Comprendre les données visuelles à grande échelle

ENSIMAG 2019-2020

Karteek Alahari & Diane Larlus

https://project.inria.fr/bigvisdata/

Au programme

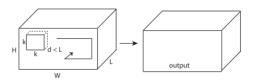
- Organisation du cours
- Introduction
 - Contexte et applications
 - Aperçus des taches
 - Evaluation
- Représentation des données visuelles
 - Descripteurs locaux et globaux, réseaux de neurones
 - Application à la fouille de donnée
- Problème de la reconnaissance
 - Classification d'images et de vidéo
 - Séparateurs à Vaste marge (SVM)
 - Pour aller plus loin

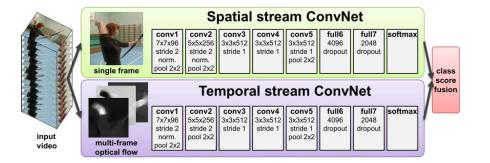
Crédits pour les transparents: C. Schmid, D. Wynen

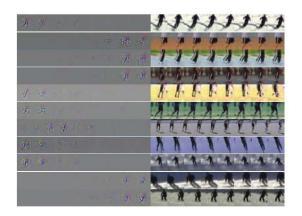
Recent CNN methods

Two-Stream Convolutional Networks for Action Recognition in Videos [Simonyan and Zisserman NIPS14]

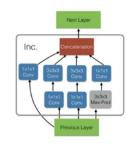
Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]







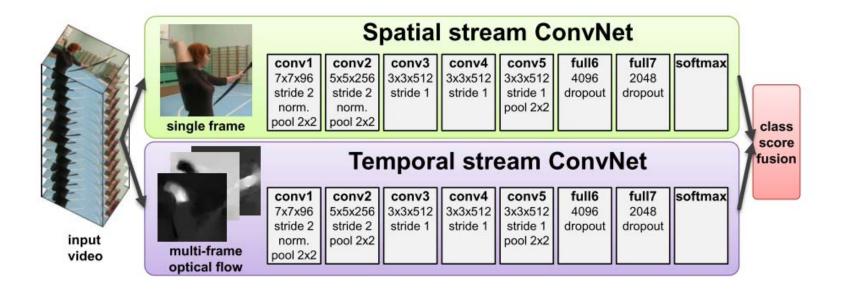
Inception Module (Inc.)



Quo vadis action recognition? A new model and the Kinetics dataset [Carreira et al. CVPR17]

Recent CNN methods

Two-Stream Convolutional Networks for Action Recognition in Videos [Simonyan and Zisserman NIPS14]



Method

Karen Simonyan, Andrew Zisserman Two-Stream Convolutional Networks

2015-03-05 3 / 25

50,000 ft

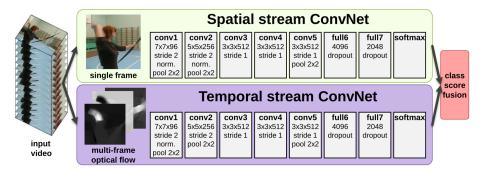
Hyposthesis

The human brain uses separate pathways to recognize objects and motions.

Idea

Make a network that mimics this strategy.

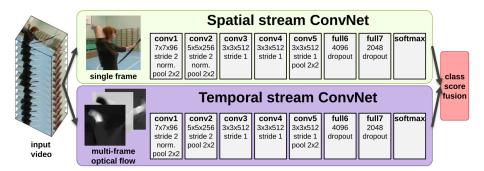
Network Architecture I



Still images go into Spatial Network

- Input is a single frame
- CNP-CNP-C-C-C-CP-FD-FD-S

Network Architecture II

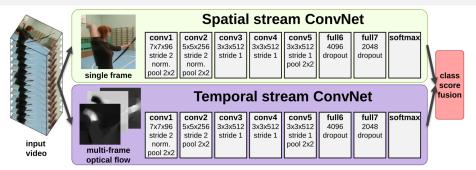


Flow description goes into Temporal Network

- CNP-CP-C-C-C-CP-FD-FD-S
- Input is a stack of flow for L frames

Method

Network Architecture III

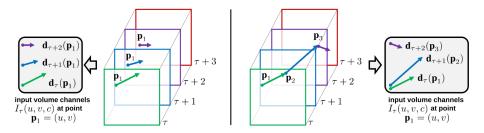


No combination of layer outputs up until output layer

- Outputs of both networks are class scores
- Combination by averaging or linear SVM
 - Combination via F-Layer had problems with overfitting

Method

Flow Stacking I



Two methods to build input for flow network:

- $[u, v, \tau: \tau + L]$ describes flow at point [u, v] over time
 - i.e. use flow directly as input
- **u**, v, τ : τ + L] describes trajectory starting at [u, v, τ]

Flow Stacking II

Also use Backward Flow

- Also calculate backward flow
- Use $\frac{L}{2}$ frames forward and backward each

Camera Movement

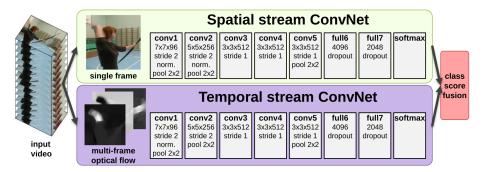
Subtract mean flow for simple camera movement correction

Multitask Learning

- Use more than one dataset for training
- One softmax output layer per dataset
- Combine loss functions
 - Loss for videos of "other" datasets is zero
 - Sum up loss/gradient across batch/training set

Implementation Details

Implementation Details: Networks



- ReLUs
- Max-pooling on 3 × 3, stride 2
- Local Response Normalization ¹

Normalize activation by sum of activations of "neighbouring" filters (rizhovsky, Sutskover, Hinton: ImageNet Classification with Deep Convolutional)

¹Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Karen Simonyan, Andrew Zisserman

2015-03-05 12 / 25

Mini-batch SGD

- Momentum 0.9
- Batch size 256
- Learning rate
 - Full Training:
 - $\blacksquare~10^{-2}$ for 50K $\rightarrow 10^{-3}$ for 20K $\rightarrow 10^{-4}$ for 10K
 - \Rightarrow 80K iterations
 - Fine tuning:
 - $\blacksquare~10^{-2}$ for $14 K \rightarrow 10^{-3}$ for 6 K

Input Processing

- Select 256 random videos for each mini-batch
- Select random anchor frame for each videos
- Scale so that smaller spatial dimension is 256
- **Spatial net input:** Crop random 224 × 224 patch, flip, jitter
- Temporal net input:
 - anchor "stack of flow" with length 2L at chosen frame
 - crop random 224 × 224 tube
 - random flipping

Testing

- Sample 25 anchor frames at equally spaced times
 - For temporal net, extract stack of flow around
- \blacksquare Crop to corners & to center \rightarrow 224 \times 224
- Flip each image/tube horizontally
- \Rightarrow 25 · 2 · 5 = 250 inputs for each network
- Average over resulting class scores

The Rest

- Optical flow straight from OpenCV
 - \blacksquare Precomputed and stored in 8-bit resolution \rightarrow only 27GB
- Patched Caffe to run on multiple graphics cards

Experiments & Results

Spatial Net

Evalutation on UCF101

Training from scratch

Overfits

Training setting	Dropout ratio		
framing setting	0.5	0.9	
From scratch	42.5%	52.3%	
Pre-trained + fine-tuning	70.8%	72.8%	
Pre-trained + last layer	72.7%	59.9%	

Spatial Net

Evalutation on UCF101

- Training from scratch
 - Overfits
- Pretrain on ILSVRC-2012, fine-tune on UCF101

Training setting	Dropout ratio		
framing setting	0.5	0.9	
From scratch	42.5%	52.3%	
Pre-trained + fine-tuning	70.8%	72.8%	
Pre-trained + last layer	72.7%	59.9%	

Works, but careful about over regularizing!

Spatial Net

Evalutation on UCF101

- Training from scratch
 - Overfits
- Pretrain on ILSVRC-2012, fine-tune on UCF101
 - Works, but careful about over regularizing!
- Pretrain on ILSVRC-2012, re-train softmax layer
 - Works, use this from now on

Training setting	Dropout ratio		
framing setting	0.5	0.9	
From scratch	42.5%	52.3%	
Pre-trained + fine-tuning	70.8%	72.8%	
Pre-trained + last layer	72.7%	59.9%	

Temporal Net

Evalutation on UCF101

- L = 5 much better than L = 1
- L = 10 a bit better yet
- Stacking largely irrelevant

Implemented Slow Fusion²

Input configuration	Mean subtraction		
	off	on	
Single-frame optical flow $(L = 1)$	-	73.9%	
Optical flow stacking (1) (L = 5)	-	80.4%	
Optical flow stacking (1) (L = 10)	79.9%	81.0%	
Trajectory stacking (2) $(L = 10)$	79.6%	80.2%	
Optical flow stacking (1) $(L = 10)$, bi-dir.	-	81.2%	

- Yields 56% accuracy (in line with that paper)
- Conclusion: motion needs to be presented appropriately

²Large-scale Video Classification with Convolutional Neural Networks

Multi-task Learning of Temporal Net

Evalutation on HMDB-51

Training setting	Accuracy
Training on HMDB-51 without additional data	46.6%
Fine-tuning a ConvNet, pre-trained on UCF-101	49.0%
Training on HMDB-51 with classes added from UCF-101	52.8%
Multi-task learning on HMDB-51 and UCF-101	55.4%

Using more data helps!

- At least in this direction
 - UCF101 alone: 81%
 - UCF101+HMDB-51: 81.**5**%

Combined Networks

Spatial ConvNet	Temporal ConvNet	Fusion Method	Accuracy
Pre-trained + last layer	bi-directional	averaging	85.6%
Pre-trained + last layer	uni-directional	averaging	85.9%
Pre-trained + last layer	uni-directional, multi-task	averaging	86.2%
Pre-trained + last layer	uni-directional, multi-task	SVM	87.0%

Figure: Fused Results on UCF101 Split 1

Observations

- Fusion improves on each individual network
- SVM is better than averaging
- Multi-task learning helps
- Bi-directional flow does not help

Comparison to State of the Art (Mean over Splits)

Method	UCF-101	HMDB-51
Improved dense trajectories (IDT) [26, 27]	85.9%	57.2%
IDT with higher-dimensional encodings [20]	87.9%	61.1%
IDT with stacked Fisher encoding [21] (based on Deep Fisher Net [23])	-	66.8%
Spatio-temporal HMAX network [11, 16]	-	22.8%
"Slow fusion" spatio-temporal ConvNet [14]	65.4%	-
Spatial stream ConvNet	73.0%	40.5%
Temporal stream ConvNet	83.7%	54.6%
Two-stream model (fusion by averaging)	86.9%	58.0%
Two-stream model (fusion by SVM)	88.0%	59.4%

- Spacial net: pretrained + last layer
- Temporal net: unidirectional stacked flow, centered, multi-task
- Each net individually better than "The Other Paper" \o/
- Combination even better
- But not quite state of the art on HMDB

Recent CNN methods

Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]

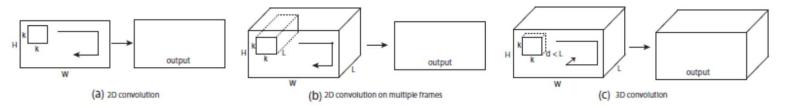
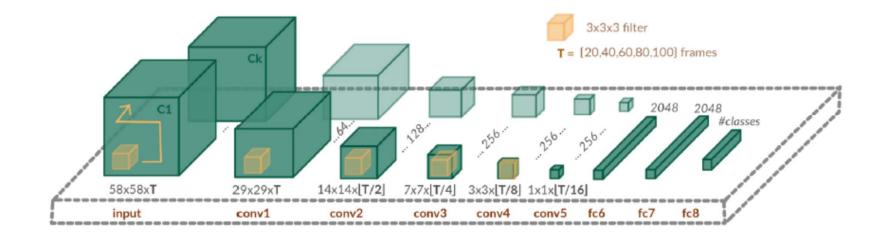
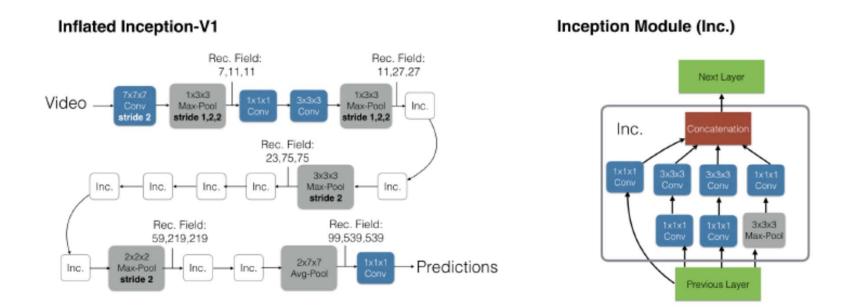


Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results in another volume, preserving temporal information of the input signal.



Recent CNN methods

Quo vadis, action recognition? A new model and the Kinetics dataset [Carreira et al. CVPR17]



Pre-training on the large-scale Kinetics dataset 240k training videos \rightarrow significant performance grain

Summary

- 3D convolution capture spatio-temporal dynamics well
- Importance of sufficient training data

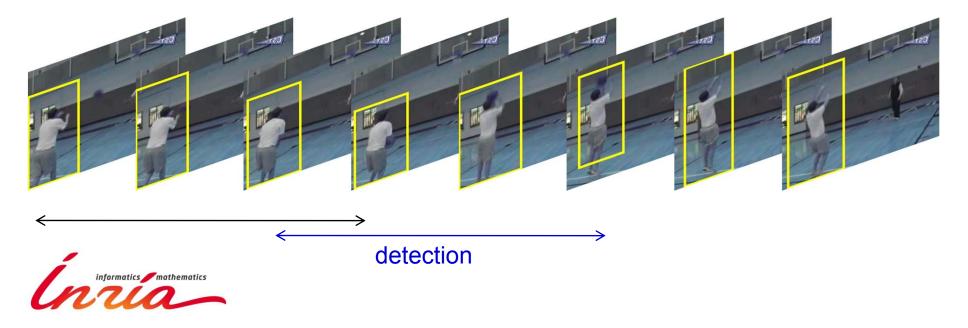
Overview

- Optical flow
- Video classification
 - Bag of spatio-temporal features
- Action localization
 - Spatio-temporal human localization

Spatio-temporal action localization

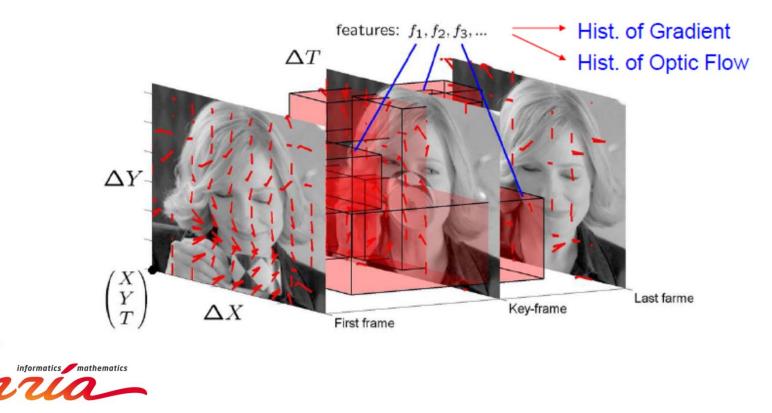
Temporal action localization

- Temporal sliding window
 - Robust video repres. for action recognition, Oneata et al., IJCV'15
 - Automatic annotation of actions in video, Duchenne et al., ICCV'09
 - Temporal localization of actions with actoms, Gaidon et al., PAMI'13
- Shot detection
 - ADSC Submission at Thumos Challenge 2015

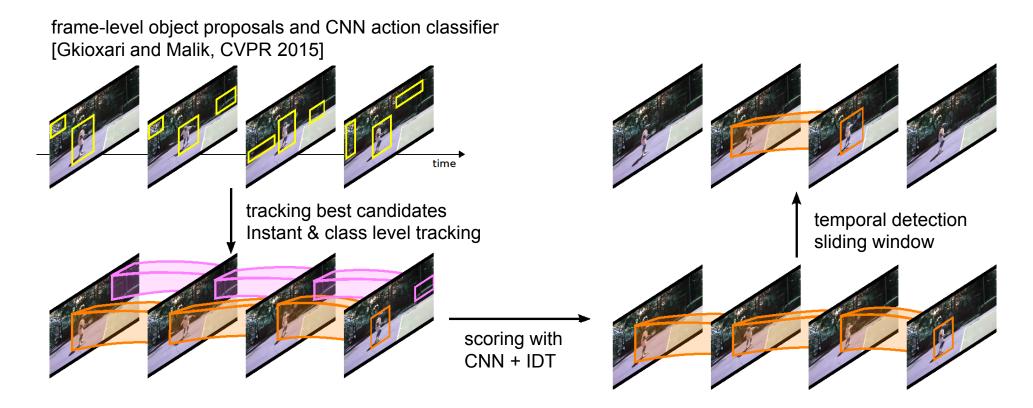


State of the art

- Spatio-temporal action localization
 - Space-time sliding window
 - Spatio-temporal features selection with a cascade, Laptev & Perez, ICCV'07



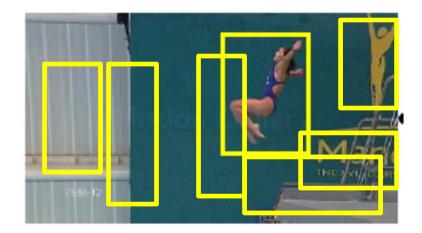
Learning to track for spatio-temporal action localization



[Learning to track for spatio-temporal action localization, P. Weinzaepfel, Z. Harchaoui, C. Schmid, ICCV 2015]

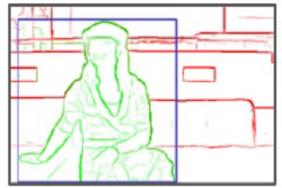
Frame-level candidates

- For each frame
 - Compute object proposals: EdgeBoxes [Zitnick et al. 2014]



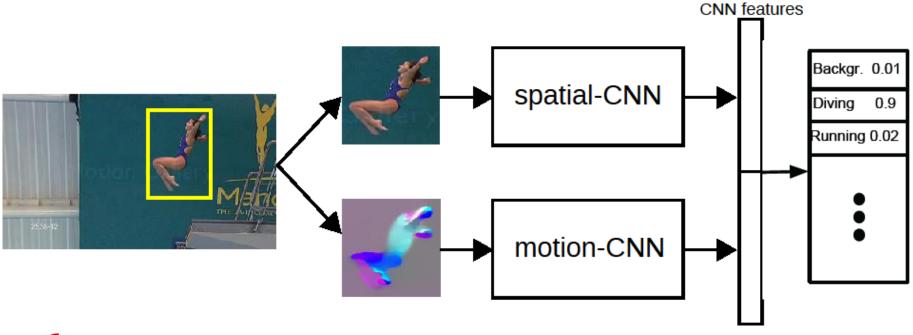
Frame-level candidates

- For each frame
 - Compute object proposals: EdgeBoxes [Zitnick et al. 2014]
 - Extraction of salient boxes based on edgeness



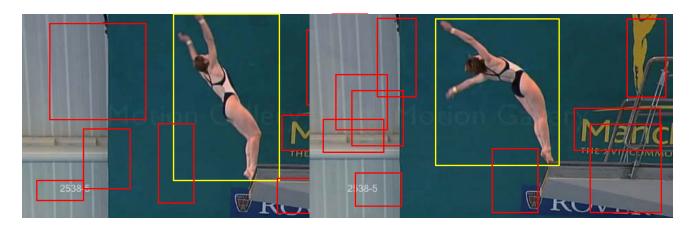
Frame-level candidates

- For each frame
 - Compute object proposals (EdgeBoxes [Zitnick et al. 2014])
 - Extract CNN features (training similar to R-CNN [Girshicket al. 2014])
 - Score each object proposal



[Gkioxari and Malik'15, Simonyan and Zisserman'14]

Extracting action tubes - tracking



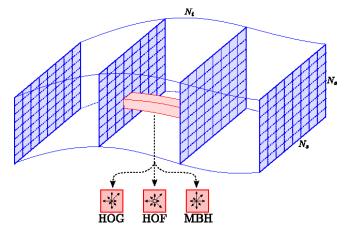
- Tracking an action detection (select highest scoring proposal)
 - Learn an instance-level detector mining negatives in the same frame
 - For each frame:
 - Perform a sliding-window and select the best box according to the class-level detector and the instance-level detector
 - Update instance-level detector

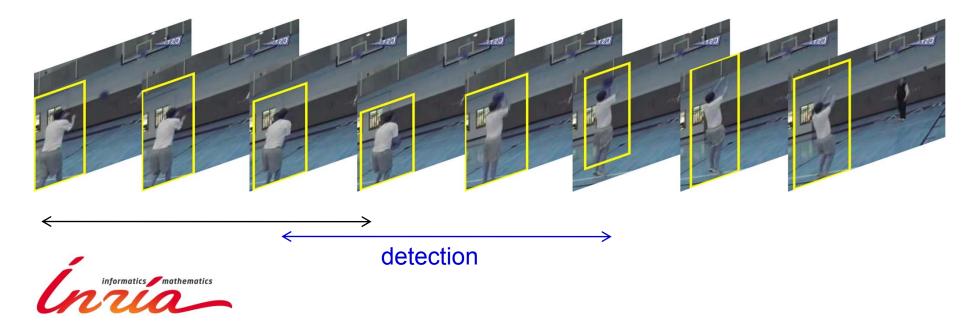
Extracting action tubes

- Start with the highest scored action detection in the video
- Track forward and the backward
- Once tracking is done, delete detections with high overlap
- Restart from the highest scored remaining action detection
- Class-level → robustness to drastic change in poses (Diving, Swinging)
- Instance-level \rightarrow models specific appearance

Rescoring and temporal sliding window

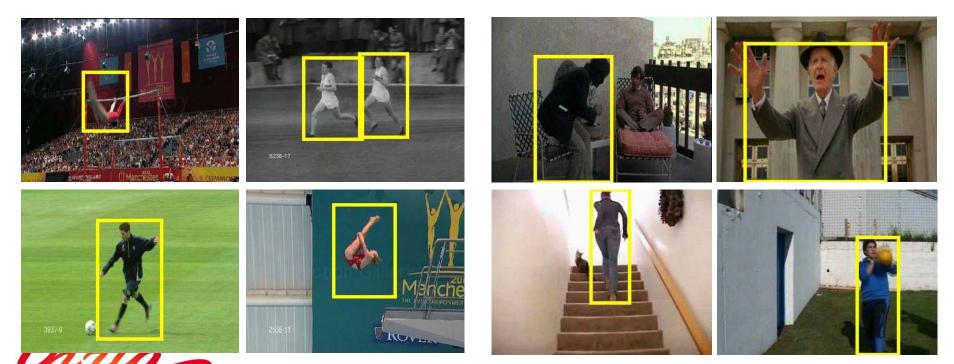
- To capture the dynamics
 - Dense trajectories [Wang et Schmid, ICCV'13]
- Temporal sliding window





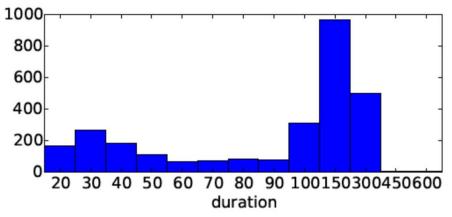
Datasets (spatial localization)

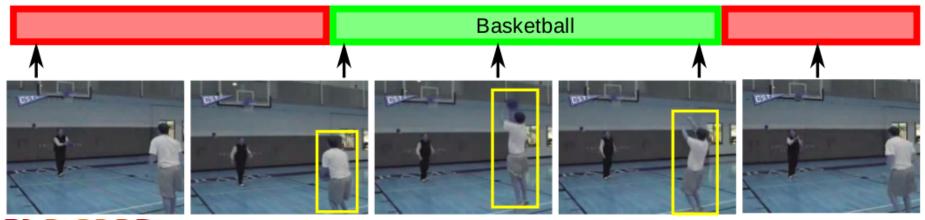
	UCF-Sports [Rodriguez et al. 2008]	J-HMDB [Jhuang et al. 2013]
Number of videos	150	928
Number of classes	10	21
Average length	63 frames	34 frames



Datasets

- UCF-101 [Soomro et al. 2012]
 - ► Spatio-temporal localization for a subset of the dataset
 - ► 3207 videos, 24 classes
 - ► Average length: 176 frames





Experimental results

Impact of the tracker

Detectors in the tracker	mAP	
	UCF-Sports	J-HMDB (split 1)
instance-level + class-level	95.1%	65.0%
instance-level	77.5%	61.1%
class-level	91.0%	60.6%
Comparison to the state of the art		
Gkioxari & Malik, 15	75.8%	53.3%

Quantitative evaluation on UCF-101

mAP	0.2	0.3
Ours	46.7	37.8

