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Abstract

We introduce variational formulations for the weakly- and hyper-singular
operators (as well as for their corresponding inverses) associated to the
Laplace operator in the domain of R3 exterior to a flat open disk in R3. Using
adequate basis functions on the disk, we obtain an exact expression for the
associated kernels. This work is an extension to R3 of the article by
Jerez-Hanckes and Nédélec (2012, Explicit variational forms for the inverses
of integral logarithmic operators over an interval ([3])).

J.C. Nédélec (CMAP ) Bendali-65 12/12/17 3 / 56



Log-Kernel

Log-Kernel
Consider first the isotropic space R2 divided into two half-planes:

π± :=
{

x ∈ R2 : x2 ≶ 0
}

(1)

with interface Γ given by the line x2 = 0. The interface is further divided into
the open disjoint segments Γm := (−1,1)× {0} and Γf := Γ \ Γ̄m.
Consequently, we have defined the domain Ω := R2 \ Γ̄m. We seek u such
that {

−∆u = 0 for x ∈ Ω

u = g for x ∈ Γm; with g ∈ H1/2(Γm).
(2)

Then, the potential u can be represented as a single layer potential:

u(x) = L1ϕ =
1
π

∫
Γm

log
1

|x− y|
ϕ(y)dy , for x ∈ Ω , (3)

Then ϕ is the solution of the logarithmic integral equation:

g(x) =
1
π

∫
Γm

log
1

|x− y|
ϕ(y)dy for x ∈ Γ . (4)
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Log-Kernel

The equation (4) has a variational formulation in the space H̃−1/2
0 (Γm) which is:

1
π

∫
Γm

∫
Γm

log
1
|τ−t |

ϕ(t)ϕt (τ)dtdτ =

∫
Γm

g(τ)ϕt (τ)dτ,∀ϕt ∈ H̃−1/2
0 (Γm) (5)

This operator is a bijection between H̃−1/2
0 (Γm) and the space H1/2

∗ (Γm) of

functions in H1/2(Γm) satisfying
∫

Γm

1√
1− t2

g(t) dt = 0. and we have

1
π

∫
Γm

∫
Γm

log
1
|τ−t |

ϕ(t)ϕ(τ)dtdτ≥C ‖ϕ‖2
H̃−1/2

0 (Γm)
,∀ϕ∈ H̃−1/2

0 (Γm). (6)

The inverse operator is a bijection of H1/2
∗ (Γm) onto H̃−1/2

0 (Γm). This operator
N1 is symmetric and coercive in the space H1/2

∗ (Γm). It admits two variational
formulations. Let M(x , y) be the function

M(x , y) =
1
2

(
(y − x)2 +

(√
1− x2 +

√
1− y2

)2
)

(7)

L2g =
1
π

∫
Γm

log
{

M(x , y)

|x − y |

}
g(y)dy (8)
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Log-Kernel

The first one is:

(N1g,gt ) =
1
π

∫
Γm

∫
Γm

log
{

M(x , y)

|x − y |

}
g′(x)

(
gt (y)

)′
dydx=

∫
Γm

ϕ(x)gt (x)dx (9)

for all gt ∈ H1/2
∗ (Γm), which gives a first norm on the space H1/2

∗ (Γm):

1
π

∫
Γm

∫
Γm

log
[

M(x , y)

|x − y |

]
g′(x) g′(y) dy dx ≥ C ‖g‖2

H1/2
∗ (Γm)

;∀g ∈ H1/2
∗ (Γm) (10)

The second one is
1

2π

∫
Γm

∫
Γm

d2

dxdy
log
[
M(x , y)

|x − y |

]
(g(x)−g(y))

(
gt (x)−gt (y)

)
dydx =

∫
Γm

ϕ(x)gt(x)dx (11)

for all gt ∈ H1/2
∗ (Γm),

So we have a second norm on the space H1/2
∗ (Γm) which is:

1
2π

∫
Γm

∫
Γm

{
1− xy

w(x)w(y)

}
(g(x)−g(y))2

(x − y)2 dydx≥C ‖g‖2
H1/2

∗ (Γm)
,∀g∈H1/2

∗ (Γm) (12)

where the weight function w is given by

w(x) :=
√

1 − x2 for x ∈ (−1,1). (13)
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Log-Kernel

We can also consider the Neumann problem{
−∆u = 0 for x ∈ Ω

γ+
m∂nu = γ−m∂nu = ϕ for x ∈ Γm, ϕ ∈ H−1/2(Γm)

(14)

which can be represent as a double layer potential of harmonic solution in the
domain Ω of the form .

u(x) =
1
π

∫
Γm

x2

|x− y|2
α(y)dy , for x ∈ Ω , (15)

Then the unknown α is the solution of the hyper singular integral equation:

ϕ(x) = N2 α =
1
π

∮
Γm

1

|x − y |2
α(y)dy for x ∈ Γ . (16)

where α is also the jump of the Dirichlet trace of the solution of problem (14).
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Log-Kernel

A variational formulation of the integral equation (16) in the space H̃1/2(Γm) is

1
π

∫
Γm

∫
Γm

log
1
|τ−t |

α′(t)(αt (τ))
′
dtdτ =

∫
Γm

ϕ(τ)αt (τ)dτ,∀αt ∈ H̃1/2(Γm) (17)

The associated operator D̃ is a bijection from H̃1/2(Γm) to H−1/2(Γm).
Moreover, this bilinear form is coercive, i.e.,

1
π

∫
Γm

∫
Γm

log
1
|τ−t |

α′(t)α(τ)′dtdτ≥C ‖α‖2
H̃1/2(Γm)

,∀α ∈ H̃1/2(Γm). (18)

This operator admits a second variational formulation which is

1
2π

∫
Γm

∫
Γm

(α(x)−α(y))
(
αt (x)−αt (y)

)
|x − y |2

dxdy +
1
π

∫
Γm

α(x)αt (x)

1− x2 dx =

∫
Γm

ϕ(x)αt (x)dx (19)

for all αt ∈ H̃1/2(Γm), and the next expression is a norm on H̃1/2(Γm)

1
2π

∫
Γm

∫
Γm

(α(x)−α(y))2

|x − y |2
dxdy +

1
π

∫
Γm

α(x)2

1−x2 dx ≥ C ‖α‖2
H̃1/2(Γm)

,∀α∈ H̃1/2(Γm) (20)
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Log-Kernel

The inverse operator is a bijection of H−1/2(Γm) onto H̃1/2(Γm). The
associated operator is symmetric and coercive in the space H−1/2(Γm).
It admits the following variational formulation:

1
π

∫
Γm

∫
Γm

log
[

M(x , y)

|x − y |

]
ϕ(x)ϕt (y)dydx =

∫
Γm

α(x)ϕt (x)dx , ∀ϕ∈H−1/2(Γm) (21)

and thus the following expression is a norm on the space H−1/2(Γm)

1
π

∫
Γm

∫
Γm

log
[

M(x , y)

|x − y |

]
ϕ(x)ϕ(y)dydx≥C ‖ϕ‖2

H−1/2(Γm) , ∀ϕ∈H−1/2(Γm) (22)
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Log-Kernel

The operators L1, L2, N1, N2, D, D∗ are linked by the identities

L2 ◦ N2 = −L2 ◦ D∗ ◦ L1 ◦ D = I , I ∈ H̃1/2(Γm)

L1 ◦ N1 = −L1 ◦ D ◦ L2 ◦ D∗ = I , I ∈ H1/2
∗ (Γm)

N1 ◦ L1 = −D ◦ L2 ◦ D∗ ◦ L1 = I , I ∈ H̃−1/2
0 (Γm)

N2 ◦ L2 = −D∗ ◦ L2 ◦ D ◦ L1 = I , I ∈ H−1/2(Γm)

L1 ◦ D is continuous and invertible from H̃1/2(Γm) into H1/2
∗ (Γm).

L2 ◦ D∗ is continuous and invertible from H1/2
∗ (Γm) into H̃1/2(Γm).

D∗ ◦ L1 is continuous and invertible from H̃−1/2
0 (Γm) into H−1/2(Γm).

D ◦ L2 is continuous and invertible from H−1/2(Γm) into H̃−1/2
0 (Γm).

The Dirichlet and Neumann Laplacian ∆D, ∆N are linked to L1, L2 and N1, N2:

L1 = (−∆D)−
1
2 ; −N1 = (−∆D)

1
2 ;

L2 = (−∆N)−
1
2 ; −N2 = (−∆N)

1
2 .
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The disc in R3 Hilbert Spaces for a disc

The disc in R3

We try now to extend these results to the unit disc in R3.

We Introduce the splitting of the space R3 into two half-spaces
π± :=

{
x ∈ R3 : x3 ≷ 0

}
, by the plane x3 = 0 that will be denote as Γ.

Let c be the circle of center at the origin and of radius 1 in the plane Γ.
Let D be the plane disc delimitated by the circle c and D the associated flat
domain in R3.
Now its complement in R2, is Γf := Γ \ D̄.
Henceforth, the problem domain is denoted by Ω := R3 \ D̄.
We also consider the sphere S of radius 1 and center at the origin in R3.
The disc D divide this sphere into two half-sphere that we denote respectively
S+ and S−.
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The disc in R3 The unit sphere in R3 and its equatorial disc

The unit sphere in R3 and its equatorial disc
We consider the unit sphere S in R3 (Fig. 1) and the spherical coordinates:
(r , θ, ϕ), where r is the radius and θ, ϕ the two Euler angles. x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ,
x3 = r cos θ.

(25)

M

x3

x2
x1

m

�!e'

O
�!e�

'
�

Fig. 1: Spherical coordinates
The vectors eθ and eϕ are unitary. The vector eρ directed along Om is unitary.
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The disc in R3 The unit sphere in R3 and its equatorial disc

– A point x on the circular domain D will be defined using its coordinates
(x1, x2) or in circular coordinates by (0 ≤ ρ ≤ 1,0 ≤ ϕ ≤ 2π).

– A point x+ (resp. x−) on the half sphere S+ (resp. S−) will be defined using
(0 ≤ θ ≤ π

2 ,0 ≤ ϕ ≤ 2π) ( resp. (π2 ≤ θ ≤ π,0 ≤ ϕ ≤ 2π)).

–The projection x of a point x+ situed on the half sphere S+ onto the domain
D has for circular coordinates x : (ρ = sin(θ), ϕ).

– The projection x of a point x− situed on the half sphere S− onto the domain
D has for circular coordinates x : (ρ = sin(θ), ϕ).

–To a point x, we associate the points x+ and x− which projections are x.
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The disc in R3 Notations

Notations

Let O ⊆ Rd , with d = 1,2, be open. We denote by C k (O) the space of
k -times differentiable continuous functions over O with k ∈ N0. Its subspace
of compactly supported functions is C k

0 (O) and for infinitely differentiable
functions we write D(O) ≡ C∞0 (D). The space of distributions or linear
functionals over D(O) is D ′(O). Also, let Lp(O) be the standard class of
functions with bounded Lp-norm over O. By S′(O) we denote the Schwartz
space of tempered distributions.
Duality products are denoted by angular brackets, 〈· , ·〉, with subscripts
accounting for the duality pairing. Inner products are denoted by round
brackets, (· , ·), with integration domains specified by subscripts. Furthermore,
operators are denoted in mild calligraphic style and complex conjugates by
overline. The adjoint of an operator will be specified by an asterisk.
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The disc in R3 Traces

The disk D is a Lipschitz domain in R2. For any s > 0, H̃s(D) is the space of
functions whose extension by zero to Γ belongs to Hs(Γ). For s = 1/2, we
have the four following different spaces

H̃−1/2(D) ≡
(

H1/2(D)
)′

and H−1/2(D) ≡
(

H̃1/2(D)
)′
, (26)

Define restrictions over the half-spaces: u± := u|π± . We introduce the trace
operators γ± : D(π±)→ D(Γ) as γ±u : = limε→ 0± u(x1, x2, ε) = γ±u±.

Theorem

We denote by γ±Γb
the trace operator:

γ±Γb
: D(π±) −→ D(Γb)

u± 7−→ γ±Γb
u± = γ±u±|Γb .

(27)

If s > 1/2, a unique extension to a bounded linear operator
γ±Γb

: Hs
loc(π±)→ Hs−1/2(Γb) can be obtained by density of D(π±) in Hs(π±).

Let [γ] := γ+ − γ− represent the jump operator across Γ. As Γ is not
orientable, we set n pointing along the positive x3-axis, i.e. n = x̂3.
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The disc in R3 Weighted Sobolev spaces

Weighted Sobolev spaces

Since the problem domain Ω is unbounded (cf. Section 11), one usually works
in either local Sobolev spaces or in weighted ones such as

W 1,−1(Ω) =

{
u ∈ D ′(Ω) :

u
(1 + r2)1/2 ∈ L2(Ω), ∇u ∈ L2(Ω)

}
, (28)

which coincides with the standard H1
loc(Ω) for a bounded part of Ω and avoids

specifying behaviors at infinity [5]. Furthermore, these weighted spaces are
Hilbert whereas local Sobolev spaces are only of Fréchet type. We also
define the subspace:

W 1,−1
0 (Ω) =

{
u ∈W 1,−1(Ω) : γ±D u = 0

}
. (29)
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The disc in R3 Weighted Sobolev spaces

Lemma ([5], Section 2.5.4)

Define the norm:
|u|21,−1,Ω :=

∫
Ω

|∇u(x)|2 dx . (30)

Then, there exists c > 0 such that

‖u‖W 1,−1
0 (Ω) ≤ c |u|1,−1,Ω , ∀ u ∈W 1,−1

0 (Ω). (31)

Moreover, this norm is also a norm on the space W 1,−1(Ω). Specifically, there
exists c > 0 such that

‖u‖W 1,−1(Ω) ≤ c |u|1,−1,Ω ∀ u ∈W 1,−1(Ω) . (32)

Now, traces on Γ for elements in W 1,−1(Ω) lie in the usual H1/2
loc (Γ), and their

restriction to a bounded Γb generates the subspace H1/2(Γb).
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The disc in R3 Dirichlet Problems

Dirichlet Problems
Instead of directly considering the standard Laplace problems, we start by
tackling a slightly different Laplace problem with two different Dirichlet
conditions g± from above and below on D. These boundary data lie in the
Hilbert space:

X :=
{

g = (g+,g−) ∈ H1/2(D)× H1/2(D) : g+ − g− ∈ H̃1/2(D)
}

(33)

with norm

‖g‖2
X :=

∥∥g+
∥∥2

H1/2(D)
+
∥∥g−

∥∥2
H1/2(D)

+
∥∥g+ − g−

∥∥2
H̃1/2(D)

.

Equivalently, we define the Hilbert space for Neumann data:

Y :=
{
ϕ = (ϕ+, ϕ−) ∈ H−1/2(D)× H−1/2(D) : ϕ+ − ϕ− ∈ H̃−1/2(D)

}
(34)

with similar norm:

‖ϕ‖2
Y :=

∥∥ϕ+
∥∥2

H−1/2(D)
+
∥∥ϕ−∥∥2

H−1/2(D)
+
∥∥ϕ+ − ϕ−

∥∥2
H̃−1/2(D)

.
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The disc in R3 Dirichlet Problems

The Dirichlet problem we consider is:

Problem

For g ∈ X, find u ∈W 1,−1(Ω) such that:
−∆ u = 0, x ∈ Ω,(
γ+
D
γ−D

)
u = g, x ∈ D.

(35)

Theorem

If g ∈ X, then the Problem (35) has a unique solution in W 1,−1(Ω).
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The disc in R3 Dirichlet Problems

The solution to Problem (35) can be split as follows. To any function u in
W 1,−1(Ω), one associates restrictions u± on π± belonging to W 1,−1(π±).
Denote by ǔ± ∈W 1,−1(Rd ) the mirror reflection of u± over π∓. Average and
jump solutions defined over R2 are written as

uavg :=
ǔ+ + ǔ−

2
,

ujmp :=
ǔ+ − ǔ−

2
,

associated to the data


gavg :=

g+ + g−

2
,

gjmp :=
g+ − g−

2
.

(36)

Normal traces can also be similarly decomposed. Due to the orientation of the
normal, they take the form:{

γD∂nuavg := 1
2 x̂3 · ∇(ǔ+ − ǔ−),

γD∂nujmp := 1
2 x̂3 · ∇(ǔ+ + ǔ−),

associated to the values

{
uavg,

ujmp,
(37)

and we have the associated Green’s formula (as
(
∇uavg , ∇vjmp

)
Ω

= 0):

(∇u , ∇v)Ω =
〈
γD∂nuavg , γDvavg

〉
H1/2(D)

+
〈
γD∂nujmp , γDvjmp

〉
H̃1/2(D)

, (38)

for v ∈W 1,−1(R2) split into average and jump parts.
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The disc in R3 Dirichlet Problems

Theorem

The solution of the Dirichlet Problem 3, is such that its Neumann trace at D
belongs to the space Y. There exists a unique Dirichlet-to-Neumann (DtN)
map D : X→ Y satisfying

〈D g , g〉X ≥ C ‖g‖2
X , (39)

for g in X, and where the vector duality product is given by:

〈D g , g〉X =
〈
D gavg , gavg

〉
H1/2(D)

+
〈
D gjmp , gjmp

〉
H̃1/2(D)

. (40)

Corollary

For g± =: g ∈ H1/2(D), the corresponding solution of Problem (35) in Ω is
symmetric with respect to Γ. Moreover, there exists a unique DtN operator
Ds : H1/2(D)→ H̃−1/2(D) satisfying

〈Ds g , g〉H1/2(D) ≥ Cs ‖g‖2
H1/2(D) . (41)
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The disc in R3 Dirichlet Problems

Corollary

For g± = ±g ∈ H̃1/2(D), the associated solution of Problem (35) is
antisymmetric with respect to Γ and there exists a unique DtN operator
Das : H̃1/2(D)→ H−1/2(D). Moreover, the energy inequality holds

〈Das g , g〉H̃1/2(D)
≥ Cas ‖g‖2

H̃1/2(D)
. (42)
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The disc in R3 Neumann problems

Neumann Problems

As in the Dirichlet case, we now define the general problem:

Problem

Find u ∈W 1,−1(R3) such that
−∆ u = 0, x ∈ Ω,(
γ+
D ∂nu
γ−D ∂nu

)
= ϕ, x ∈ D,

(43)

where ϕ belongs to the space Y.

Theorem

The Neumann Problem (43) has a unique solution in the space W 1,−1(R3) if
and only if ϕ ∈ Y.
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The disc in R3 Neumann problems

Theorem

The solution of the Neumann Problem (43), is such that its Dirichlet trace at D
belongs to the space X. There exists a unique Neumann-to-Dirichlet (NtD)
map N : Y→ X satisfying

〈N ϕ , ϕ〉Y ≥ C ‖ϕ‖2
Y , (44)

for ϕ in Y, and where the vector duality product is given by:

〈N ϕ , ϕ〉Y =
〈
N ϕavg , ϕavg

〉
H̃−1/2(Γc)

+
〈
N ϕjmp , ϕjmp

〉
H−1/2(Γc)

. (45)

Symmetric (antisymmetric) Neumann problems can be stated as follows:
Find us,uas ∈W 1,−1(R3) such that{

−∆ us = 0, x ∈ Ω,

[γD∂nus] = ϕ, x ∈ D,
and

{
−∆ uas = 0, x ∈ Ω,

γ±D ∂nuas = ϕ, x ∈ D,
(46)

for data ϕ in the space H̃−1/2(D) and ϕ in H−1/2(D) respectively.
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The disc in R3 Neumann problems

Corollary

The symmetric Neumann Problem (46) has a unique solution in W 1,−1(R3) if
and only if ϕ ∈ H̃−1/2(D. Thus, there exists a unique continuous and invertible
NtD, denoted N s : H̃−1/2(D)→ H1/2(D). Moreover, the energy inequality
holds

〈N s ϕ , ϕ〉D ≥ C ‖ϕ‖2
H̃−1/2(D)

. (47)

The inverse of this application is the operator Ds defined in Corollary 6.

Corollary

The antisymmetric Neumann problem (46)has a unique solution in W 1,−1(R3)
if and only if φ ∈ H−1/2(D). Hence, there exists a unique continuous and
invertible N as : H−1/2(D)→ H̃1/2(D) satisfying

〈N as ϕ , ϕ〉D ≥ C ‖ϕ‖2
H−1/2(D) . (48)

The inverse of this application is the operator Das defined in Corollary 7.
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The potential operators associated to the Laplace equations

We now present the main results of this work: explicit variational forms or
regularizations for the weakly- and hyper-singular operators over the disk D
and their inverses as well as associated Calderón-type identities. In fact, we
will show that there exist two equivalent forms for the inverse of the weakly
singular operator and two equivalent representations for the hypersingular
operator. Moreover, we study the mapping properties of the underlying
operators and derive useful identities for numerical applications.
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The potential operators associated to the Laplace equations

Symmetric problem and weakly singular operator

The solution of the symmetric Dirichlet and Neumann solutions are given via
the simple layer potential . For the symmetric Neumann problem, one just
simply introduces the data ϕ in the potential LSs and then the simple layer
potential gives the solution in R3.

u(y) =
1

4π

∫
D

1
‖x− y‖

ϕ(x)dD(x) y ∈ R3. (49)

The solution of the Dirichlet problem is obtained via solving the following
integral equation on D: find ϕ such that

1
4π

∫
D

1
‖x− y‖

ϕ(x)dD(x) = g(y) , y ∈ D. (50)

and then the simple layer potential (49) gives the solution in R3.
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The potential operators associated to the Laplace equations

Theorem

The symmetric variational formulation of the integral equation (50) in the
space H̃−1/2(D) is〈

LSsϕ , ϕ
t〉

D =
〈
g , ϕt〉

D , ∀ϕt ∈ H̃−1/2(D), (51)

which is coercive, i.e.

〈LSsϕ , ϕ〉D ≥ C ‖ϕ‖2
H̃−1/2(D)

, ∀ϕ ∈ H̃−1/2(D). (52)

The associated operator, N s (cf. Corollary 11), is a bijection between
H̃−1/2(D) and H1/2(D).
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The potential operators associated to the Laplace equations

Theorem
We denote by LNs the integral operator which is the inverse of LSs and is
associated to Ds (cf. Corollary 6). Its kernel is denote by LKNs. It is
symmetric and coercive in H1/2(D). It admits two variational formulations:〈

LSas curlD g , curlD gt〉
D =

〈
ϕ , gt〉

D , ∀gt ∈ H1/2(D), (53)


−1

2

∫
D×D

LNKs(x,y) (g(x)−g(y))
(
gt (x)−gt (y)

)
dD(y)dD(x)

+
4
π

∫
D

g(x)gt (x)√
(1−ρ(x)2)

dD(x)=
〈
ϕ , gt〉

D , ∀gt ∈ H1/2(D).

(54)
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The potential operators associated to the Laplace equations

These formulations in turn yield two expressions for the H1/2(D)-norm:

Theorem

〈LSas curlD g , curlD g〉D ≥ C ‖g‖2
H1/2(D) , ∀g ∈ H1/2(D). (55)


−1

2

∫
D×D

LNKs(x,y) (g(x)− g(y))2dD(y)dD(x)

+
4
π

∫
D

(g(x))2√
(1− ρ(x)2)

dD(x) ≥ C ‖g‖2
H1/2(D) .

(56)
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The potential operators associated to the Laplace equations Antisymmetric problem and hypersingular operator

Antisymmetric problem and hypersingular operator
The solution of the antisymmetric Dirichlet and Neumann solutions are given
via the double layer potential given by

LDas(u(y)) = − 1
4π

∫
D

y3

‖x− y‖3 g(x) dD(x) (57)

The solution of the antisymmetric Dirichlet problem is retrieved using the
double layer potential (57) with the data g which also give the solution in R3.

u(y) = − 1
4π

∫
D

y3

‖x− y‖3 g(x) dD(x), y ∈ R3. (58)

The solution of the Neumann problem is obtained via first solving the
following hypersingular integral equation on D: find ϕ such that

− 1
4π

∮
D

1

‖x− y‖3 g(x)dD(x) = ϕ(y), for y ∈ D, (59)

where the modified integral is understood as either a finite part integral for
sufficiently regular g or in a weak sense for functions in Sobolev spaces. Then
the double layer potential (58) gives the solution in R3.
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The potential operators associated to the Laplace equations Antisymmetric problem and hypersingular operator

We denote by LNas the hyper singular integral operator associated to the
equation (59) and by LKNas its kernel. We denote by LSas the integral
operator which is the inverse of LNas and by LKSas its kernel.

Theorem

A symmetric variational formulation for (59) in the Hilbert space H̃1/2(D) is〈
LSs curlD g , curlD gt〉

D =
〈
ϕ , gt〉

D , ∀gt ∈ H̃1/2(D). (60)

Moreover, this bilinear form is coercive, i.e.

〈LSs curlD g , curlD g〉D ;≥ C ‖g‖2
H̃1/2(D)

, ∀g ∈ H̃1/2(D). (61)

The associated operator, Das (Corollary 7), is a bijection from the space
H̃1/2(D) to H−1/2(D).
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The potential operators associated to the Laplace equations Antisymmetric problem and hypersingular operator

Theorem
This operator admits an alternative variational formulation:

1
8π

∫
D×D

(g(x)− g(y))
(
gt (x)− gt (y)

)
‖x− y‖3 dD(x)dD(y)

+
1
π

∫
D

E(ρ(x))g(x)gt (x)

(1− ρ(x)2)
dD(x); =

〈
ϕ , gt〉

D ,∀g
t ∈ H̃1/2(D).

(62)


1

8π

∫
D×D

(g(x)− g(y))2

‖x− y‖3 dD(x)dD(y)

+
1
π

∫
D

E(ρ(x))(g(x))2

(1− ρ(x)2)
dD(x) ≥ C ‖g‖2

H̃1/2(D)
, ∀g ∈ H̃1/2(D).

(63)

where the elliptic function E(ρ) is given by

E(ρ) =

∫ π
2

0

√
1− ρ2sin2(α)dα. (64)
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The potential operators associated to the Laplace equations Antisymmetric problem and hypersingular operator

Theorem

The operator LSas is symmetric and coercive in H1/2(D). It is associated to
the operator N as = D−1

as (cf. Corollary 12) and is a bijection of H−1/2(D) onto
H̃1/2(D), symmetric and coercive. It admits the following variational
formulation: 〈

LSasϕ , ϕ
t〉

D =
〈
g , ϕt〉

D , ∀φ ∈ H−1/2(D), (65)

and thus, provides a norm on the space H−1/2(D)

〈LSasϕ , ϕ〉 ≥ C ‖ϕ‖2
H−1/2(D) , ∀ϕ ∈ H−1/2(D). (66)
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Decomposition on basis functions

Decomposition on basis functions

We have introduced the four symmetric integral operators LSs,LSas,LNs,LNas
related to the Laplace equation on the disc D, such that LNs ◦ LSs = I,
LSas ◦ LNas = I. We denote the associated kernels by LKs,LKas,LNKs,LNKas.
The two kernels LKs,LNKas are known and only depends on x− y.
The two others kernels LKas,LNKs, associated to the inverse of the operators
LNas,LSs, are not the restriction on D of kernels defined in the space R3.
They depends symmetrically on the variables x and y, but not only on x− y.

The kernel of the operator LSs which is
1

4π
1

‖x− y‖
, is related to the kernel

associated to the operator LNas which is − 1
4π

1

‖x− y‖3 , via the identity

1

‖x− y‖3 = ∆D(
1

‖x− y‖
). (67)
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Decomposition on basis functions Spherical Harmonics and Associated Legendre functions

Spherical Harmonics, Associated Legendre functions
In order to obtain some explicit expressions of these kernels and also some
links between them, we introduce some basis functions related to the well
known spherical harmonics. These spherical harmonics functions, define on
the sphere S of radius one associated to the disk D as an equatorial plan. The
spherical harmonics are the eigenfunctions of the Laplace-Beltrami operator
also define on the sphere S. We introduce here the spherical harmonics and
the associated kinetic moments.
The Rodrigues formula gives the expression of the Legendre polynomial Pl :

Pl (x) =
(−1)l

2l l!

(
d
dx

)l

(1− x2)l . (68)

The Spherical Harmonics are the functions Y m
l (x , ϕ) = γm

l eimϕPm
l (x),

solutions with separate variables of the differential equation ( x = x3 )

1
1− x2

∂2u
∂ϕ2 +

∂

∂x

(
(1− x2)

∂

∂x
u
)

+ l(l + 1)u = 0. (69)

Y m
l (x , ϕ) = γm

l eimϕPm
l (x) (70)
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Decomposition on basis functions Spherical Harmonics and Associated Legendre functions

The functions Pm
l (x), called the Associated Legendre functions, are the

solutions of the differential equation

d
dx

(
(1− x2)

d
dx

Pm
l

)
+ l(l + 1)Pm

l −
m2

1− x2P
m
l = 0. (71)

For m = 0, Y 0
l is the Legendre polynomial Pl .

In order to describe the functions Y m
l , we introduce the kinetic moments

L+,L−,L3, express in the angles (θ, ϕ), (x3 = cos(θ))

L3u =
1
i
∂

∂ϕ
u. (72)

L+u = eiϕ
(
∂

∂θ
u + i

cosθ
sinθ

∂

∂ϕ
u
)
. (73)

L−u = e−iϕ
(
− ∂

∂θ
u + i

cosθ
sinθ

∂

∂ϕ
u
)
. (74)

The kinetic moments L+,L−,L3, satisfy the relations of commutation:

[L+,L−] = 2L3, where [A,B] = AB − BA. (75)

[L3,L+] = L+, [L3,L−] = −L−, (76)
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Decomposition on basis functions Spherical Harmonics and Associated Legendre functions

The Laplace-Beltrami operator ∆S is then ∆S = − 1
2 (L+L− + L−L+)− (L3)2

and the following relation of commutation hold:

[∆S,L+] = [∆S,L−] = [∆S,L3] = 0. (77)

This relations of commutation (77) show that each eigenspace of the operator
∆S is invariant by the action of the operators L+,L− and L3. So the spherical
harmonics of order l are the 2l + 1 solutions of the equation (69) of the form

Y m
l (θ, ϕ) =

[
(l + 1/2)

2π
(l −m)!

(l + m)!

]1/2

eimϕPm
l (cosθ). (78)

The associated Legendre Pm
l (cosθ) are define using the Legendre functions

Pm
l (cosθ) = (sinθ)m

(
d
dx

)m

Pl (cosθ); if 0 ≤ m ≤ l ,

P−m
l (x) = (−1)m (l −m)!

(l + m)!
Pm

l (x), if − l ≤ m ≤ l ,

Pm
l (cosθ) =

(−1)l+m

2l l!
(l + m)!

(l −m)!
(sinθ)−m

(
d
dx

)l−m

(1− x2)l .

Pm
l (x) =

(−1)l+m

2l l!
(1− x2)m/2

(
d
dx

)l+m

(1− x2)l .

(79)
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Decomposition on basis functions Spherical Harmonics and Associated Legendre functions

They satisfies
∫ +1

−1
(Pl (x))2 dx =

1
l + 1/2

;

Pl (1) = 1, l ≥ 0; Pl (0) = 0, l odd; P2l (0) =
(−1)l

2l l!
, l ≥ 0.

(80)

Their parity is l + m. They satisfy the following orthogonality relations∫ +1

−1
Pm

l1 (x)Pm
l2 (x)dx = 0, if l1 6= l2, (81)

∫ +1

−1

Pm1
l (x)Pm2

l (x)

1− x2 dx = 0, if m1 6= m2 and m1 6= −m2. (82)

∫
S

Y m1
l (θ, ϕ)Y m2

l (θ, ϕ)

sin θ
dθdϕ = 0, if m1 6= −m2. (83)
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Decomposition on basis functions Spherical Harmonics and Associated Legendre functions

The functions Y m
l are the eigenvalues of the Laplace-Beltrami operator −∆S

defined on S. They satisfy the following orthogonality relations:∫
S

Y m1
l1 (θ, ϕ)Y m2

l2 (θ, ϕ) sin θdθdϕ = δl2
l1 δ

m2
m1
. (84)

∫
S

(
−−−→
gradSY m1

l1 (θ, ϕ) ·
−−−→
gradSY m2

l2 (θ, ϕ)) sin θdθdϕ = 0, m1 6= m2, l1 6= l2. (85)

−∆SY m
l = l(l + 1)Y m

l , L3Y m
l = mY m

l , (86)

L+Y m
l =

√
(l−m)(l+m+1)Y m+1

l , L−Y m
l =

√
(l+m)(l−m+1)Y m−1

l . (87)



(2l + 1)ξPm
l = (l −m + 1) Pm

l+1(ξ) + (l + m) Pm
l−1(ξ);

(1−ξ2)
∂Pm

l
∂ξ

=
1

2l + 1

(
(l+1)(l+m) Pm

l−1(ξ)− l(l−m+1) Pm
l+1(ξ)

)
;√

(1− ξ2)
∂Pm

l
∂ξ

=
1
2

(
(l −m + 1)(l + m) Pm−1

l (ξ)− Pm+1
l (ξ)

)
;

(88)
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Decomposition on basis functions Operators on the disc

Operators on the disc
We associate to the functions Us(x+) and Uas(x+)), defined on the sphere S+

(variables: θ, ϕ), the functions us(x) and uas(x) defined on the disc D
(variables: ρ = sin(θ), ϕ, 0 ≤ θ ≤ π

2 ), where x is the projection on the disc of
the vector x+. We define the following vectors

−−−→
gradD and

−−→
curlD as

−−−→
gradDu(x) =

∂u
∂ρ

eρ +
1
ρ

∂u
∂ϕ

eϕ (89)

−−→
curlDu(x) = −1

ρ

∂u
∂ϕ

eρ +
∂u
∂ρ

eϕ (90)

We define the operators L+, L−, L3 of derivation on the disc

L+ u = eiϕ
(∂u
∂ρ

+ i
1
ρ

∂u
∂ϕ

)
L− u = e−iϕ

(
−∂u
∂ρ

+ i
1
ρ

∂u
∂ϕ

)
L3 u =

1
i
∂u
∂ϕ

(91)
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Decomposition on basis functions Operators on the disc

They trivially satisfy

L+ u = −L− u; L− u = −L+ u; L3 u = −L3 u (92)

When u = 0 or v = 0 on the circle c, an integration by part give the result∫
D
eiϕ
(∂u
∂ρ

+ i
1
ρ

∂u
∂ϕ

)
v ρdρdϕ = −

∫
D
eiϕ
(∂v
∂ρ

+ i
1
ρ

∂v
∂ϕ

)
u ρdρdϕ (93)

which means that the operators L+, L− and L3 are formally anti-adjoint with
respect to the duality in L2(D).

∆D = −1
2

(
L+ L−+L− L+

)
=
(1
ρ

∂

∂ρ
(ρ
∂

∂ρ
) +

1
ρ2

∂2

∂ϕ2

)
(94)

We have 
(−−→

curlDu(x).
−−→
curlDv(y)

)
=
(−−−→

gradDu(x).
−−−→
gradDv(y)

)
= −1

2

(
L+ u(x)L− v(y) + L− u(x)L+ v(y)

) (95)

J.C. Nédélec (CMAP ) Bendali-65 12/12/17 42 / 56



Decomposition on basis functions Images of the Spherical Harmonics

Images of the Spherical Harmonics

The parity of the Spherical Harmonics Y m
l with respect to the variable

x = cos(θ) is the parity of l + m. Thus the vectorial space Y generated by the
Spherical Harmonics Y m

l ; 0 ≤ l ;−l ≤ m ≤ l , can be split into two subspaces
Ys and Yas defined on S+ which are respectively :

Ys = {Y m
l ; 0 ≤ l ; −l ≤ m ≤ l ; l + m even}

Yas = {Y m
l ; 1 ≤ l ; −l + 1 ≤ m ≤ l − 1; l + m odd}

The Spherical Harmonics functions Y m1
l1 are an orthogonal basis and thus∫

S+

(
Y m1

l1 (x)Y
m2

l2 (x)
)

sin(θ)dθdϕ =
1
2
δl2

l1 δ
m2
m1
, (96)

∫
S+

(−−−→
gradSY m1

l1 (x).
−−−→
gradSY

m2

l2 (x)
)

sin(θ)dθdϕ =
1
2

l(l + 1)δl2
l1 δ

m2
m1
, (97)

∫
S+

(−−→
curlSY m1

l1 (x).
−−→
curlSY

m1

l1 (x)
)

sin(θ)dθdϕ =
1
2

l(l + 1)δl2
l1 δ

m2
m1
, (98)
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Decomposition on basis functions Images of the Spherical Harmonics

We introduce now the functions ym
l defined on the disc D, images of the

Spherical Harmonics, which are

ym
l (ρ, ϕ) = γm

l eimϕPm
l (
√

(1−ρ2)); y−m
l (ρ, ϕ) = (−1)mym

l (ρ, ϕ),

ρ2 = x2
1 + x2

2 , γm
l =

[
(l + 1/2)

2π
(l−m)!

(l +m)!

]1/2

, ξ =
√

1−ρ2,

ym
l (x1, x2)=Cm

l (x1+ix2)m(
d
dξ

)l+m(1−ξ2)l , ξ =
√

1−(x2
1 + x2

2 ),

Cm
l =(−1)m

(
(l +1/2)

2π
(l−m)!

(l +m)!

)1/2
(−1)l

2l l!
.

(99)

We associated to the two subspaces Ys and Yas defined on S+, the
corresponding subspaces on the disc D:

Ys = {ym
l (x) = Y m

l (x+); Y m
l ∈ Ys}

Yas = {ym
l (x) = Y m

l (x+); Y m
l ∈ Yas}
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Decomposition on basis functions Images of the Spherical Harmonics



y0
0 (ρ, , ϕ)=

√
1

4π
; y1

1 (ρ, , ϕ)=−
√

3
8π

eiϕρ; y−1
1 (ρ, , ϕ)=

√
3

8π
e−iϕρ;

y0
1 (ρ, , ϕ)=

√
3

4π

√
(1−ρ2); y0

2 (ρ, , ϕ)=

√
5

16π
(2−3ρ2)

y1
2 (ρ, , ϕ)=−

√
15
8π
ρ
√

(1−ρ2)eiϕ; y−1
2 (ρ, , ϕ)=

√
15
8π
ρ
√

(1−ρ2)e−iϕ.

(100)

Using (96), we obtain, in each subspace Ys and Yas, the orthogonal identity∫
D

ym1
l1 (x)ym2

l2 (x)√
(1− ρ2)

ρdρdϕ =
1
2
δl2

l1 δ
m2
m1
, (101)

Remark
The two subspaces of spherical harmonics Ys and Yas are mutually
orthogonal on the sphere S, but this is not the case on the half sphere S+.
Thus the two subspaces ym

l ∈ Ys and ym
l ∈ Yas are not mutually orthogonal

on the disk D.
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Decomposition on basis functions Decomposition on basis functions

Decomposition on basis functions

Let define the space: L2
1
w

(D) = {u(x), u2

w ∈ L1(D)}, associated to the weight

w(x) =

√
1−ρ(x)2. Then both sets {ym

l ∈ Ys} and {ym
l ∈ Yas} are an

orthogonal basis in the space L2
1
w

(D).
Due to the properties of the associated Legendre functions, the functions in
the space Ys have a bounded non zero value and a bounded normal
derivative closed to the circle c.
The functions in the space Yas have closed to the circle c, a value which goes

to zero as
√

(1−ρ2 and a normal derivative which explodes as
1√

(1−ρ2
.

A function uas in the space Yas can be extended on the basis {ym
l } which is an

orthogonal basis in the weighted space L2
1
w

(D) and a basis in the space H1
0 (D).

uas =
∑
1≤l

∑
m

um
l ym

l ; −l + 1 ≤ m ≤ l − 1; l + m odd (102)
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Decomposition on basis functions Decomposition on basis functions

A function us in the space Ys can be extended on the basis {ym
l } which is an

orthogonal basis in the weighted space L2
1
w

(D) and a basis in the space

H1(D).
us =

∑
1≤l

∑
m

um
l ym

l ; −l ≤ m ≤ l ; l + m even (103)

We consider the associated weighted space: L2
w (D) ={u(x),wu2 ∈ L1(D)}.

Then both sets {
ym

l
w

} for {ym
l ∈ Ys} and {

ym
l

w
} for {ym

l ∈ Yas} are an orthogonal

basis in the space L2
w (D). A function u can be extended on the basis {

ym
l

w
} for

{ym
l ∈ Ys} which is an orthogonal basis in the weighted space L2

w (D)

u =
∑
0≤l

∑
m

um
l

ym
l

w
; −l ≤ m ≤ l ; l + m even (104)

A function u can be also extended on the basis {
ym

l
w

} for {ym
l ∈ Yas} which is

an orthogonal basis in the weighted space L2
w (D) and a basis in L2(D).

u =
∑
1≤l

∑
m

um
l

ym
l

w
; −l + 1 ≤ m ≤ l − 1; l + m odd (105)
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Decomposition on basis functions Operators associated to the Laplace equation

Operators associated to the Laplace equation

We denote as LSs,LSas,LN s,LN as the integral operators associated to the
Laplace equation in the exterior of the disc D.

The kernel associated to the operator LSas is
1

4π
1

|x−y|
while the kernel

associated to the operator LN as is
1

4π
1

|x−y|3
= − 1

4π
∆D(

1
|x−y|

).

So in order to feet with the above variational formulations (53) and (60) and
the properties of the kinetic moments, we defined the operator LNs as

LNs = −1
2

(
L− ◦LSas ◦ L+ + L+ ◦LSas ◦ L−

)
(106)

and the operator LSs as the solution of the equation

LNas = −1
2

(
L− ◦LSs ◦ L+ + L+ ◦LSs ◦ L−

)
(107)
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Expression of the kernels

S. Krenk and P. A. Martin [2] have showed that the operator LNas satisfies
LNasym

l = −αm
l

ym
l

w(x)
; −l + 1 ≤ m ≤ l − 1; l + m odd; l ≥ 1;

αm
l =

Γ( l+m+2
2 ) Γ( l−m+2

2 )

( l+m−1
2 )! ( l−m−1

2 )!
= (

(l + 1)2 −m2

4
)

Γ( l+m+2
2 ) Γ( l−m+2

2 )

( l+m+1
2 )! ( l−m+1

2 )!
;

(108)

The function Gamma (denoted as Γ) of the complex variable, is
Γ(z + 1) = zΓ(z); Γ(1− z)Γ(z) =

π

sin(πz)
; Γ(

1
2

) =
√
π :

Γ(n +
1
2

) =
√
π

(2n)!

22nn!
=
√
π

(2n − 1)!

22n−1(n − 1)!
=

√
π

2n

(
Πn−1

i=1 (2i + 1)
) (109)

We will give now an exact expression of these kernels, using an adequate
expansion on the basis functions associated to the spaces Ys and Yas.
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Theorem
For all x,y ∈ D × D, ( x 6= y), LKs, LKas, LNKs, LNKas admits the expansions:

LKs(x,y)=
∑
0≤l

∑
m

1
βm

l

(
ym

l (x)ym
l (y)+ym

l (x)ym
l (y)

)
;−l ≤ m ≤ l ; l+m even. (110)

LKas(x,y)=
∑
0≤l

∑
m

1
αm

l

(
ym

l (x)ym
l (y)+ym

l (x)ym
l (y)

)
;−l+1≤m ≤ l−1;l+m odd. (111)

LNKs(x,y)=−
∑
0≤l

∑
m

βm
l

(
ym

l (x)

w(x)

ym
l (y)

w(y)
+

ym
l (x)

w(x)

ym
l (y)

w(y)

)
;−l ≤ m ≤ l ; l+m even.

(112)

LNKas(x,y)=−
∑
0≤l

∑
m

αm
l

(
ym

l (x)

w(x)

ym
l (y)

w(y)
+

ym
l (x)

w(x)

ym
l (y)

w(y)

)
;−l+1 ≤ m ≤ l−1; l+m odd.

(113)
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Using (87) we obtain the identities (114) which associated to (106) , and to
L+ ym

l =
√

(l−m)(l+m+1)
ym+1

l√
(1−ρ2)

;

L− ym
l =

√
(l+m)(l−m+1)

ym−1
l√

(1−ρ2)
;

(114)

α0
1 =

π

4
, β1

1 = β−1
1 =

4
π
, β1

1α
0
1 = 1 leads to the links between αm

l and βm
l :

βm
l =

1
2

( (l + m)(l −m + 1)

αm−1
l

+
(l −m)(l + m + 1)

αm+1
l

)
; l + m even

αm
l =

1
2

( (l + m)(l −m + 1)

βm−1
l

+
(l −m)(l + m + 1)

βm+1
l

)
; l + m odd

(115)

Using (115), we obtain others expressions for αm
l and βm

l :
αm

l =
π

4

(
Π

(l+m−1)/2
i=1 (

2i + 1
2i

)
)(

Π
(l−m−1)/2
i=1 (

2i + 1
2i

)
)

; l + m odd

βm
l =

4
π

(
Π

(l+m)/2
i=1 (

2i
2i − 1

)
)(

Π
(l−m)/2
i=1 (

2i
2i − 1

)
)

; l + m even
(116)
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Let the operator of x and y : ∆∗D = 1
2 (L−(x)L+(y) + L+(x)L−(y))

The kernels LKs and LNKas and the kernels LKas and LNKs are linked by

−∆DLKs = LNKas; ∆∗DLKas = LNKs (117)

The kernels LKs, LKas, LNKs and LNKas satisfies the identity:

∫
D

LKs(x,y)dD(x) =
1

3π

∫ π
2

0

√
1− ρ(y)2sin2(α)dα;∫

D
LKas(x,y)dD(x) =

4
π

√
(1− ρ(y)2).∮

D
LNKs(x,y)dD(x) = − 4

π
√

(1− ρ(y)2)∮
D

LNKas(x,y)dD(x) = − 1
π(1−ρ(y)2)

∫ π
2

0

√
1− ρ(y)2sin2(α)dα

(118)
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Lemma

The kernel LKas(x,y) has the following value

LKas(x,y) =
2

π2‖x− y‖
arctan

(√(1−ρ(x)2)
√

(1−ρ(y)2)

‖x− y‖

)
. (119)

while the kernel LNKs(x,y) has the following value

LNKs(x,y) =
2

π2 ‖x−y‖3 arctan
(√(1−ρ(x)2)

√
(1−ρ(y)2)

‖x− y‖

)

+

(
1−2ρ(x)ρ(y) cos(Φ) + ρ(x)2ρ(y)2 cos(2Φ)

)√
(1−ρ(y)2)

√
(1−ρ(x)2)

π2 ‖x−y‖2
(
‖x−y‖2+(1−ρ(x)2)(1−ρ(y)2)

)2

−

(
1−2ρ(x)ρ(y) cos(Φ) + ρ(x)2ρ(y)2 cos(2Φ)

)
π2
√

(1−ρ(y)2)
√

(1−ρ(x)2)
(
‖x−y‖2+(1−ρ(x)2)(1−ρ(y)2)

)2 .

(120)
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