Comprendre les données visuelles à grande échelle

ENSIMAG 2019-2020

Karteek Alahari & Diane Larlus

https://project.inria.fr/bigvisdata/

Au programme

- Organisation du cours
- Introduction
 - Contexte et applications
 - Aperçus des taches
 - Evaluation
- Représentation des données visuelles
 - Descripteurs locaux et globaux, réseaux de neurones
 - Application à la fouille de donnée
- Problème de la reconnaissance
 - Classification d'images et de vidéo
 - Séparateurs à Vaste marge (SVM)
 - Pour aller plus loin

Crédits pour les transparents: C. Schmid, H. Wang

Why automatic video understanding?

- Query for videos in professional Archives and YouTube
- Analyze and describe content of videos

Education: How do I make a pizza?

Sociology research: Influence of character smoking in movies

Why automatic video understanding?

- Car safety & self-driving and video surveillance
 - Detection of humans (pedestrians) and their motion, detection of unusual behavior

Courtesy Volvo

Courtesy Embedded Vision Alliance

• Complete description (story) of a video

• Complete description (story) of a video

• Complete description (story) of a video

• Complete description (story) of a video

Action recognition: Difficulties

- Large variations in appearance
 - Viewpoint changes
 - Intra-class variation
 - Camera motion

Difficulties: Viewpoint change

Difficulties: within-class variations

Action recognition: Difficulties

- Large variations in appearance
 - Viewpoint changes
 - Intra-class variation
 - Camera motion
- Manual collection of training data is difficult
 - Many action classes, rare occurrence
 - Pose and object annotation often a plus
- Action vocabulary is not well defined
 - What is the action granularity?
 - How to represent composite actions?

Action recognition – approaches

- Action recognition from still images
 - Human pose + interaction with objects

Results on PASCAL VOC 2010 Human action classification dataset [Prest et al., PAMI 2012]

Action recognition – approaches

- Action recognition from still images
 - Human pose + interaction with objects

V-COCO

[Detecting and Recognizing Human-Object Interactions. G. Gkioxari, R. Girshick, P. Dollar and K. He. CVPR 2018]

Action recognition – approaches

• Motion information necessary to disambiguate actions

Open or close door?

• Motion often sufficient by itself

Motion perception

- Gunnar Johansson [1973] pioneered studies on sequence based human motion analysis
- Moving light displays enable identification of motion, familiar people and gender

Action classification in videos

- Space-time interest points [Laptev, IJCV'05]
- Dense trajectories [Wang and Schmid, ICCV'13]
- Video-level CNN features

Space-time interest points (STIP)

• Space-time corner detector [Laptev, IJCV 2005]

$$H = \det(\mu) + k \operatorname{tr}^{3}(\mu)$$

$$\mu = \begin{pmatrix} I_x I_x & I_x I_y & I_x I_t \\ I_x I_y & I_y I_y & I_y I_t \\ I_x I_t & I_y I_t & I_t I_t \end{pmatrix} * g(\cdot; \sigma, \tau)$$

STIP descriptors

Space-time interest points

Action classification

• Bag of space-time features + SVM [Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

State of the art for video description

• Dense trajectories [Wang et al., IJCV'13] and Fisher vector encoding [Perronnin et al. ECCV'10]

• Orderless representation

Dense trajectories [Wang et al., IJCV'13]

- Dense sampling at several scales
- Feature tracking based on optical flow for several scales
- Length 15 frames, to avoid drift

Descriptors for dense trajectory

- Histogram of gradients (HOG: 2x2x3x8)
- Histogram of optical flow (HOF: 2x2x3x9)

Descriptors for dense trajectory

- Motion-boundary histogram (MBHx + MBHy: 2x2x3x8)
 - spatial derivatives are calculated separately for optical flow in x and y, quantized into a histogram
 - captures relative dynamics of different regions
 - suppresses constant motions

Dense trajectories

- Advantages:
- Captures the intrinsic dynamic structures in videos
- MBH is robust to certain camera motion
- Disadvantages:
 - Generates irrelevant trajectories in background due to camera motion
 - Motion descriptors are modified by camera motion, e.g., HOF, MBH

Improved dense trajectories

- Improve dense trajectories by explicit camera motion estimation
- Detect humans to remove outlier matches for homography estimation
- Stabilize optical flow to eliminate camera motion

Camera motion estimation

- Find the correspondences between two consecutive frames:
 - Extract and match SURF features (robust to motion blur)
 - Use optical flow, remove uninformative points
- Combine SURF (green) and optical flow (red) results in a more balanced distribution
- Use RANSAC to estimate a homography from all feature matches

Inlier matches of the homography

Remove inconsistent matches due to humans

- Human motion is not constrained by camera motion, thus generates outlier matches
- Apply a human detector in each frame, and track the human bounding box forward and backward to join detections
- Remove feature matches inside the human bounding box during homography estimation

Remove background trajectories

- Remove trajectories by thresholding the maximal magnitude of stabilized motion vectors
- Our method works well under various camera motions, such as pan, zoom, tilt

Successful examples

Failure cases

Removed trajectories (white) and foreground ones (green)

• Failure due to severe motion blur; the homography is not correctly restinated due to unreliable feature matches

Experimental setting

• Motion stabilized trajectories and features (HOG, HOF, MBH)

• Normalization for each descriptor, then PCA to reduce its dimension by a factor of two

• Use Fisher vector to encode each descriptor separately, set the number of Gaussians to K=256

• Use Power+L2 normalization for FV, and linear SVM with one-against-rest for multi-class classification

Datasets

- Hollywood2: 12 classes from 69 movies, report mAP
- HMDB51: 51 classes, report accuracy on three splits
- UCF101: 101 classes, report accuracy on three splits

Evaluation of the intermediate steps

	HOG	HOF	MBH	HOF+MBH	Combined
DTF	38.4%	39.5%	49.1%	49.8%	52.2%
ITF	40.2%	48.9%	52.1%	54.7%	57.2%

Results on HMDB51 using Fisher vector

- Baseline: DTF = "dense trajectory feature"
- ITF = "improved trajectory feature"
- HOF improves significantly and MBH somewhat
- Almost no impact on HOG
- HOF and MBH are complementary, as they represent zero and first order motion information

Impact of feature encoding on improved trajectories

Datasets	Fisher vector		
	DTF	ITF wo	ITF w
		human	human
Hollywood2	63.6%	66.1%	66.8%
HMDB51	55.9%	59.3%	60.1%
UCF101	83.5%	85.7%	86.0%

Compare DTF and ITF with and without human detection using HOG+HOF+MBH and Fisher encoding

- IDT significantly improvement over DT
- Human detection always helps. For Hollywood2 and HMDB51, the difference is more significant, as there are more humans present.
- Source code: http://lear.inrialpes.fr/~wang/improved_trajectories
 informatics mathematics

Recent CNN methods

Two-Stream Convolutional Networks for Action Recognition in Videos [Simonyan and Zisserman NIPS14]

Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]

Inception Module (Inc.)

Quo vadis action recognition? A new model and the Kinetics dataset [Carreira et al. CVPR17]