and weakly singular operator

The solution of the symmetric Dirichlet and Neumann solutions are given via
the simple layer potential . For the symmetric Neumann problem, one just

simply introduces the data ¢ in the potential LSs and then the simple layer
potential gives the solution in RS.

u) = 3= [ TR0 ye R (49)

The solution of the Dirichlet problem is obtained via solving the following
integral equation on D: find ¢ such that

1 f 1
— | o——p(X)dp(X) = ) cD. 50
ar Jp X =yl p(X)db(x) = g(y) y (50)

and then the simple layer potential (49) gives the solution in RS,

J.C. Nédélec (CMAP) Bendali-65
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The potential operators associated to the Laplace equations

Theorem

The symmetric variational formulation of the integral equation (30) in the
space H='/2(D) is

(LSsp, ')y = (g, ¢")y, V'€ HV2(D),
which is coercive, i.e.
(LSsp, o) > C ||99||/2?/—1/2(D)v Ve F’_1/2(D)~

The associated operator, N (cf. Corollary 11), is a bijection between
H=/2(D) and H'/2(DD).

J.C. Nédélec (CMAP) Bendali-65 12112117
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The potential operators associated to the Laplace equations

Theorem

We denote by LN, the integral operator which is the inverse of LSs and is
associated to Ds (cf. Corollary 6). Its kernel is denote by LKN;. It is
symmetric and coercive in H'/2(D). It admits two variational formulations:

(LSascurlp g, curlpg') ) = (¢, 9", . vg' e H'/3(D),

_% /ED LNKs(x,¥) (9(x)—g(¥)) (9'(x)—g"(¥)) cb(y) b (x)

—&-% / Mdp(x): <% gt>D’ Vgl e H1/2(]D).

(1= p(?)

(53)

J.C. Nédélec (CMAP) Bendali-65 12112117

29 /56



The potential operators associated to the Laplace equations

These formulations in turn yield two expressions for the H'/2(D)-norm:
Theorem

(LSascurly g, curly @)y > Cllgle2pmy.  YgeH/2D).  (55)

= 4 LNK,(x,y) (9(x) — a(¥))20h(y)d(x)

xD

4 [ (g 2
+W4de(x) > Clglzm)-
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Antisymmetric problem and hypersingular operator

The solution of the antisymmetric Dirichlet and Neumann solutions are given
via the double layer potential given by

LDu(ufy) = — [ 2

“4x ) Wg(X) ap(X) (57)

The solution of the antisymmetric Dirichlet problem is retrieved using the
double layer potential (57) with the data g which also give the solution in RS.

_ 1 Y3 ! 3
u(y) = 4W/D Hx_y”39<X)o%u(X), yeR. (58)

The solution of the Neumann problem is obtained via first solving the
following hypersingular integral equation on D: find ¢ such that

1 7/ 1
e e el for yeD.  (59)
S lx =yl

where the modified integral is understood as either a finite part integral for
sufficiently regular g or in a weak sense for functions in Sobolev spaces. Then
the double layer potential (58) gives the solution in RS,
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The potential operators associated to the Laplace equations Antisy icp and hypersi P!

We denote by LNs the hyper singular integral operator associated to the
equation (59) and by LKN_ s its kernel. We denote by LS, the integral
operator which is the inverse of LN, and by LKS s its kernel.

Theorem
A symmetric variational formulation for (59) in the Hilbert space H'/2(D) is
(LSseurly g, curlyg') = (o, g"),.  Vg'e H3D). (60)
Moreover, this bilinear form is coercive, i.e.
(LSsceurlp g, curly g)y ;> CHgH,%W/z(D), vge H/?D).  (61)

_The associated operator, Das (Corollary 7), is a bijection from the space
H'/2(D) to H=1/2(D).
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The potential operators associated to the Laplace equations Anti: icp and hypersi

Theorem
This operator admits an alternative variational formulation:

Y ERCCEEDICOR TR

8 Xyl
1 [ E(p(x))g(x)g"(x)

+7r./m (1) @
2

1 (9(x) —g(y))
81 /DX]D HX—VH3 BOBE)

(x);= (¢, g"),.¥g" € H/3(D).

’
(1= p(x)?)

where the elliptic function E(p) is given by

E(p) = '/072r \/1 = p?sin?(a)da.

™

#1 [ ECCNENG00) > Clglfngy . Vo€ YD)

(63)

(64)

4
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The potential operators associated to the Laplace equations Antisy

Theorem

The operator LS, is symmetric and coercive in H'/?(D). It is associated to
the operator N zs = D (cf. Corollary 12) and is a bijection of H='/2(D) onto

H'/2(D), symmetric and coercive. It admits the following variational
formulation:

(LSasp, @)y = (9. ¢")y, Vo€ HV2(D), (65)

and thus, provides a norm on the space H='/?(DD)

(LSasp, @) > Cligli-iopy: Vo€ H V(D). (66)

J.C. Nédélec (CMAP) Bendali-65
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Decomposition on basis functions

We have introduced the four symmetric integral operators LSg, LSzs, LN, LNs
related to the Laplace equation on the disc D, such that LNg o LS = I,

LSas o LNs = I. We denote the associated kernels by LK, LKzs, LNKs, LNKs.
The two kernels LKs, LNK,s are known and only depends on x —y.

The two others kernels LK,s, LNK, associated to the inverse of the operators
LN, LSs, are not the restriction on D of kernels defined in the space R°.
They depends symmetrically on the variables x and y, but not only on x —y.

1 1
The kernel of the operator LSs which is TW is related to the kernel
Tl —
. L 1 . . .
associated to the operator LN s which is R/ PSre——-T via the identity
Tx -yl
1 1
— = Ap(—). (67)
x—yl® Uy
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Spherical Harmonics, Associated Legendre functions

In order to obtain some explicit expressions of these kernels and also some
links between them, we introduce some basis functions related to the well
known spherical harmonics. These spherical harmonics functions, define on
the sphere S of radius one associated to the disk D as an equatorial plan. The
spherical harmonics are the eigenfunctions of the Laplace-Beltrami operator
also define on the sphere S. We introduce here the spherical harmonics and
the associated kinetic moments.

The Rodrigues formula gives the expression of the Legendre polynomial P;:

—1y /
P00 = G (g ) (01—, (69

The Spherical Harmonics are the functions Y/"(x, ) = ﬁ,w,’”e"m*Pan(x),
solutions with separate variables of the differential equation ( x = x3 )

1 H2u 0 0
L (S ES N I(I+1)u=0.
17x20@2+8x (( x)axu)—i— (I+1Hu=0 (69)
Y/"(x, ) = A" MPBP(x) (70)
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Decomposition on basis functions Spherical Harmonics and A iated L

The functions PJ"(x), called the Associated Legendre functions, are the
solutions of the differential equation

d 2 d m m m2 m __

X ((1—x)dXP,)+/(/+1)}P’, —17X2]P>, =0. (71)
For m =0, Y? is the Legendre polynomial P,.
In order to describe the functions Y/, we introduce the kinetic moments
L., L_,Ls, express inthe angles (6, ¢), (X3 = cos(d))

10
i 0 cosf 0

Liu=e (89u+lsin¢9 899”)' (73)

i 0 cosf 0
Lu=eP(-=Zu+i—"u). 74
u-e < 26" " "sino a@“) (74)

The kinetic moments L, L_, L3, satisfy the relations of commutation:

[Li,L_]=2Ls, where [A, B] = AB — BA. (75)
Lo, L]=Ly,  [laL]=-L, (76)
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Decomposition on basis functions Spherical Harmonics and A i L

The Laplace-Beltrami operator Agis then Ag = —J(L L+ L L) —(Lg)?
and the following relation of commutation hold:

[As. L] = [As, L] = [As, Ls] = 0. (77)

This relations of commutation (77) show that each eigenspace of the operator
Ag is invariant by the action of the operators L., L_ and Lz. So the spherical
harmonics of order / are the 2/ 4 1 solutions of the equation (69) of the form

- 12
Y0, ) = [(/ 2;/2) E; " zm eMPPM(cosh). (78)

The associated Legendre PP} (cosf) are define using the Legendre functions

P(cosf) = (sing)" (d)mP,(cose); if 0o<m</,

Py m(x) = (—1)" E m§ PP(x), if —1<m<], -
PP(cosd) = ¢ 2)//! 8“”3 (sing)~™ (i{)lmu ).

P'(x) = (21,)//!+m(1 — x%)m/? <;i)/+m(1 —x?).
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Decomposition on basis functions Spherical Harmonics and A i L

They satisfies

+1
./71 (Bi())" o = /+11 /2’

1/
P(1)=1,1>0; P(0)=0, lodd: Pp(0)= " />0

2

Their parity is I + m. They satisfy the following orthogonality relations

1
/ Pl (x)P(x)dx =0, if h # bk,
J—1

dx =0, if m#meand my £ —m..

/+1 P (X)P™(X)

1 1—x2

Y™ (0,0)Y/™(6, ,
/ L (0:)Y, (’p)dedpzo, it my # —mo.
S

sing@
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Decomposition on basis functions Spherical Harmonics and A i L

The functions Y™ are the eigenvalues of the Laplace-Beltrami operator —Ag
defined on S. They satisfy the following orthogonality relations:

/ Y™ (0,0) Y (0, ) sin 0d0dp = 567 (84)

[ (@rad Y[ (0. ) - gradi Y™ (0. ) sin oty = 0. my 7 me. 1 # k. (85)
S DY = I+ )Y, LeY = mY] (86)

LY = IEm)ma) Y, Loy = (Em(Fm) Y. (87)

(214+1)EPP = (1= m+1) P4 (€) + (I + m) P4 (©);

(- %L - 2,% ((1)(1m) P () — 10-m+1) P4 () )

V=@ %l = (=m0 m) PP - PPO);
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Decomposition on basis functions Operators on the disc

Operators on the disc

We associate to the functions Us(x™) and U,s(x™)), defined on the sphere S*
(variables: 0, ¢), the functions us(x) and uas(x) defined on the disc D
(variables: p = sin(0), ¢, 0 < 0 < 7), where x is the projection on the disc of

the vector x*. We define the following vectors gradm and curlb as

ou 190u
gradDu(X) = %ep + ;%ep (89)
- 10u ou
ipux) = —~ e + Ye, 90
curlpu(x) papep + 8pey (90)

We define the operators £, £, L3 of derivation on the disc

ou 10u
_ Al —
Liu=e <0p+l,oa¢>
ou 10u
—eg (=2 1
Lou=e(—5 i o) (1)
10u
LiUu=——
st i dp
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Decomposition on basis functions Operators on the disc

They trivially satisfy
Liu=—-L_T L_u=-L,U Lau=—L3U (92)

When u = 0 or v = 0 on the circle ¢, an integration by part give the result

ou 10u ov 10v
2N I .
/De (8/) +i a(ﬂ)v;)dpd ./De (Op +i 0¢>Updpd(,0 (93)

which means that the operators £, £ and L3 are formally anti-adjoint with
respect to the duality in L?(ID).

1 10, 0 1 62
We have
(Eﬁﬁgu(x).aﬁﬁgv(y» = (gradgu(x).gradmv(y)>
(95)

,% <£+ u(x) Lo v(y)+ L u(x) Ly V(V))
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Images of the Spherical Harmonics
Images of the Spherical Harmonics

The parity of the Spherical Harmonics Y,” with respect to the variable
x = cos(6) is the parity of / + m. Thus the vectorial space Y generated by the
Spherical Harmonics Y/";0 < I, —/ < m </, can be split into two subspaces
Ys and Y5 defined on ST which are respectively :

Ys={Y/",0</l;, —I<m<I, |I+m even}

Yas ={Y™ 1<, —I+1<m</[/-1; [+ m odd}
The Spherical Harmonics functions Y;™ are an orthogonal basis and thus

/ (Y)Y (x)) sin(6)dvdy = %5{;5%, (96)
/ (gradg Y™ (x).gradSVZ’z(x)> sin(#)dody = 15/(/ + 1)5{126%, (97)

N 1 i
/ (mgy,@(x).mgyf (x)) sin(6)dody = S0+ )5k, (98)
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Decomposition on basis functions Images of the Spherical Harmonics

We introduce now the functions y,” defined on the disc D, images of the
Spherical Harmonics, which are

V(0. 0) = A MPPI( (1=2)); v (0, )
. {(/+ 1/2) (/m)!}‘/2

(_1)mylm(pa *P)*

2_ 2, 2
pr=XrE X =

2r  (I+m)! §= Vi,

YT (0.32) = CFT ) () (1 =€) €= /168 + 22)

m o am ((F1/2) (1=m)\ 2 (<)
Cr=(=1) ( 2r (l+m)!> oI

We associated to the two subspaces Y and Y45 defined on ST, the
corresponding subspaces on the disc D:

Vs ={y"(x) = Y"(x"); Y[" €Y}

Vas = {ylm(x) = Ylm(x+)? Y/m € Yas}

(99)
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Decomposition on basis functions Images of the Spherical Harmonics

1 3 . 3
yé’(p,-,s0)='\/4*;y?(p,,sa)=—'\/87re"“ﬂ: i 0)=\ g€ Fp:
=\ - \/ (1-p2);  ¥3(s =\ 16~ 5 (2 3p?) (100)
15 s 15 i
20 0) =\ g\ (10271 35 (0. 0) = [ g/ (1-P)e "

Using (96), we obtain, in each subspace Vs and ) s, the orthogonal identity

1
/ AL y'2 )dpdw=§5/'f5$$-, (101)

Remark

The two subspaces of spherical harmonics Y and Y55 are mutually
orthogonal on the sphere S, but this is not the case on the half sphere S*.
Thus the two subspaces y|" € Vs and y" € )45 are not mutually orthogonal
on the disk D.
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Decomposition on basis functions

Let define the space: L%W (D) = {u(x), ”—; c L'(D)}, associated to the weight

w(x) = 1/1—p(x)?. Then both sets {y/7 € Ys} and {y/" € Vas} are an
orthogonal basis in the space L? (D).

Due to the properties of the associated Legendre functions, the functions in
the space Y5 have a bounded non zero value and a bounded normal

derivative closed to the circle ¢.
The functions in the space ) s have closed to the circle ¢, a value which goes

1

to zero as /(1 —p? and a normal derivative which explodes as ———.
V(=p P 2

A function uys in the space )5 can be extended on the basis {y;"} which is an

orthogonal basis in the weighted space L2 (D) and a basis in the space H} (D).

Uss=> S UMy —l+1<m<I/—1; [+m odd  (102)

1</ m
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Decomposition on basis functions D ition on basis

A function us in the space )s can be extended on the basis {y;”} which is an
orthogonal basis in the weighted space L2 (D) and a basis in the space

H' (D).
us=> > uly™ —I<m<I, I+m even (103)

1<l m

We consider the associated weighted space L2(D) ={u(x), wu? € L' (D)}.

Then both sets {y, } for {y/” € Ys} and {y, } for {y/" € YVas} are an orthogonal

basis in the space L2,(D). A function u can be extended on the basis {%} for
{y™ € Ys} which is an orthogonal basis in the weighted space L2(D)

m
U:ZZU,’”}L; —I<m</[; I+m even (104)

m
A function u can be also extended on the basis {y#} for {y/" € YVas} which is

an orthogonal basis in the weighted space L2,(D) and a basis in L2(DD).

u—ZZumy’; J+1<m<I-1. I+m odd (105)

1<l m
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Operators associated to the Laplace equation
Operators associated to the Laplace equation

We denote as £ S, £LSas, LN s, LN 55 the integral operators associated to the
Laplace equation in the exterior of the disc D.
R .
The kernel associated to the operator £ S s is Ir Xy while the kernel
X —

. o1 1 1 1
associated to the operator LN zsis — ——— = ——Ap(——

4r 1x—y[? 47 X—Y| )
So in order to feet with the above variational formulations (53) and (60) and
the properties of the kinetic moments, we defined the operator LN; as

LNg = _% (c_ 0LSps 0 L4 + L4 0LSas 0 .c_) (106)

and the operator LS; as the solution of the equation

LNs = f%(z:_ oLSso Ly + Ly oLSSoL_) (107)
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Expression of the kernels

S. Krenk and P. A. Martin [2] have showed that the operator LN, satisfies

7l
LNy = a;"W(/x); —J+1<m</—-1;1+m odd; [>1;
|—m+2 2 .2 I+m+2 |—m+2 (108)
e N
(B0 (5! 4 (N (=)
The function Gamma (denoted as I') of the complex variable, is
T 1
109)
1 (2n)! 2n—1) (
r(”é):ﬁzznm:ﬁW o (@i )

We will give now an exact expression of these kernels, using an adequate
expansion on the basis functions associated to the spaces Vs and V.
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Decomposition on basis functions Expression of the kernels

Theorem

Forallx,y € D x D, (x #Y), LKs, LKzs, LNKs, LNKzs admits the expansions:

LKs(x.y) ZZ ( YPYHYT YY) )i~ < m < | 1+m even. (110)
o</ m

Kasl )= Y ( VYV ()Y(Y)i—H1 <m < Itk odd. (1)
o<l m

X 7m 7mx m
LNKs(X,y)= ZZB, (y, (y){y (x) ¥, (;)>;/§mgl;/+meven.

o<l m

(112)

LNKzs(X, y)= OZ:/ zm: ( ((yy))+yv’v((:)) yv’v((yy))> \—H1 < m < F1; Fm odd.

(113)

v
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Decomposition on basis functions Expression of the kernels

Using (87) we obtain the identities (114) which associated to (106) , and to

ylm+1
Loy =/ (—m)(Hm+1) 7;
V(1 )

T y/ (114)
=/ (Hm)(l-m+1) ;
JT)
= %, Bl =p7"= 4, 1a? = 1 leads to the links between «/" and 3"
™
I+m(—-m+1) (—m)(l+m+1)
6" = 5 ( + .|+ meven
7= (e ) (115)
a;,,:%<(/+m)§ m+1)+( )gfn:m+1)>; I+ modd
Using (115), we obtain others expressions for /" and 5/ :
a' = %(HE’;""W(%)) (I'I ’:1"’ R /2(21; 1 )); |+ modd
(116)
) I+ meven

o= (T ) (1
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Decomposition on basis functions Expression of the kernels

Let the operator of x and y: A, = (£_(X) L(Y) + L+(X) L_(Y))
The kernels LK and LNK,s and the kernels LK,s and LNK; are linked by

— AplKs = LNKas;  A5LKzs = LNKs (117)

The kernels LKs, LK;s, LNK;s and LNKs satisfies the identity:

/LnydD =3, / \/1—/) 2sin®(a)dey;

/D LKas(X, y)d(X) :% (1= p(y)?).

. (118)
™/ (1= p(y)?)

' 1 K ,
f;\ LNKss (%, V)b () = ~ 5 iy /O V1 - p(y)2sin?(a)da

f;ﬁ LNK;(x, y)ds (X) = —
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ions Expression of the kernels

Lemma

The kernel LK35(X,Y) has the following value

LKs(x,y) =

V(=p(x)?)/(1-p(y)?)

arctan <

2[|x —y|| x =yl

while the kernel LNKs(x,y) has the following value

\/(1*/)(X)2)\/(1*p(y)2)>
x—vl

LNKs(x,y) = 3 arctan(

2 || %=yl

).

(119)

+

(1-20(x)0(y) cos(®) + p(x)2p(y)? cos(2®) ) (1= (¥)?) v/ (T-0(X)?)

72 [x-y | (Ix-yI2H1-p(02) (1-p(y)?))

(1-20(x)(y) cos(®) + p(x)2p(y)? cos(20) )

P (000 Iy 241 02) (1-(y)?))
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