
BIG QUAKE
BInary Goppa QUAsi–cyclic Key Encapsulation

Magali Bardet, University of Rouen, France

Élise Barelli, Inria & École Polytechnique, France

Olivier Blazy, University of Rouen, France

Rodolfo Canto–Torres, Inria, France

Alain Couvreur, Inria & École Polytechnique, France

Philippe Gaborit, University of Limoges, France

Ayoub Otmani, University of Rouen, France

Nicolas Sendrier, Inria, France

Jean-Pierre Tillich, Inria, France

Principal submitter: Alain Couvreur.

Auxiliary submitters: Listed above.

Inventors/Developers: Same as the submitters. Relevant prior work is credited where appropriate.

Implementation Owners: Submitters.

Email Address (preferred): alain.couvreur@inria.fr

Postal Address and Telephone (if absolutely necessary):
Alain Couvreur, LIX, École Polytechnique 91128 Palaiseau Cédex, +33 1 74 85 42 66 .

Signature: x. See also printed version of “Statement by Each Submitter”.

1

Abstract

The present proposal is a key encapsulation scheme based on a Niederreiter–like public
key encryption scheme using binary quasi–cyclic Goppa codes.

Contents

1 Introduction 4
1.1 Motivation for this proposal . 4
1.2 Quasi–cyclic codes in cryptography . 4
1.3 Type of proposal . 5

2 Goppa codes, QC Goppa codes 5
2.1 Context . 5
2.2 Vectors, matrices . 5
2.3 Polynomials . 5
2.4 Generalized Reed Solomon codes and alternant codes 6
2.5 Binary Goppa codes . 7
2.6 Quasi–cyclic codes . 7

2.6.1 Definitions . 7
2.6.2 Polynomial representation . 8
2.6.3 Operations on quasi–cyclic codes . 8

2.7 Block–circulant matrices . 9
2.8 Quasi–cyclic Goppa codes . 9
2.9 QC–Goppa codes of interest in the present proposal 10
2.10 Difficult problems from coding theory . 10

3 Presentation of the scheme 11
3.1 Notation . 11
3.2 Key generation . 12
3.3 Description of the public key encryption scheme 13

3.3.1 Context . 13
3.3.2 Encryption . 13
3.3.3 Decryption . 13

3.4 Description of the KEM . 13
3.4.1 Context . 13
3.4.2 Key encapsulation mechanism . 13
3.4.3 Decapsulation . 14
3.4.4 The function F . 14

3.5 Semantic security . 15
3.5.1 IND-CPA security of the PKE . 15
3.5.2 Conversion to an IND-CCA2 KEM/DEM 16

4 Known attacks and counter–measures 16
4.1 Key recovery attacks . 16

4.1.1 Exhaustive search on Goppa Polynomials and supports 17
4.1.2 Distinguisher on the invariant code . 18
4.1.3 Algebraic cryptanalysis . 18

2

4.1.4 Algebraic attacks on the invariant code 19
4.2 Message recovery attacks . 19

4.2.1 Generic decoding algorithms . 19
4.2.2 About the influence of quasi–cyclicity 20

4.3 Exploiting Quantum Computations. 21

5 Parameters 22
5.1 Choice of the quasi–cyclicity order ` . 22
5.2 Choice of the field extension m . 23
5.3 Proposition of parameters . 24

5.3.1 Parameters for reaching NIST security level 1 (AES128) 24
5.3.2 Parameters for reaching NIST security level 3 (AES192) 24
5.3.3 Parameters for reaching NIST security level 5 (AES256) 25

6 Implementation 25
6.1 Reference implementation . 25
6.2 Optimized implementation . 25

7 Performance Analysis 25
7.1 Running time in Milliseconds . 25
7.2 Space Requirements in Bytes . 25

8 Known Answer Tests – KAT 26

A How to get systematic blockwise circulant parity check matrix? 29

B Proof of Proposition 8 30

C Proof of Lemma 6 31

3

1 Introduction

1.1 Motivation for this proposal

The original McEliece system [McE78] is the oldest public key cryptosystem which is still
resistant to classical and quantum computers. It is based on binary Goppa codes. Up to
now, all known attacks on the scheme have at least exponential complexity. A security proof
is given in [Sen10] which relies on two assumptions (i) the hardness of decoding a generic
linear code and (ii) distinguishing a Goppa code from a random linear code. It is well known
to provide extremely fast encryption and fast decryption [BCS13], but has large public keys,
about 200 kilobytes for 128 bits of security and slightly less than one megabyte for 256 bits
of security [BLP08].

The aim of this proposal is to propose a key-encapsulation scheme based on binary Goppa
codes by reducing the key size by a moderate factor ` in the range [3..19]. This is obtained
by using binary quasi–cyclic Goppa codes of order ` instead of plain binary Goppa codes.
The rationale behind this is that for the original McEliece cryptosystem key-recovery attacks
have a much higher complexity than message recovery attacks. By focusing on quasi–cyclic
Goppa codes, there is a security loss with respect to key recovery attacks but this loss is
affordable due to the big gap between the complexity of key recovery attacks and message
recovery attacks, and because the security loss with respect to message recovery attacks is
negligible.

1.2 Quasi–cyclic codes in cryptography

This is not the first time that quasi–cyclic codes have been proposed in this context. The
first proposal can be traced back to [Gab05] where quasi–cyclic subcodes of BCH codes are
suggested. This proposal was broken in [OTD10], essentially because the number of possible
keys was too low.

A second proposal based on quasi–cyclic alternant codes (a family of codes containing the
Goppa code family) was made in [BCGO09]. Because of a too large order of quasi cyclicity,
all the parameters of this proposal have been broken in [FOPT10]. Another proposal with
quasi–dyadic and quasi–p–adic Goppa codes was given in [MB09, BLM11]. Some parameters
have been broken in [FOPT10, FOP+16b]. In both cases, the corresponding attacks are based
on an algebraic modeling of the key recovery attack and using Groebner basis techniques to
solve them. This can be done in this case because the quasi–cyclic/dyadic structure allows to
drastically reduce the number of variables in the system when compared to the polynomial
system associated to unstructured alternant or Goppa codes.

Later on [FOP+16a] provided a further insight on these algebraic attacks by proving that
in the case of quasi–cyclic alternant or Goppa codes of order ` it is possible to construct
another alternant or Goppa code whose length is divided by ` without knowing the secret
algebraic structure of the code. This code is called the folded code there. There is a strong
relation between this code and the invariant code considered in [Bar17]. This explains why
in the case of key-recovery attacks attacking quasi–cyclic alternant or Goppa codes we can
reduce the problem to a key recovery of a much smaller code.

This sequence of proposals and subsequent attacks lead to the following observations. For a
code based scheme using quasi–cyclic algebraic codes to be secure, the following requirements
are fundamental:

4

1. The family of codes providing the keys should be large enough;

2. The security of the key must be studied in terms of the public key and all the smaller
codes deriving from the public key (invariant code, folded code, see §4 for further de-
tails).

3. The cryptosystem should be resistant to attacks on the message that is generic decoding
algorithms.

1.3 Type of proposal

We propose a public key encryption scheme (PKE) which is converted into a key encapsulation
mechanism (KEM) using a generic transformation due to Hohheinz, Hövelmanns and Kiltz
[HHK17] in order to get an INDCCA2 security. Our public key encryption scheme is a
Niederreiter–like scheme. Compared to the original Niederreiter scheme, our proposal avoids
the computation of a bijection between words of fixed length and constant weight words. This
avoids cumbersome computations involving large integers and provides a light scheme more
suitable for embedded system with restricted computing resources. The PKE is proved to be
IND–CPA and the generic conversion described in [HHK17] leads to an IND–CCA2 KEM.

Acknowledgements

The submitters express their gratitude to Daniel Augot and Julien Lavauzelle for their help-
ful comments. Submitters are are supported by French ANR grant CBCrypt and by the
Commission of the European Communities through the Horizon 2020 program under project
number 645622 PQCRYPTO.

2 Goppa codes, QC Goppa codes

2.1 Context

In what follows, any finite field is an extension of the binary field F2.That is, any field is of
the form F2m for some positive integer m.

2.2 Vectors, matrices

Vectors and matrices are respectively denoted in bold letters and bold capital letters such as
a and A. We always denote the entries of a vector u ∈ Fnq by u0, . . . , un−1.

2.3 Polynomials

Given a finite field F2m for some positive m, the ring of polynomials with coefficients in
Fq is denoted by Fq[z], while the subspace of Fq[z] of polynomials of degree strictly less
than t is denoted by Fq[z]<t. For every rational fraction P ∈ Fq(z), with no poles at the
elements u0, . . . , un−1, P (u) stands for (P (u0), . . . , P (un−1)). In particular for a vector y =
(y0, . . . , yn−1) that has only nonzero entries, the vector y−1 denotes (y−1

0 , . . . , y−1
n−1).

5

2.4 Generalized Reed Solomon codes and alternant codes

Definition 1 (Generalized Reed-Solomon code). Let q = 2m for some positive integer m
and k, n be integers such that 1 6 k < n 6 q. Let x and y be two n-tuples such that the
entries of x are pairwise distinct elements of Fq and those of y are nonzero elements in Fq.
The generalized Reed-Solomon code (GRS in short) GRSk(x,y) of dimension k associated to
(x,y) is defined as

GRSk(x,y)
def
=

{(
y0P (x0), . . . , yn−1P (xn−1)

) ∣∣ P ∈ Fq[z]<k
}
·

Reed-Solomon codes correspond to the case where y = (1 1 · · · 1) and are denoted as RSk(x).
The vectors x and y are called respectively the support and the multiplier of the code.

A GRS code of dimension k with support x and multiplier y has a generator matrix of
the form:

y0 · · · yn−1

x0y0 · · · xn−1yn−1
...

...

xk−1
0 y0 · · · xk−1

n−1yn−1

 ·
This leads to the definition of alternant codes. See for instance [MS86, Chap. 12, §2].

Definition 2 (Binary alternant code). Let x,y ∈ Fnq be a support and a multiplier as defined
in Definition 1. Let r be a positive integer, the binary alternant code Ar(x,y) is defined as

Ar(x,y)
def
= GRSr(x,y)⊥ ∩ Fn2 .

The integer r is referred to as the degree of the alternant code and m as its extension degree.

Another definition of alternant code, which will be useful in the proposal is given below.

Proposition 1. Let x,y, r be as in Definition 2. The binary alternant code Ar(x,y) is the
right kernel of the matrix:

H =

y0 · · · yn−1

x0y0 · · · xn−1yn−1
...

...

xr−1
0 y0 · · · xr−1

n−1yn−1

 .

Proposition 2 ([MS86, Chap. 12, § 2]). Let x,y, r be as in Definition 1.

1. dimF2 Ar(x,y) > n−mr;

2. dmin(Ar(x,y)) > r + 1;

where dmin(·) denotes the minimum distance of a code.

The key feature of an alternant code is the following fact (see [MS86, Chap. 12, § 9]):

Fact 1. There exists a polynomial time algorithm decoding all errors of Hamming weight at
most b r2c once the vectors x and y are known.

6

2.5 Binary Goppa codes

Definition 3. Let x ∈ Fnq be a vector with pairwise distinct entries and Γ ∈ Fq[z] be a
polynomial such that Γ(xi) 6= 0 for all i ∈ {0, . . . , n − 1}. The binary Goppa code G (x,Γ)
associated to Γ and supported by x is defined as

G (x,Γ)
def
= Adeg Γ(x,Γ(x)−1).

We call Γ the Goppa polynomial and m the extension degree of the Goppa code.

The interesting point about this subfamily of alternant codes is that under some condi-
tions, Goppa codes can correct more errors than a general alternant code.

Theorem 1 ([SKHN76, Theorem 4]). Let Γ ∈ Fq[z] be a square-free polynomial. Let x ∈ Fnq
be a vector of pairwise distinct entries, then

G (x,Γ) = G
(
x,Γ2

)
.

From Fact 1, if viewed as A2 deg Γ(x,Γ(x)−2) the Goppa code corrects up to r = deg Γ

errors in polynomial-time instead of only bdeg Γ
2 c if viewed as Adeg Γ(x,Γ−1(x))). On the other

hand, these codes have dimension > n−mr instead of > n− 2mr.

2.6 Quasi–cyclic codes

In what follows ` denotes a positive integer.

2.6.1 Definitions

Definition 4. Let ` be a positive integer and σ : F`2 → F`2 be the cyclic shift map:

σ :

{
F`2 −→ F`2

(x0, x1, . . . , x`−1) 7−→ (x`−1, x0, x1, . . . , x`−2)

Now, let n be an integer divisible by `, we define the `–th quasi–cyclic shift σ` as the map
obtained by applying σ block-wise on blocks of length `:

σ` :

{
Fn2 −→ Fn2(

x0

∣∣ . . . ∣∣ xn
`
−1

)
7−→

(
σ(x0)

∣∣ . . . ∣∣ σ (xn
`
−1

)) ,

where x0,x1, . . . ,xn
`
−1 denote consecutive sub-blocks of ` bits.

This notion is illustrated by Figure 1.

Figure 1: Illustration of the quasi–cyclic shift

Definition 5. A code C ⊆ Fn2 is said to be `–quasi–cyclic (`–QC) if the code is stable by the
quasi–cyclic shift map σ`. ` is also called the order of quasi–cyclicity of the code.

7

Example 1. The following matrix is a generator matrix for a 3–quasi–cyclic code.1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 .

2.6.2 Polynomial representation

Given a positive integer n such that ` divides n, then any vector of Fn2 can be divided into
n
` blocks of length `. To (m0, . . . ,m`−1), one associates naturally the polynomial m(z) =
m0 +m1z + . . .+m`−1z

`−1 ∈ F2[z]/(z` − 1). If we let

R def
= F2[z]/(z` − 1),

then, we get a canonical isomorphism

Fn2
∼−→ R

n
`

and, under this isomorphism, the quasi–cyclic shift corresponds to the scalar multiplication
by z. Hence quasi–cyclic codes can be regarded as R–sub–modules of R

n
` .

Example 2. The code of Example 1 corresponds to the submodule of R
n
` spanned by

(1 | 1 + z).

2.6.3 Operations on quasi–cyclic codes

For the analysis of some attacks and hence for the security analysis of our codes, we need
to introduce the notions of invariant code and folded code. These notions will be frequently
used in Sections 3 and 4.

Notation 1. We denote by Punct` the function

Punct` :

{
Fn2 −→ F

n
`
2

(x0, . . . , xn−1) 7−→ (x0, x`, x2`, . . . , xn−`)
.

That is, the map that keeps only the first entry of each block.

Definition 6 (Folding map). Let n be a positive integer such that ` divides n. The folding
map on Fn2 is the map obtained by summing up the components of each block:

ϕ` :

Fn2 −→ F

n
`
2

(x0, . . . , xn−1) 7−→

(∑̀
i=0

xi,
2`−1∑
i=`

xi, . . . ,
n−1∑
i=n−`

xi

)
.

Equivalently, ϕ`
def
= Punct` ◦ (Id + σ` + · · ·+ σ`

`−1).

Definition 7 (Folded code). Given an `–quasi–cyclic code C ⊆ Fn2 , the folded code ϕ`(C) ⊆
F

n
`
2 is the image of C by the folding map.

8

Definition 8 (Invariant code). Given an `–quasi–cyclic code C ⊆ Fn2 , the invariant code

C σ` ⊆ F
n
`
2 is the code composed of words fixed by σ` whose redundant entries have been

removed, i.e.

C σ` def
= Punct` ({c ∈ C | σ`(c) = c}) .

Remark 1. In the previous definitions, the map Punct` is always applied to invariant words,
i.e. words such that σ`(x) = x. Such words are constant on each block. Therefore, the use of
Punct` is only to remove repetitions. Actually one could have replaced Punct` by any map
that keeps one and only one arbitrary entry per block.

We recall a relation between folded and invariant code.

Proposition 3 ([Bar17]). If ` is odd (which always holds in the present proposal), then

ϕ`(C) = C σ` .

Example 3. If we reconsider the code in Example 1, then, we are in the context of the above
proposition, hence the invariant and the folding code are both equal to the code spanned by
the vector

(
1 0

)
which corresponds to apply Punct` on(

1 1 1 0 0 0
)
.

2.7 Block–circulant matrices

Definition 9. Let ` be a positive integer. Let M be a matrix. The matrix is said to be
`–block–circulant if it splits into `× ` circulant blocks, i.e. blocks of the form

a0 a1 · · · · · · a`−1

a`−1 a0 · · · · · · a`−2
...

. . .
. . .

...
...

. . .
. . .

...
a1 a2 · · · a`−1 a0

2.8 Quasi–cyclic Goppa codes

There are several manners to construct `–QC Goppa codes. See for instance reference [Ber00b,
Ber00a].

In this proposal, we will consider `–QC binary Goppa codes for some prime integer `
constructed as follows. The exact constraints on ` are given in §3.1 and justified in §4.

• Let ` be a prime dividing 2m − 1. Let ζ` be a primitive `–th root of unity;

• Let n, t be positive integers divisible by ` and set r
def
= t

` ;

• The support x = (x0, . . . , xn−1) is a vector of elements of F2m whose entries are pairwise
distinct. It splits into n/` blocks of length ` of the form (xi`, xi`+1, . . . , x(i+1)`−1) such

that for any j ∈ {1, . . . , `− 1}, xi`+j = ζj`xi`. That is, the support is a disjoint union of
orbits under the action of the cyclic group generated by ζ`. From now on, such blocks
are referred to as ζ–orbits.

9

• The Goppa polynomial Γ(z) is chosen as Γ(z) = g(z`) for some monic polynomial
g ∈ F2m [z] of degree r = t/` such that g(z`) is irreducible.

Proposition 4. The Goppa code G (x,Γ) is `–QC.

2.9 QC–Goppa codes of interest in the present proposal

The `–QC Goppa codes we will consider are those which satisfy the following condition:

Condition 1. The quasi–cyclic code admits a parity–check of the form

H =
(
In−k |M

)
such that M is `–block–circulant.

For a given quasi–cyclic Goppa code it is unclear that such a property is verified. But we
observed that, after a possible blockwise permutation of the support (so that the resulting
code is still a quasi–cyclic Goppa code of order `) this property is in general satisfied by the
codes presented in §2.8. In Appendix A we give an algorithm to find a blockwise permutation
providing a quasi–cyclic code satisfying Condition 1. This may happen for instance if no
disjoint union of n−k

` blocks is an information set. Among the 5000 tests we ran on various
parameters, this situation never happened.

Remark 2. Of course, for Condition 1 to be satisfied, the dimension of the code should be
a multiple of `. This necessary condition is satisfied if the designed dimension of the Goppa
code n − m deg g(z`) equals the actual dimension (indeed, deg(g(z`)) = ` · deg(g)), which
almost always holds.

Definition 10. From now on, Goppa codes satisfying Condition 1 are referred to as System-
atic quasi–cyclic Goppa codes.

The choice of systematic quasi–cyclic codes instead of general quasi–cyclic codes is twofold.
First, it makes the security reduction to follow (see §2.10) less technical. Second, such matrices
permit to reduce optimally the public key size. Indeed, from such a matrix, (In−k | M), it
is sufficient to publish only the first row of each circulant block in M . Hence, this leads to a
public key size k × n−k

` . See §5 for further details.

Remark 3. Actually, in our reference implementation, we store the first column of each column
of blocks.

2.10 Difficult problems from coding theory

Definition 11 ((Search) `-Quasi–Cyclic Syndrome Decoding (`–QCSD) Problem). For posi-
tive integers n, t, `, a random parity check matrix H of a systematic `–quasi–cyclic code C of
dimension k and a uniformly random vector s ∈ Fn−k, the Search `-Quasi-Cyclic Syndrome
Decoding Problem `–QCSD(n, k, w) asks to find e = (e0, . . . , en−1) ∈ Fn2 of Hamming weight
t, and s> = H · e>.

It would be somewhat more natural to choose the parity-check matrix H to be made up
of independent uniformly random circulant submatrices, rather than with the special form
required by Condition 1. We choose this distribution so as to make the security reduction
to follow less technical. It is readily seen that, for fixed `, when choosing quasi-cyclic codes

10

with this more general distribution, one obtains with non-negligible probability, a quasi-cyclic
code that satisfies Condition 1. Therefore requiring quasi-cyclic codes to be systematic does
not hurt the generality of the decoding problem for quasi-cyclic codes.

Assumption 2. Although there is no general complexity result for quasi-cyclic codes, decoding
these codes is considered hard. There exist general attacks which use the cyclic structure of
the code [Sen11] but these attacks have only a very limited impact on the practical complexity
of the problem. The conclusion is that in practice, the best attacks are the same as those for
non-circulant codes up to a small factor.

Definition 12 (Decisional Indistinguishability of Quasi–Cyclic Goppa Codes from Public
Key Sampling (DIQCG problem)). Given a random `–quasi–cyclic random code in systematic
form and an `–quasi–cyclic Goppa code, distinguish the two types of code.

Assumption 3. For parameters considered for our cryptosystem this problem is considered
hard, see Section 4 for further details on the best attacks in this case.

3 Presentation of the scheme

3.1 Notation

In what follows and until the end of the present document, we fix the following notation.

• m denotes a positive integer which refers to the extension degree of a field F2m . In our
reference implementation m = 12, 14, 16 or 18.

• ` denotes a prime primitive integer which divides 2m − 1. By primitive we mean that
` is prime and 2 generates the cyclic group Z/`Z× of nonzero elements in Z/`Z. The
rationale behind this requirement will be explained in § 5.1.

• ζ` denotes a primitive `–th root of the unity in F2m .

• n denotes a positive integer n < 2m − 1 which refers to the length of a code. It should
be an integer multiple of `.

• x = (x0, . . . , xn−1) denotes the support of the Goppa code. It has length n and splits
into n

` blocks of length ` such that each block is composed of elements in geometric
progression. That is to say:

(x0, x1, . . . , x`−1) = (x0, ζ`x0, ζ
2
` x0, . . . , ζ

`−1
` x0),

and more generally,

∀a ∈
{

0, . . . ,
n

`
− 1
}
, (xa`, xa`+1, . . . , x(a+1)`−1) = (xa`, ζ`xa`, ζ

2
` xa`, . . . , ζ

`−1
` xa`).

• g(z) ∈ F2m [z] denotes a polynomial and the Goppa polynomial of our QC–Goppa codes
will be g(z`).

• r denotes the degree of g(z) and t = r` denotes the degree of the Goppa polynomial
g(z`). Notice that the design minimum distance of this Goppa code is 2t+ 1, therefore,
t also denotes the error correcting capacity of the code.

• σ` denotes the `-th quasi–cyclic shift (see Definition 4).

11

3.2 Key generation

Consider an `–QC Goppa code of length n and dimension k with ` dividing n, k and satisfying
Condition 1. Let H be a systematic parity–check matrix for this code:

H = (In−k |M) (1)

where M is an `–blocks–circulant matrix.

Definition 13. Given a matrix H as in (1), we define ψ(H) as the matrix obtained from M
by extracting only the first row of each block. That is, ψ(H) is obtained by stacking rows of
M with indexes 0, `, 2`, . . . , (n− k)− `.

Note that H is entirely determined by ψ(H).

• Public key The matrix ψ(H).

• Secret key The support x and the Goppa polynomial Γ(z) = g(z`).

More precisely, Algorithm 1 describes the full key generation algorithm. This algorithm
calls Algorithm 3, described in Appendix A. Algorithm 3, performs block–Gaussian elimi-
nation on an input matrix H0 and, if succeeds, returns a pair (H, τ) where H denotes a
systematic block–circulant matrix and τ denotes the permutation on blocks applied on H0

in order to get the systematic form H.

Algorithm 1: Full key generation algorithm

Input : Positive integers `, t = `r, n, m such that `|n
Output: The public and secret key

1 while TRUE do
2 g(z) ← Random monic polynomial in F2m [z] of degree r such that g(z`) is

irreducible;
3 u0, . . . , un

`
−1 ← random elements of F2m such that for any pair

i, j ∈ {0, . . . , n` − 1} with i 6= j and any s ∈ {0, . . . , `− 1}, we have ui 6= ζs`uj ;

4 x ← (u0, ζ`u0, ζ
2
` u0, . . . , ζ

`−1
` u0, u1, ζ`u1, . . . , ζ

`−1
` un

`
−1);

5 H0 ← parity–check matrix of G
(
x, g(z`)

)
;

6 if Algorithm 3 returns FALSE (See Appendix A, page 29) then
7 Go to line 2 ;
8 end
9 else

10 H, τ ← output of Algorithm 3;
11 x← τ(x);
12 break ;

13 end

14 end
15 Public key ← (ψ(H), t) (see Definition 13);

16 Secret key ← (x, g(z`)).

12

3.3 Description of the public key encryption scheme

3.3.1 Context

• Bob has published his public key (ψ(H), t). His secret key is denoted as the pair
(x, g(z`)).

• One uses a hash function H. In the reference implementation, we used SHA3;

Suppose Alice wants to send an encrypted message to Bob using Bob’s public key. The
plaintext is denoted by m ∈ Fs2 where s is a parameter of the scheme.

3.3.2 Encryption

(1) e is drawn at random among the set of words of weight t in Fn2 .

(2) Alice sends c← (m⊕H(e), H · e>) to Bob.

3.3.3 Decryption

(1) Bob received (c1, c2).

(2) Using his secret key, Bob computes e ∈ Fn2 as the word of weight 6 t such that c2 = H ·e>.

(3) Bob computes m← c1 ⊕H(e).

3.4 Description of the KEM

3.4.1 Context

Alice and Bob want to share a common session secret key K. Moreover,

• Bob publishes his public key (ψ(H), t). His secret key is denoted as the pair (x, g(z`)).

• One uses a hash function H. In the reference implementation, we used SHA3.

• To perform a KEM, we need to de–randomize the PKE. This requires the use of a
function F : {0, 1}∗ → {x ∈ Fn2 | wH(x) = t} taking an arbitrary binary string as input
and returning a word of weight t. The construction of this function is detailed further
in § 3.4.4.

• We also introduce a security parameter s which will be the number of bits of security.
That is, s = 128 (resp. 192, resp. 256) for a 128 (resp. 192, resp. 256) bits security
proposal, i.e. for NIST security Levels 1, resp. 3, resp. 5.

3.4.2 Key encapsulation mechanism

(1) Alice generates a random m ∈ Fs2;

(2) e← F(m);

(3) Alice sends c← (m⊕H(e),H · eT ,H(m)) to Bob;

(4) The session key is defined as:
K ← H(m, c).

13

3.4.3 Decapsulation

(1) Bob received c = (c1, c2, c3);

(2) Using his secret key, Bob can find e′ of weight 6 t such that c2 = H · e′T ;

(3) Bob computes, m′ ← c1 ⊕H(e′);

(4) Bob computes e′′ = F(m′).

(5) If e′′ 6= e′ or H(m′) 6= c3 then abort.

(6) Else, Bob computes the session key:

K ← H(m′, c).

3.4.4 The function F

The function F takes an arbitrary binary string as input and returns a word of length n and
weight t. The algorithm is rather simple. Here again, the function depends on the choice of
a hash function H. In our reference implementation, we chose SHA3.

The construction of the constant weight word, is performed in constant time using an
algorithm close to Knuth’s algorithm which generates a uniformly random permutation of
the set {0, . . . , n− 1}. Here, the randomness is replaced by calls of the hash function H. The
algorithm of evaluation of F is detailed in Algorithm 2.

Algorithm 2: Function F : construction of a word of weight t

Input : A binary vector m, integers n, t
Output: A word of weight t in Fn2

1 u← (0, 1, 2, . . . , n− 2, n− 1);
2 b←m;
3 for i from 0 to t− 1 do
4 j ← H(b) mod (n− i− 1);
5 Swap entries ui and ui+j in u;
6 b← H(b);

7 end
8 e ← vector with 1’s at positions u0, . . . , ut−1 and 0’s elsewhere;
9 return e

Further details about line 4 Actually the step j ← H(b) mod (n − i − 1) should be
detailed. If the hash function H outputs 256 or 512 bit strings, converting this string to a
big integer and then reducing modulo (n − i − 1) would be inefficient. Hence, the approach
consists in

Step 1. truncating H(b) to a string of s bytes, where s is larger than the byte size of n. In
our proposal, n < 214, hence taking s = 3 is reasonable and is the choice of our
reference implementation.

Step 2. convert this s–bytes string to an integer A:

14

(a) If A > 28s− (28s mod n− i−1) then go to Step 1 (this should be done to assert
a uniformity of the drawn integers in {0, . . . , n− i− 2});

(b) else set j = A mod (n− i− 1)

Remark 4. Because of Sub-step (2a), we cannot make sure the evaluation of F is done in
constant time, which could represent a weakness (in terms of side channel attacks). To
address this issue, first notice that the probability that Sub-step 2a happens is low, and can
be reduced significantly by increasing s. Second, one can get almost constant time by finishing
the evaluation of F by performing a small number of fake evaluations of H to guarantee a
constant number of calls of H with a high probability. This precaution is not implemented in
our reference implementation.

3.5 Semantic security

3.5.1 IND-CPA security of the PKE

Theorem 4. Under the Decisional indistinguishability of QC Goppa from Public Key Sam-
pling (DIQCG problem), and the `–QCSD Problem, the encryption scheme presented above
in indistinguishable against Chosen Plaintext Attack in the Random Oracle Model.

Proof. We are going to proceed in a sequence of games. The simulator first starts from the
real scheme. First we replace the public key matrix by a random element, and then we use
the ROM to solve the `–QCSD.

We denote the ciphertext of the PKE by c = (c1, c2) and recall that c1 = m⊕H(e) and
c2 = H · e>.

We start from the normal game G0: We generate the public key H honestly, and e and
c1 also.

• In game G1, we now replace H by a random block–circulant systematic matrix, the rest
is identical to the previous game. From an adversary point of view, the only difference is
the distribution on H, which is either generated at random, or as a quasi–cyclic Goppa
parity–check matrix. This is exactly the DIQCG problem, hence

AdvG0
A 6 AdvG1

A + AdvDIQCG
A

• In game G2, we now proceed as earlier except we replace H(e) by random. It can be
shown, that by monitoring the call to the ROM, the difference between this game and
the previous one can be reduced to the `–QCSD problem, so that:

AdvG1
A 6 2−λ + 1/qG · Adv`−QCSD

A ,

where qG denotes the number of calls to the random oracle.

• In a final game G3 we replace c1 = m ⊕ Rand by just c1 = Rand, which leads to the
conclusion.

15

• Setup(1λ): as before, except that s will be the length of the symmetric key being
exchanged, typically s = 128, 192, or 256.

• KeyGen(param): exactly as before.

• Encapsulate(pk): generatea m
$← Fs (this will serve as a seed to derive the shared

key). Derive the randomness θ ← G(m). Generate the ciphertext c ← (u,v) =
E .Encrypt(pk,m, θ), and derive the symmetric key K ← K(m, c). Let d ← H(m),
and send (c,d).

• Decapsulate(sk, c,d): Decrypt m′ ← E .Decrypt(sk, c), compute θ′ ← G(m′), and
(re-)encrypt m′ to get c′ ← E .Encrypt(pk,m′, θ′). If c 6= c′ or d 6= H(m′) then
abort. Otherwise, derive the shared key K ← K(m, c).

aSymbol “
$←” means “uniformly random element of”.

Figure 2: Description of our proposal KEM.

3.5.2 Conversion to an IND-CCA2 KEM/DEM

Let E be an instance of the public key encryption scheme defined in § 3.3. Let G, H, and K
be hash functions, in our implementation, we chose SHA3. The KEM–DEM version of the
system cryptosystem is defined as follows:

According to [HHK17], the KEM-DEM version of our PKE is IND–CCA2.

4 Known attacks and counter–measures

We split this section in two parts : key-recovery attacks and message recovery attacks.

4.1 Key recovery attacks

For classical Goppa codes G (x,Γ), a naive brute force key recovery attack consists in enu-
merating all the possible irreducible polynomials of degree t. In [FOP+16b, FOP+16a] and
then in [Bar17], it has been proved that the security of quasi–cyclic Goppa codes (and more
generally quasi–cyclic alternant codes) reduces to that of the invariant code (see Definition 8).
Moreover, we have the following result.

Theorem 5 ([FOP+16a, Bar17]). Let G
(
x, g(z`)

)
be a QC–Goppa code. Then,

G
(
x, g(z`)

)σ`
= G

(
Punct`(x

`), g(z)
)

where
x`

def
= (x`0, x

`
1, . . . , x

`
n−1)

and the map Punct` is defined in Notation 1 page 8.

This result is crucial for the security analysis. Indeed, since the public key permits to
construct the Goppa code G

(
x, g(z`)

)
, anybody can compute the invariant code, which is a

Goppa code too. Moreover, as soon as the structure of the Goppa code is recovered, lifting
to the quasi–cyclic Goppa code is possible. See [FOP+16a].

16

4.1.1 Exhaustive search on Goppa Polynomials and supports

A brute force attack could consist in enumerating all the possible polynomials g(z`) of
G
(
x, g(z`)

)
. Then guess the support as a disjoint union of ζ`–orbits, i.e. a disjoint union of

ordered sets of the form (a, ζ`a, ζ
2
` a, . . . , ζ

`−1
` a) (see § 2.8). If we guessed the good support

as a non-ordered set, it is possible to get the good permutation using Sendrier’s Support
Splitting Algorithm (SSA in short, [Sen00]). If it fails, then try with another support defined
as a union of ζ–orbits until the good ordering of the support is obtained thanks to SSA.

Actually, this brute force approach can be done on the invariant code and then a lift
operation permits to recover the public code. Hence we can proceed as follows.

• Perform brute force search among monic irreducible polynomials g(z) of degree r;

• Guess the support Punct`(x
`) = Punct`(x

`
0, x

`
1, . . . , x

`
n−1). Note that the elements of

the support set are `–th power. Hence there exists only 2m−1
` such powers and we need

to guess a good subset of length n
` among them.

• Perform SSA to check whether the support set is the good one and, if it is, get the
permutation and hence the ordered support;

• Deduce from this data the actual Goppa polynomial g(z`) and the good support by
extracting `–th roots, here again, the way to find the blockwise good ordering of the
elements of the support can be done using either SSA or by solving a linear system.

Thus, let us estimate the maximum number of guesses we need to perform. We need to
count the number of monic polynomials g(z) ∈ F2m [z] of degree r such that g(z`) is irreducible.

Set
sr(2

m)
def
= #{g(z) ∈ F2m [z] | deg(g) = r and g(z`) is irreducible}.

Remind that the number mr(2
m) of possible g’s, i.e. of monic irreducible polynomials of

degree r in F2m [z] is given by the well–known formula:

mr(2
m) =

1

r

∑
d|r

µ(d)2
mr
d , (2)

where µ(·) denotes the Möbius function defined as

µ(r)
def
=

∑
16k6r

gcd(k,r)

e2iπ k
r . (3)

Remark 5. Asymptotically mr(2
m) ∼ 2mr

r ·

Lemma 6.

sr(2
m) >

(
1− 1

`

)
mr(2

m).

The proof of Lemma 6 is given in Appendix C, where a more precise formula is given for
sr(2

m). Consequently, the number of public keys is bounded below by the quantity

#public keys >

(
1− 1

`

)
mr(2

m). (4)

17

Remark 6. Actually the number of public keys is much larger since we did not consider the
fact that the support of the code need not be the whole F2m \ {0} and hence to estimate the
actual number of keys, we need to estimate the number of all the pairs (x, g(z`)) where x
denotes the support. Then, study the action of the affine group on this set and consider a
system of representatives. The point is that for a full support (i.e. the set of elements of the
support is F2m \{0}) two distinct Goppa polynomials give two distinct codes and hence there
are at least as many keys as sr(2

m).

4.1.2 Distinguisher on the invariant code

In [FGO+10], it is proved that high rate Goppa codes are distinguishable from random ones
in polynomial time. To assert the security of the system, the public Goppa code and the
invariant code should be indistinguishable from random ones. Hence, the parameters of the
code should be chosen in order to be out of the reach of this distinguisher.

The following statement rephrases the results of [FGO+10] in a simpler manner.

Proposition 7. Consider an irreducible binary Goppa code of length n, extension degree m,
associated to an irreducible polynomial of degree r. Then the Goppa code is distinguishable in
polynomial time from a random code of the same length and dimension as soon as

n > max
26s6r

ms

2
(s(m− 2e− 1) + 2e + 2) ,

where e = dlog2 se+ 1.

4.1.3 Algebraic cryptanalysis

The point of such an attack is to recover the structure of the Goppa code. Namely, the
support x and the Goppa polynomial g(z`).

The algebraic modeling AX,Y ′ proposed in [FOP+16b] consists in k
` (t−1) equations in n

`−2

variables X and n
` −

k
` variables Y , that are bi-homogeneous in the X’s and Y ’s variables (a

polynomial f is bi-homogeneous of bi-degree (d1, d2) if f(αX, βY) = αd1βd2f(X,Y) ∀(α, β) ∈
F2). For each 1 6 u 6 t − 1, there are k

` equations of bi-degree (u, 1) in the modeling. And
as the Goppa codes considered are binary Goppa codes, even more equations may be added.
The system McEX,Y ′ in [FOP+16b] contains k

` equations of bi-degree (u, 1) for 1 6 u 6 t and
k
` equations of bi-degree (u, 2) for 1 6 u 6 2t− 1.

Exhaustive search on the Xi’s or Yi’s From the algebraic system we can extract a
bilinear system in the Xi’s and the Yj ’s. A possible attack is to perform an exhaustive search
for one of the Xi’s or Yj ’s, and solve a linear system for the others. The number of unknowns
is at least n

` −
k
` − 2 = mt

` − 2 (after specialization of 1 or 2 values for X and Y) and the

cost of the search is asymptotically 2m(mt
`
−2). The bit complexity is m(mt` − 2) which is large

enough.

Solving by Groebner basis algorithms A good indicator for the complexity of Groeb-
ner basis algorithms is the index of regularity of the ideal (denoted by dreg), since in the
homogeneous case it is a bound on the degree of the polynomials in the minimal Groebner
basis of the system. For zero-dimensional ideal, the Hilbert series of the ideal is a polynomial,

18

and the index of regularity is the degree of this polynomial plus 1. This means that during
the computation of a Groebner basis, we will have to compute polynomials that may possibly
have as many monomials as the number of monomials of degree dreg, which is

(n+dreg
dreg

)
for

polynomials in n variables.
It has been shown in [BFS04, Bar04] that, if the system of generators of the ideal form a

semi–regular sequence of s polynomials of degree d1, . . . , ds in n variables, then the Hilbert

series is given by
[∏s

i=1(1−zdi)
(1−z)n

]+
where

[∑
i>0 aiz

i
]+

is the series
∑

i>0 aiz
i truncated at the

least index i such that ai 6 0.
We show that for the parameters we propose, if the algebraic system from [FOP+16b]

where semi–regular (we know it is not), the index of regularity would be large, and that even
if the index of regularity of the algebraic system would be small, the size of the polynomials
in this degree is beyond the security level.

4.1.4 Algebraic attacks on the invariant code

The cost of such attacks is the most difficult to estimate for many reasons:

• The choice of the algebraic modeling, i.e. the polynomial system we have to solve by
Groebner bases methods is not unique. We will suggest here some modeling which have
been proposed in the literature but cannot assert that they are the only possible model
lings;

• The choice of the monomial ordering has no influence on the theoretical complexity in
the worst case, but may have a significant influence on practical complexities.

• Theoretical results on the complexity of Groebner bases suppose the polynomial system
to be semi–regular which is not true for the algebraic systems to follow.

• Hence, we provide an analysis of the possible work factor but this approach requires a
more thorough study.

4.2 Message recovery attacks

4.2.1 Generic decoding algorithms

Resistance to ISD and their variants. See Christiane Peters’ software [Pet10]. We provide
here an improve version of her software called CaWoF (for Calculate Work Factor) [CT16],
which tests all the most efficient generic decoding algorithms. Namely:

• Prange [Pra62];

• Stern [Ste88];

• Dumer [Dum91];

• May, Meurer, Thomae [MMT11];

• Becker, Joux, May, Meurer [BJMM12].

19

4.2.2 About the influence of quasi–cyclicity

Decoding one out of many The `–quasi–cyclicity of the code may be used to improve
the efficiency of the decoding using Sendrier’s Decoding One out Of Many (DOOM, [Sen11]).
Such approach permits to improve the efficiency by a factor

√
`. Since in our proposal the

largest proposed ` is 19, the use of DOOM may in the best case provide a less than 5 bits
reduction of the work factor. Note that it is possible that this gain will be undermined by
the practical complexity of a DOOM implementation. In § 5.3, we choose parameters so that
the work factors provided by CaWoF (which does not take DOOM into account) are at least
1 bit above the limit for ` = 3, 2 bits above the limit for ` = 5 and 13, and 3 bits above the
limit for ` = 19. For any of our , we looked 3 bits security for 3–QC codes, 4 for 5, 11, 13–QC
codes and 5 for 17–QC codes

An attack based on folding There is also another way to use the quasi-cyclicity for
performing message recovery attacks. It consists in using the folding. Let ϕ` be the folding
operation (see Definition 6). Assume that we want to decode y = c + e where c belongs to

the quasi-cyclic Goppa code C
def
= G

(
x, g(z`)

)
of a certain length n and e is an error of weight

t. We clearly have
ϕ`(y) = ϕ`(c) + ϕ`(e)

where ϕ`(c) belongs to ϕ`(C) which is the Goppa code G
(
Punct`(x

`), g(z)
)

by Theorem 5.
Each coordinate of ϕ`(e) is a sum of ` coordinates of e. By the piling up lemma (see for
instance [Mat93])

E {|ϕ`(e)|} =
n(1− (1− 2p)`)

2`
, (5)

where p
def
= t

n . We have

n(1− (1− 2p)`)

2`
≈ n(2`p− 2`(`− 1)p2

2`

≈ t− (`− 1)
t2

n
.

Let

t′
def
= bt− (`− 1)

t2

n
c.

In other words, our task is to decode ϕ`(y) for about t′ errors in a Goppa code of length n/` and
degree r = deg g. If t′ happens to be below the Gilbert-Varshamov distance dGV

(
n
` ,

n
` − rm

)
corresponding to the length n

` and dimension n
` − rm, then we expect that there is typically

a single solution to the decoding problem and that it corresponds to the folding of e. Recall
that this distance is defined by:

Definition 14 (Gilbert-Varshamov distance). Let h(x)
def
= −x log2(x)− (1−x) log2(1−x) be

the binary entropy function and h−1 be its inverse ranging over [0, 1
2]. The Gilbert Varshamov

distance dGV(n, k) of a code of length n and dimension k is defined by

dGV(n, k)
def
= n · h−1

(
1− k

n

)
.

20

We can hope to find ϕ`(e) by decoding ϕ`(C) with generic decoding techniques. It turns
out that we gain in the complexity of decoding when we have to decode the folded code
instead of decoding the original code with generic decoding techniques. Once we have the
folding ϕ`(e) of the error we can use this information to perform decoding of the original code
C by puncturing all the positions in a block which corresponds to a position in the support
of ϕ`(e). We erase at least t′ errors belonging to the support of e in this way. There remains

about t − t′ ≈ (` − 1) t
2

n errors which can be recovered by generic decoding techniques. We
will chose our parameters in order to avoid this case. We namely choose our parameters so
that

dGV(n′, k′) < t′.

The best strategy for an attack in the latter case seems to be

1. hope that the folded error has a certain prescribed weight s;

2. compute all possible errors e′ in Fn′
2 of weight s that have the same syndrome as ϕ`(y);

3. Puncture for each such error the s blocks of C that belong to the support of e′. Decode
the punctured code for at most t− s errors.

The attack is then optimized over the choices of s.

4.3 Exploiting Quantum Computations.

Recall first that the NIST proposes to evaluate the quantum security as follows:

1. A quantum computer can only perform quantum computations of limited depth. They
introduce a parameter, MAXDEPTH, which can range from 240 to 296. This accounts
for the practical difficulty of building a full quantum computer.

2. The amount (or bits) of security is not measured in terms of absolute time but in the
time required to perform a specific task.

Regarding the second point, the NIST presents 6 security categories which correspond to
performing a specific task. For example Task 1, related to Category 1, consists of finding the
128 bit key of a block cipher that uses AES-128. The security is then (informally) defined as
follows:

Definition 15. A cryptographic scheme is secure with respect to Category k iff any attack
on the scheme requires computational resources comparable to or greater than those needed
to solve Task k.

In the sequel we will estimate that our scheme reaches a certain security level according
to the NIST metric and show that the attack takes more quantum resources than a quantum
attack on AES. We will use for this the following proposition.

Proposition 8. Let f be a Boolean function which is equal to 1 on a fraction α of inputs
which can be implemented by a quantum circuit of depth Df and whose gate complexity is Cf .
Using Grover’s algorithm for finding an input x of f for which f(x) = 1 can not take less
quantum resources than a Grover’s attack on AES-N as soon as

Df · Cf
α

> 2NDAES−N · CAES−N

21

where DAES−N and CAES−N are respectively the depth and the complexity of the quantum
circuit implementing AES-N.

This proposition is proved in Appendix B. The point is that (essentially) the best quantum
attack on our scheme consists in using Grover’s search on either the message attacks or the
key recovery attacks where Grover’s search can be exploited. The message attacks consist
essentially in applying Grover’s algorithm on the information sets computed in Prange’s
algorithm (this is Bernstein’s algorithm [Ber10]). Theoretically there is a slightly better
algorithm consisting in quantizing more sophisticated ISD algorithms [KT17], however the
improvement is tiny and the overhead in terms of circuit complexity make Grover’s algorithm
used on top of the Prange algorithm preferable in our case.

5 Parameters

In this section we propose some parameters for various security levels. We start with informal
discussions which explain in which range we choose our parameters.

5.1 Choice of the quasi–cyclicity order `

The quasi–cyclicity order guarantees the reduction of the key size compared to non quasi–
cyclic Goppa codes. The larger the ` the smaller the public key.

On the other hand, too large `’s may lead to algebraic attacks such as [FOPT10, FOP+16b,
FOP+16a]. In addition we suggested in § 3, that ` should be prime and primitive, which means
that 2 generates (Z/`Z)×, or equivalently that the polynomial 1 + z+ · · ·+ z`−1 is irreducible
in F2[z]. The motivation for this property is to limit the possibilities for the attacker to
construct intermediary codes which could help to build an attack. Therefore

• ` should be prime since if not, for any e|`, then the code G
(
x, g(z`)

)
is also e–quasi–

cyclic and one can construct an intermediary invariant code G
(
x, g(z`)

)σ`e which is

nothing but G
(
xe, g(z

`
e)
)

. Thus, it is possible to construct an intermediary code from

the single knowledge of a generator matrix of the public code and this intermediary
code is a smaller Goppa code with a Goppa polynomial and support strongly related to
the public code.

Of course, we cannot avoid that an attacker can compute the invariant code, but we
guess that having the possibility to build intermediary Goppa codes would be a help for
the attacker, hence we reject this possibility by requiring ` to be prime.

• ` should be primitive Indeed, in [FOP+16a], from a public Goppa code, the authors
consider the folded code (see Definition 7), This folding is nothing but the image of the
code by the map id + σ` + σ`

2 + · · · + σ`
`−1. In the same manner, if the polynomial

1 + z + · · · + z`−1 is reducible over F2, then, for any divisor P (z) of this polynomial,
one can construct an intermediary quasi–cyclic subcode of the public code, which is the
image of G

(
x, g(z`)

)
by the map P (σ`). This code is not a Goppa code in general but

we guess that its structure could be helpful for an attacker. Therefore, we exclude this
possibility by requiring ` to be primitive. Among the odd prime numbers below 20, the
primitive ones are

` ∈ {3, 5, 11, 13, 19}

22

In particular we exclude 7 and 17.

Remark 7. At several places in the discussion above we suggest that having some data could
“help an attacker”. We emphasize that these arguments are only precautions, we actually do
not know how to use such data for cryptanalysis. In particular, the choice of ` to be primitive
is more a precaution than a necessary condition for the security.

5.2 Choice of the field extension m

To provide a binary Goppa code, we first need to choose a finite extension F2m of F2. Let us
first discuss the choice of m.

Informal discussion on m

By informal, we mean that, for the moment, we do not clarify what we mean by large or
small.

(i) A large m provides codes which are “far from” generalized Reed–Solomon codes. Hence,
when m is large Goppa codes have less structure. Note that q–ary Goppa codes with
m = 2 have been broken by a polynomial-time distinguishing and filtration attack
in [COT17] and that rather efficient algebraic attacks for small m (m = 2 or 3) over
non prime q–ary fields exist [FPdP14]. This encourages to avoid too low values of m.
In addition, m should be large enough to have a large enough code length.

(ii) On the other hand m should not be too large since it has a negative influence on the
rate of the code. That is to say, for a fixed error correcting capacity t an a fixed code
length n, the dimension is n−mt, hence the rate is 1−m t

n .

(iii) Finally, to get `–quasi–cyclic codes, ` should divide 2m − 1 (see § 2.8) and ` should
not be too large to prevent algebraic attacks as [FOPT10, FOP+16b, FOP+16a]. Thus,
2m − 1 should have small factors.

In this proposal we suggest that a good tradeoff between (i) and (ii) would be m ∈ {12, . . . , 18}
To seek for `’s, let us factorize the corresponding 2m − 1’s.

• F212 : 212 − 1 = 32 · 5 · 7 · 13.

• F213 : 213 − 1 is prime.

• F214 : 214 − 1 = 3 · 43 · 127.

• F215 : 215 − 1 = 7 · 31 · 151.

• F216 : 216 − 1 = 3 · 5 · 17 · 257.

• F217 : 217 − 1 is prime.

• F218 : 218 − 1 = 33 · 7 · 19 · 73.

This immediately excludes m = 13 and 17. To prevent algebraic attacks, we prefer avoiding
`’s larger than 20 and, as explained above and since we look only for primitive `’s our proposal
will focus on

23

• 3, 5 and 13–quasi–cyclic Goppa codes with m = 12 (only for security Level 1, i.e.
AES128)

• 3–quasi–cyclic Goppa codes with m = 14 (for Levels 2 and 3, i.e. respectively AES192
and AES256)

• 5–quasi–cyclic Goppa codes with m = 16 (for Levels 2 and 3)

• 19–quasi–cyclic Goppa codes with m = 18. (for Levels 2 and 3)

5.3 Proposition of parameters

In the following tables we use notation

• m : extension degree of the field of definition of the support and Goppa polynomial
over F2;

• n length of the quasi–cyclic code;

• k dimension of the quasi–cyclic code;

• ` denotes the order of quasi–cyclicity of the code;

• r denotes the degree of g(z);

• t denotes error–correcting capacity, which is nothing but the degree of g(z`);

• wmsg work factor for message recovery errors. It is computed using CaWoF library;

• Keys is a lower bound for the number of possible Goppa polynomials (see (4));

• Max Dreg denotes the maximal degree of regularity that such a system could have
in order that the size of the Macaulay matrix does not exceed 2128 bits under the
assumption that Gaussian elimination’s cost on n× n matrices is Ω(n2).

5.3.1 Parameters for reaching NIST security level 1 (AES128)

m n k ` Size r t = r` wmsg Keys Max
(bytes) (deg g(z`)) Dreg

12 3600 2664 3 103896 26 78 129 1027 8

12 3500 2480 5 63240 17 85 130 684 9

12 3510 2418 13 25389 7 91 132 263 11

5.3.2 Parameters for reaching NIST security level 3 (AES192)

m n k ` Size r t = r` wmsg Keys Max
(bytes) (deg g(z`)) Dreg

14 6000 4236 3 311346 42 126 193 5751 11

16 7000 5080 5 243840 24 120 195 6798 12

18 7410 4674 19 84132 8 152 195 2696 16

24

5.3.3 Parameters for reaching NIST security level 5 (AES256)

m n k ` Size r t = r` wmsg Keys Max
bytes (deg g(z`)) Dreg

14 9000 7110 3 559913 45 135 257 6039 14

16 9000 6120 5 440640 36 180 260 8129 15

18 10070 6650 19 149625 10 190 263 3412 20

6 Implementation

6.1 Reference implementation

We provide a reference implementation of the public key encryption scheme converted into a
key encapsulation mechanism. That is to say, our implementation performs the encapsulation
and decapsulation mechanism as described in § 3.4.2 and 3.4.3.

We remind that the hash function used in the reference implementation is SHA3.

6.2 Optimized implementation

Is the same as the reference implementation.

7 Performance Analysis

The platform used in the experiments was equipped with an Intel R© XeonTM E3-1240 v5
clocked at 3.50GHz with 32 GB of RAM and 8 MB of cache. The operating system is 64 bits
Linux. The program was compiled with gcc using the -O4 optimization option.

For the performance (and for the KAT in the next section) we selected three sets of
parameters corresponding respectively to the security levels 1, 3, and 5.

• BIG QUAKE 1, corresponding to (m,n, `, t) = (12, 3510, 13, 91).

• BIG QUAKE 3, corresponding to (m,n, `, t) = (18, 7410, 19, 152).

• BIG QUAKE 5, corresponding to (m,n, `, t) = (18, 10070, 19, 190).

7.1 Running time in Milliseconds

BIG QUAKE 1 BIG QUAKE 3 BIG QUAKE 5

Key Generation 268 2 469 4 717
Encapsulation 1.23 3.00 4.46
Decapsulation 1.41 9.11 13.7

7.2 Space Requirements in Bytes

BIG QUAKE 1 BIG QUAKE 3 BIG QUAKE 5

Public Key 25 482 84 132 149 800
Secret Key 14 772 30 860 41 804
Ciphertext 201 406 492

25

8 Known Answer Tests – KAT

The KAT file are available in the submission package for BIG QUAKE 1, BIG QUAKE 3, and
BIG QUAKE 5:

• KAT/PQCkemKAT BIG QUAKE 1.req

• KAT/PQCkemKAT BIG QUAKE 1.rsp

• KAT/PQCkemKAT BIG QUAKE 3.req

• KAT/PQCkemKAT BIG QUAKE 3.rsp

• KAT/PQCkemKAT BIG QUAKE 5.req

• KAT/PQCkemKAT BIG QUAKE 5.rsp

For each KAT we generated 10 samples.

References

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux
codes correcteurs et à la cryptographie. PhD thesis, Université Paris VI, December
2004. http://tel.archives-ouvertes.fr/tel-00449609/en/.

[Bar17] Élise Barelli. On the security of some compact keys for McEliece scheme. In
WCC Workshop on Coding and Cryptography, September 2017.

[BCGO09] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani.
Reducing key length of the McEliece cryptosystem. In Bart Preneel, editor,
Progress in Cryptology - AFRICACRYPT 2009, volume 5580 of LNCS, pages
77–97, Gammarth, Tunisia, June 21-25 2009.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-time
code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013, volume 8086 of
LNCS, pages 250–272. Springer, 2013.

[Ber00a] Thierry P. Berger. Goppa and related codes invariant under a prescribed permu-
tation. IEEE Trans. Inform. Theory, 46(7):2628–2633, 2000.

[Ber00b] Thierry P. Berger. On the cyclicity of Goppa codes, parity-check subcodes of
Goppa codes and extended Goppa codes. Finite Fields Appl., 6(3):255–281, 2000.

[Ber10] Daniel J. Bernstein. Grover vs. McEliece. In Nicolas Sendrier, editor, Post-
Quantum Cryptography 2010, volume 6061 of LNCS, pages 73–80. Springer, 2010.

[BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. On the complexity of
Gröbner basis computation of semi-regular overdetermined algebraic equations.
In Proceedings of the International Conference on Polynomial System Solving,
pages 71–74, 2004.

26

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding
random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set
decoding. In Advances in Cryptology - EUROCRYPT 2012, LNCS. Springer,
2012.

[BLM11] Paulo Barreto, Richard Lindner, and Rafael Misoczki. Monoidic codes in cryp-
tography. In Post-Quantum Cryptography 2011, volume 7071 of LNCS, pages
179–199. Springer, 2011.

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Attacking and defending
the McEliece cryptosystem. In Post-Quantum Cryptography 2008, volume 5299
of LNCS, pages 31–46, 2008.

[COT17] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. Polynomial time at-
tack on wild McEliece over quadratic extensions. IEEE Trans. Inform. Theory,
63(1):404–427, Jan 2017.

[CT16] Rodolfo Canto Torres. CaWoF, C library for computing asymptotic exponents
of generic decoding work factors, 2016. https://gforge.inria.fr/projects/cawof/.

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

[FGO+10] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and
Jean-Pierre Tillich. A distinguisher for high rate McEliece cryptosystems. IACR
Cryptology ePrint Archive, Report2010/331, 2010. http://eprint.iacr.org/.

[FOP+16a] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc,
and Jean-Pierre Tillich. Folding alternant and Goppa Codes with non-trivial
automorphism groups. IEEE Trans. Inform. Theory, 62(1):184–198, 2016.

[FOP+16b] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzamparc,
and Jean-Pierre Tillich. Structural cryptanalysis of McEliece schemes with com-
pact keys. Des. Codes Cryptogr., 79(1):87–112, 2016.

[FOPT10] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich.
Algebraic cryptanalysis of McEliece variants with compact keys. In Advances in
Cryptology - EUROCRYPT 2010, volume 6110 of LNCS, pages 279–298, 2010.

[FPdP14] Jean-Charles Faugère, Ludovic Perret, and Frédéric de Portzamparc. Algebraic
attack against variants of McEliece with Goppa polynomial of a special form.
In Advances in Cryptology - ASIACRYPT 2014, volume 8873 of LNCS, pages
21–41, Kaoshiung, Taiwan, R.O.C., December 2014. Springer.

[Gab05] Philippe Gaborit. Shorter keys for code based cryptography. In Proceedings of the
2005 International Workshop on Coding and Cryptography (WCC 2005), pages
81–91, Bergen, Norway, March 2005.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the
Fujisaki-Okamoto transformation. In Theory of Cryptography Conference, pages
341–371. Springer, 2017.

27

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decoding
algorithms. preprint, arXiv:1703.00263 [cs.CR], February 2017.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology - EUROCRYPT’93, volume 765 of LNCS, pages 386–397, Lofthus,
Norway, May 1993. Springer.

[MB09] Rafael Misoczki and Paulo Barreto. Compact McEliece keys from Goppa codes.
In Selected Areas in Cryptography, Calgary, Canada, August 13-14 2009.

[McE78] Robert J. McEliece. A Public-Key System Based on Algebraic Coding Theory,
pages 114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear
codes in O(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology - ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer,
2011.

[MS86] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting
Codes. North–Holland, Amsterdam, fifth edition, 1986.

[OTD10] Ayoub Otmani, Jean-Pierre Tillich, and Léonard Dallot. Cryptanalysis of two
McEliece cryptosystems based on quasi-cyclic codes. Special Issues of Mathemat-
ics in Computer Science, 3(2):129–140, January 2010.

[Pet10] Christiane Peters. Information-set decoding for linear codes over Fq. In Post-
Quantum Cryptography 2010, volume 6061 of LNCS, pages 81–94. Springer, 2010.

[Pra62] Eugene Prange. The use of information sets in decoding cyclic codes. IRE
Transactions on Information Theory, 8(5):5–9, 1962.

[Sen00] Nicolas Sendrier. Finding the permutation between equivalent linear codes: The
support splitting algorithm. IEEE Trans. Inform. Theory, 46(4):1193–1203, 2000.

[Sen10] Nicolas Sendrier. On the use of structured codes in code based cryptography. In
L. Storme S. Nikova, B. Preneel, editor, Coding Theory and Cryptography III,
pages 59–68. The Royal Flemish Academy of Belgium for Science and the Arts,
2010.

[Sen11] Nicolas Sendrier. Decoding one out of many. In Post-Quantum Cryptogra-
phy 2011, volume 7071 of LNCS, pages 51–67, 2011.

[SKHN76] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshihiko Namekawa.
Further results on Goppa codes and their applications to constructing efficient
binary codes. IEEE Trans. Inform. Theory, 22:518–526, 1976.

[Ste88] Jacques Stern. A method for finding codewords of small weight. In G. D. Cohen
and J. Wolfmann, editors, Coding Theory and Applications, volume 388 of LNCS,
pages 106–113. Springer, 1988.

[Zal99] Christof Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A,
60:2746–2751, October 1999.

28

Appendix

A How to get systematic blockwise circulant parity check ma-
trix?

Note that Condition 1 page 10 is not necessarily satisfied. However, it is in general possible to
deduce from a general quasi–cyclic Goppa code another QC Goppa code satisfying this condi-
tion by applying a permutation preserving the quasi–cyclicity, i.e. a block–wise permutation.
Hence, we introduce a second condition

Condition 2. The quasi–cyclic code has an information set which is a disjoint union of
blocks.

Clearly, a quasi–cyclic code satisfying Condition 2 can provide after a blockwise permu-
tation a quasi–cyclic code satisfying Condition 1.

Algorithm 3, permits the computation of such a block–wise permutation if it exists. It
returns FALSE, if such a permutation is not found which happens for instance if Condition 2
is not satisfied. Applying this algorithm on quasi–cyclic Goppa codes as defined in § 2.8, then
after 5000 experiments on quasi–cyclic Goppa codes of various parameters, the algorithm
never returned FALSE.

As an input of the algorithm, we need a parity–check matrix H0 which is blockwise cir-
culant. More precisely, the rows of H0 are of the form c0, σ`(c0), . . . , σ`

`−1(c0), c1, σ`(c1), . . . ,
σ`
`−1(c1), . . . , cs, σ`(cs), . . . , σ`

`−1(cs). The matrix need not be full rank.

29

Algorithm 3: Checking Condition 1

Input : A block–wise circulant parity–check matrix H0 ∈ F(n−k)×n
2 of an `–QC

Goppa code of length n and dimension k with `|n, k
Output: Returns FALSE if no block permutation is found. Else, returns TRUE

together with

• a blockwise permutation τ to get a systematic code;

• a systematic blockwise circulant parity–check matrix H of the permuted code.

1 Note. The Matrix H0 is split into `× ` square blocks. They are denoted by Bij for

0 6 i < n−k
` and 0 6 j < n

` . Similarly, the blocks of ` rows are denoted by Li and the
blocks of columns by Cj ;

2 τ ← Id (Identity permutation on {0, . . . , n− 1});
3 H ←H0;

4 for i from 0 to n−k
` − 1 do

5 if There exists t, i 6 t < n−k
` such that Bti is invertible then

6 B ← Bti;
7 Swap block–rows Li and Lt;
8 Li ← B−1Li;
9 Eliminate blocks below and above the (i, i)–th one by Gaussian elimination;

10 end

11 else if There exists t, i 6 t < n−k
` and j, i < j < n such that Btj is invertible then

12 Swap columns Ci and Cj in H;
13 τ ← τij ◦ τ (τij denotes the transposition of i, j);
14 Swap rows Li and Lt in H;
15 Li ← B−1Li;
16 Eliminate blocks below and above the (i, i)–th one by Gaussian elimination in

H;

17 end
18 else
19 return FALSE;
20 end

21 end
22 return TRUE, H, τ ;

B Proof of Proposition 8

Let us first recall the proposition we want to prove

Proposition 8. Let f be a Boolean function which is equal to 1 on a fraction α of inputs
which can be implemented by a quantum circuit of depth Df and whose gate complexity is Cf .
Using Grover’s algorithm for finding an input x of f for which f(x) = 1 can not take less
quantum resources than a Grover’s attack on AES-N as soon as

Df · Cf
α

> 2NDAES−N · CAES−N

30

where DAES−N and CAES−N are respectively the depth and the complexity of the quantum
circuit implementing AES-N.

Proof. Following Zalka[Zal99], the best way is to perform Grover’s algorithm sequentially with
the maximum allowed number of iterations in order not to go beyond MAXDEPTH. Grover’s
algorithm consists of iterations of the following procedure:

• Apply U : |0〉|0〉 →
∑

x∈{0,1}n
1

2n/2 |x〉|f(x)〉.

• Apply a phase flip on the second register to get
∑

x∈{0,1}n
1

2n/2 (−1)f(x)|x〉|f(x)〉.

• Apply U †.

If we perform I iterations of the above for I 6 1√
α

then the winning probability is upper

bounded by αI2. In our setting, we can perform I = MAXDEPTH
Df

sequentially before measuring,

and each iteration costs time Cf . At each iteration, we succeed with probability αI2 and we
need to repeat this procedure 1

αI2
times to get a result with constant probability. From there,

we conclude that the total complexity Q is:

Q =
1

αI2
· I · Cf =

Df · Cf
αMAXDEPTH

. (6)

A similar reasoning performed on using Grover’s search on AES-N leads to a quantum com-
plexity

QAES−N =
2NDAES−N · CAES−N

MAXDEPTH
. (7)

The proposition follows by comparing (6) with (7).

C Proof of Lemma 6

Remind that mr(2
m) denotes the number of irreducible polynomials of degree r in F2m [z] and

sr(2
m) denotes the number of irreducible polynomials of degree r such that g(z`) is irreducible.
Clearly for g(z`) to be irreducible g(z) should be irreducible too. Conversely, if g(z) is

irreducible, and g(z`) reducible, then the factorization of g(z`) is of the form

g(z`) =
`−1∏
i=0

h(ζiz) (8)

for some irreducible polynomial h. Remind that ζ denotes a primitive `–th root of unity in
F2m . Indeed, the finite subgroup of order ` of the affine group spanned by the map z 7→ ζz
acts on polynomials as f(z) 7→ f(ζz). Under this action, g(z`) is fixed, hence the polynomials
of its irreducible decomposition form an orbit under this action. Moreover, since ` is prime,
the orbit has size `.

Thus, the polynomials g(z) such that g(z`) is reducible has the form (8). The number of
such polynomials is bounded below by mr(2

m)/` which leads to

sr(2
m) >

(
1− 1

`

)
mr(2

m).

31

Remark 8. Actually one could prove that sr(2
m) is defined by the following recursive formula:

sr(2
m) =

2m − 1 if r = 1
mr(2

m)(1− 1
`) if ` - r

mr(2
m)− 1

` (mr(2
m)− sr/`(2r)) else.

32

	Introduction
	Motivation for this proposal
	Quasi–cyclic codes in cryptography
	Type of proposal

	Goppa codes, QC Goppa codes
	Context
	Vectors, matrices
	Polynomials
	Generalized Reed Solomon codes and alternant codes
	Binary Goppa codes
	Quasi–cyclic codes
	Definitions
	Polynomial representation
	Operations on quasi–cyclic codes

	Block–circulant matrices
	Quasi–cyclic Goppa codes
	QC–Goppa codes of interest in the present proposal
	Difficult problems from coding theory

	Presentation of the scheme
	Notation
	Key generation
	Description of the public key encryption scheme
	Context
	Encryption
	Decryption

	Description of the KEM
	Context
	Key encapsulation mechanism
	Decapsulation
	The function F

	Semantic security
	IND-CPA security of the PKE
	Conversion to an IND-CCA2 KEM/DEM

	Known attacks and counter–measures
	Key recovery attacks
	Exhaustive search on Goppa Polynomials and supports
	Distinguisher on the invariant code
	Algebraic cryptanalysis
	Algebraic attacks on the invariant code

	Message recovery attacks
	Generic decoding algorithms
	About the influence of quasi–cyclicity

	Exploiting Quantum Computations.

	Parameters
	Choice of the quasi–cyclicity order
	Choice of the field extension m
	Proposition of parameters
	Parameters for reaching NIST security level 1 (AES128)
	Parameters for reaching NIST security level 3 (AES192)
	Parameters for reaching NIST security level 5 (AES256)

	Implementation
	Reference implementation
	Optimized implementation

	Performance Analysis
	Running time in Milliseconds
	Space Requirements in Bytes

	Known Answer Tests – KAT
	How to get systematic blockwise circulant parity check matrix?
	Proof of Proposition 8
	Proof of Lemma 6

