Comprendre les données visuelles à grande échelle

ENSIMAG 2018-2019

Karteek Alahari & Diane Larlus

https://project.inria.fr/bigvisdata/

Au programme

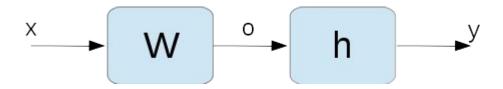
- Organisation du cours
- Introduction
 - Contexte et applications
 - Aperçus des taches
 - Evaluation
- Représentation des données visuelles
 - Descripteurs locaux et globaux, réseaux de neurones
 - Application à la fouille de donnée
- Problème de la reconnaissance
 - Classification d'images et de vidéo
 - Séparateurs à Vaste marge (SVM)
 - Pour aller plus loin : RNN

Crédits pour les transparents: T. Lucas, M. Pedersoli

Outline

- Motivation: why and when are RNN useful
- Formal definition of a RNN
- Backpropagation Through Time
- Vanishing Gradients
- Improved RNN
- Regularization for RNN
- Teacher Forcing Training

Introduction

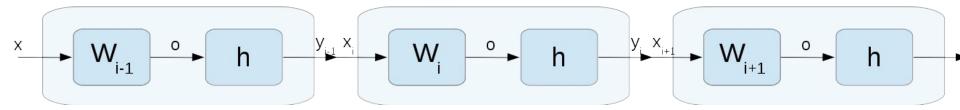


Building block: y = h(Wx)

W = linear (also convolutional, low rank, etc...)

h = element-wise non-linear operation (tanh, reLU, etc..)

Multilayer Network



Same input and output, but hidden representations: more powerful!

Composition of building blocks

Can still learn parameters with backpropagation

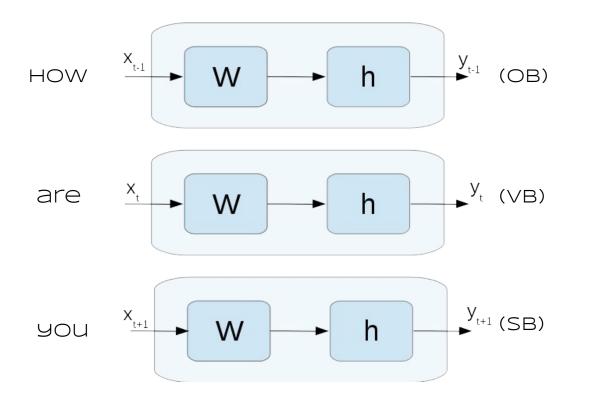
Sequential Input/Output

So far x,y fixed size vectors --> limiting factor!

We want input output with a complex structure eg. variable length sequence!

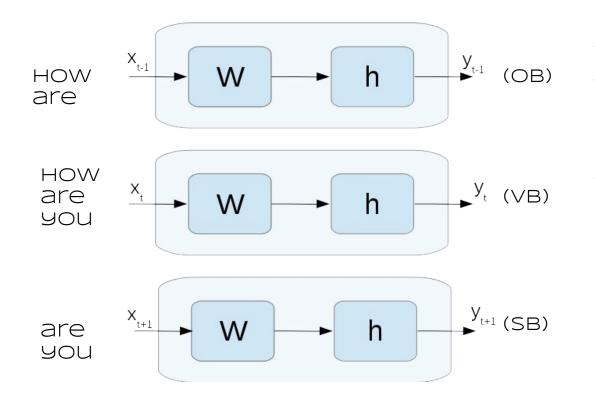
Can we reuse the same building block?

Repeated Network



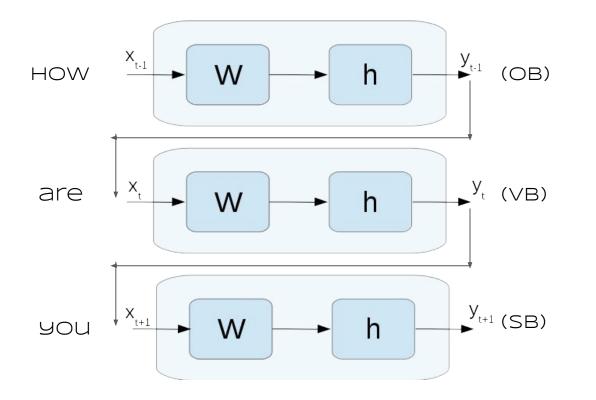
- + Works!
- + Scale well with data because reuses same parameters!
- No context, every decision is taken independently!

Convolutional Network



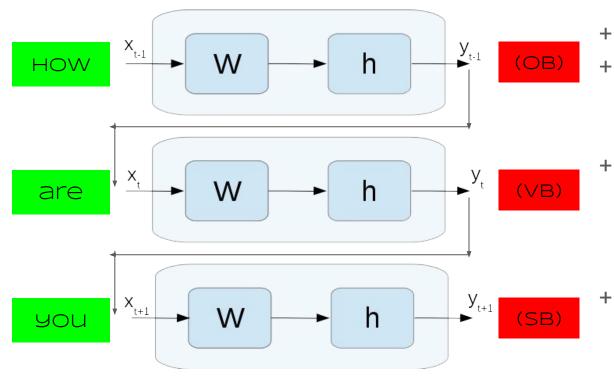
- + Works!
- Scale well with data
 because same
 parameters reused!
- Context, every decision depends also on the neighbours!
- Context has fixed, predefined structure!
- Does not scale if we want long range, sparse correlations!

Recurrent Network



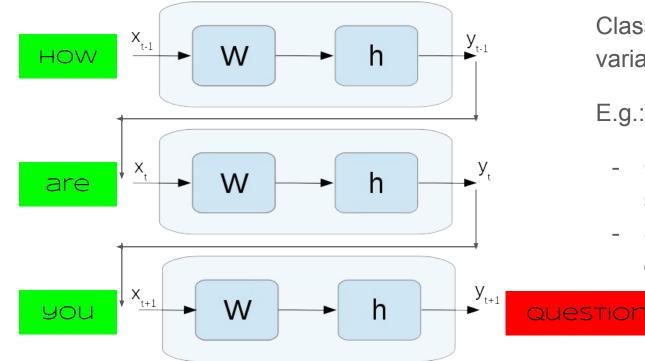
- + Works!
- + Scale well with data because same parameters reused!
- State vector can summarize all the past, thus global context with long term dependencies!
- + Same optimization as before with Backpropagation

RNN topology: Many to Many (Coupled)



- Works!
- Scale well with data
 because same
 parameters reused!
- State vector can summarize all the past, thus global context with long term dependencies!
- Same optimization as before with Backpropagation

RNN topology: Many to one

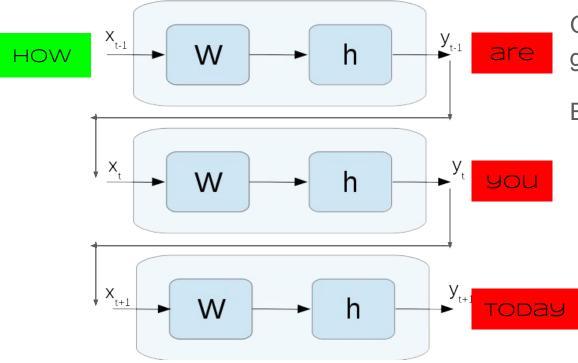


Classification problems with variable input size.

E.g.:

- Classify the category of a sentence
- Sentiment Classification on a audio track

RNN topology: One to many

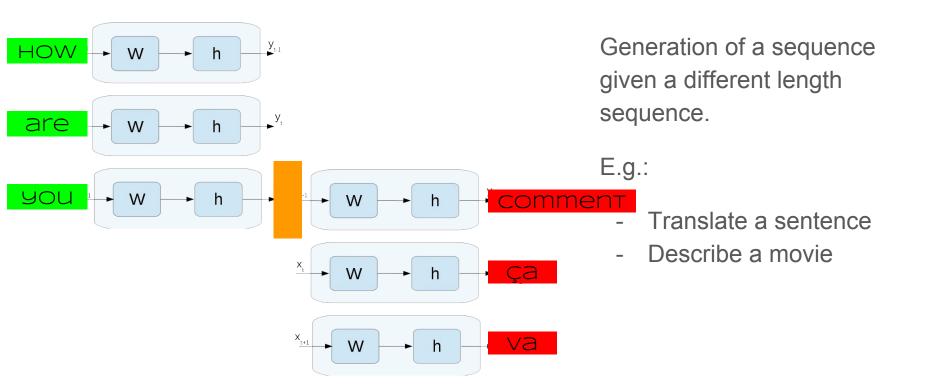


Generation of a sequence given an initial state.

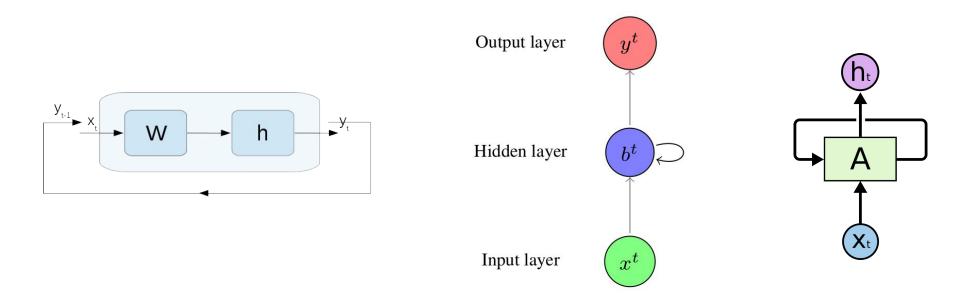
E.g.:

- Generate a sentence describing an image
- Generate a sentence given the first word

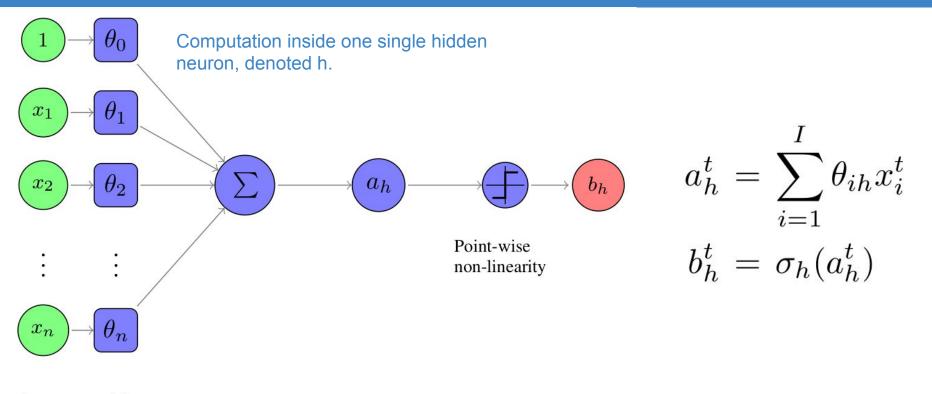
RNN topology: Many to Many (Encoder/Decoder)



RNN graphical representation

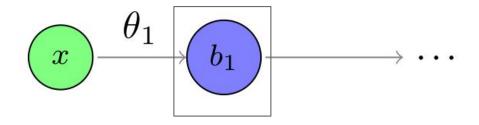


Forward propagation in a single neuron



inputs weights

A network with one neuron per layer



$$b_1 = \sigma(\theta_1 x)$$

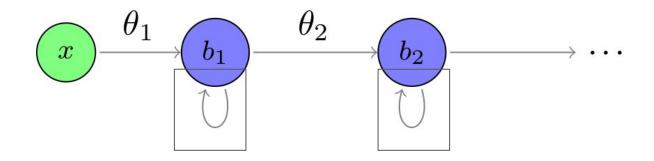
A network with one neuron per layer

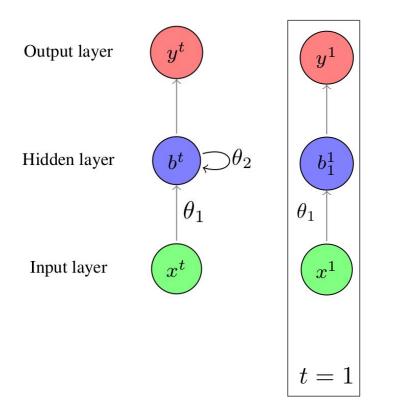
$$b_{1} = \sigma(\theta_{1}x)$$

$$b_{1} \xrightarrow{\theta_{1}} b_{1} \xrightarrow{\theta_{2}} b_{2} \xrightarrow{b_{2}} \cdots \qquad b_{2} = \sigma(\theta_{2}b_{1})$$

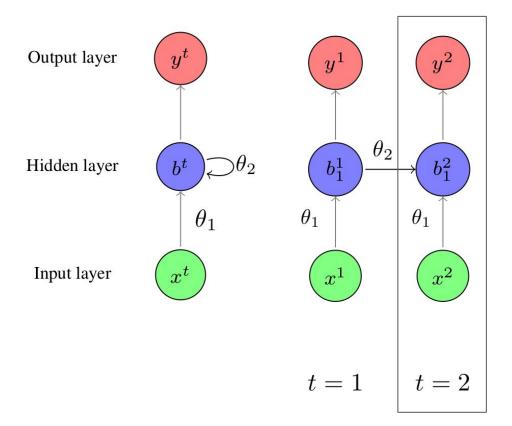
$$= \sigma(\theta_{2}\sigma(\theta_{1}x))$$

Making the network recurrent





 $b_1^1 = \sigma(\theta_1 x^1 + 0)$

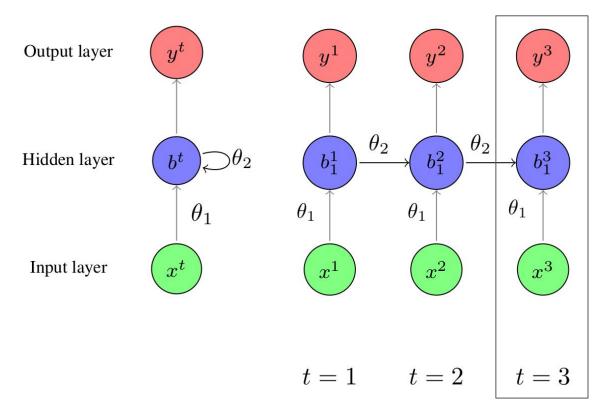


$$b_1^1 = \sigma(\theta_1 x^1 + 0)$$

$$a_1^2 = \theta_1 x^2 + \theta_2 b_1^1$$

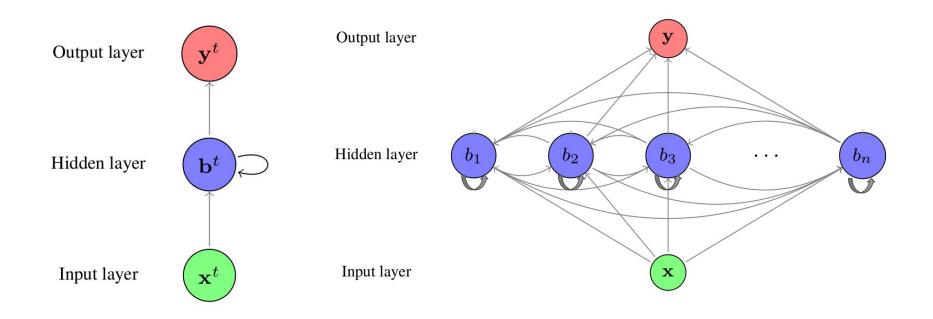
$$b_1^2 = \sigma(a_1^2)$$

$$= \sigma(\theta_1 x^2 + \theta_2 b_1^1)$$

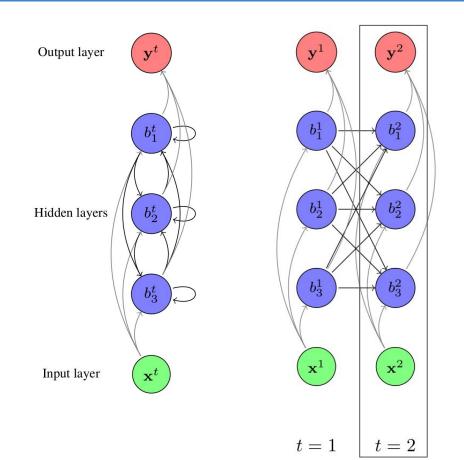


$$\begin{vmatrix} a_1^3 &= \theta_1 x^3 + \theta_2 b_1^2 \\ b_1^3 &= \sigma(a_1^3) \\ &= \sigma(\theta_1 x^3 + \theta_2 \sigma(\theta_1 x^2 + \theta_2 b_1^1)) \end{vmatrix}$$

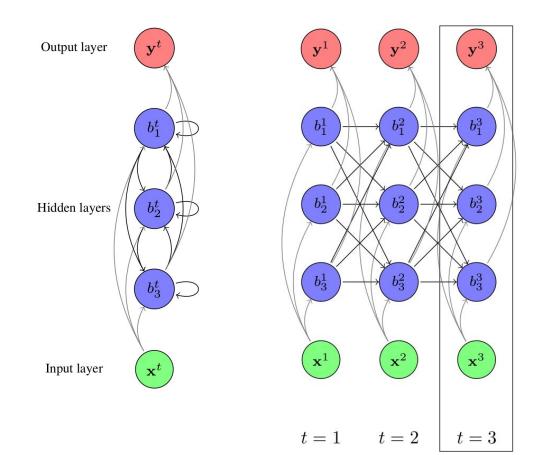
A recurrent network with one hidden layer



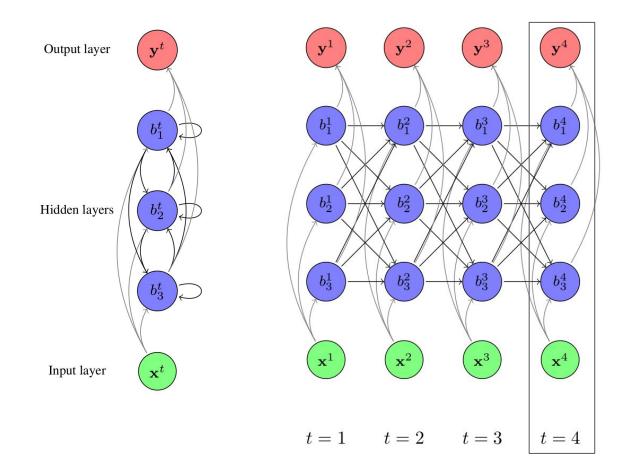
Unfolding the graph



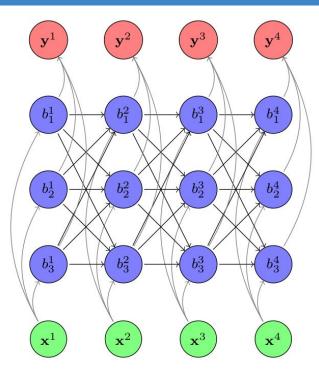
Unfolding the graph



Unfolding the graph



Equations of the recurrence

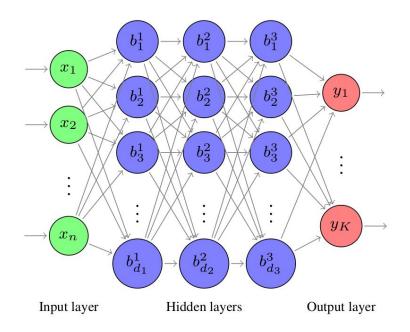


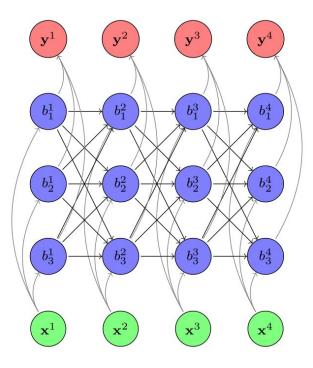
$$\begin{vmatrix} a_h^t = \sum_{i=1}^I \theta_{ih} x_i^t + \sum_{h'=1}^H \theta_{h'h} b_{h'}^{t-1} \\ b_h^t = \sigma_h(a_h^t) \end{vmatrix}$$

$$\begin{aligned} \mathbf{a}^t &= \theta_{in}^T \mathbf{x} + \theta_{rec}^T \mathbf{a}^{t-1} \\ \mathbf{b}^t &= \sigma(\mathbf{a}^t) \end{aligned}$$

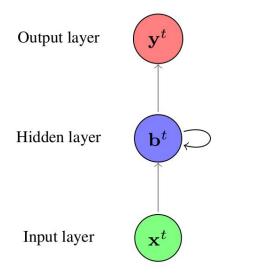
$$t = 1 \qquad t = 2 \qquad t = 3 \qquad t = 4$$

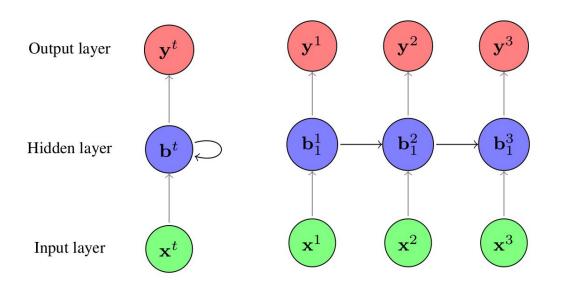
The unfolded graph is a feed-forward graph



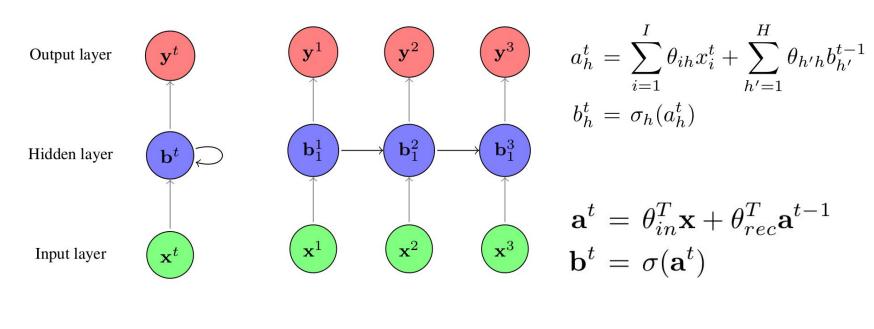


 $t = 1 \qquad t = 2 \qquad t = 3 \qquad t = 4$





 $t = 1 \qquad t = 2 \qquad t = 3$



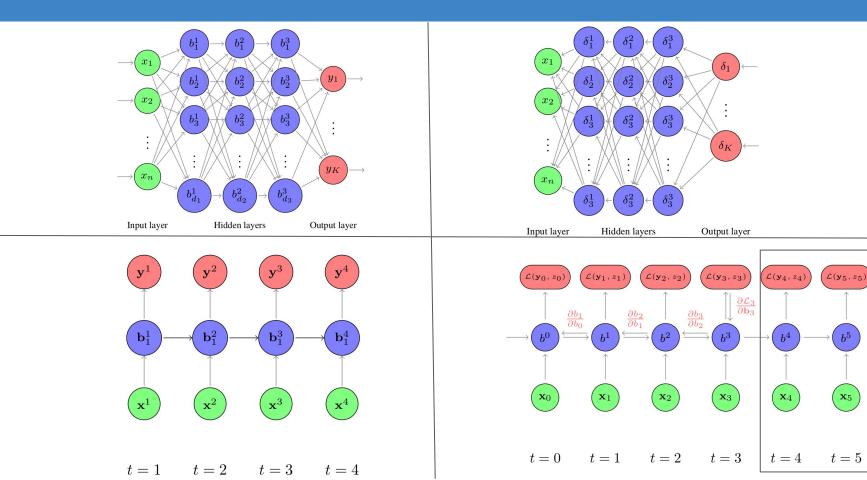
 $t = 1 \qquad t = 2 \qquad t = 3$

Back-propagation in a recurrent network

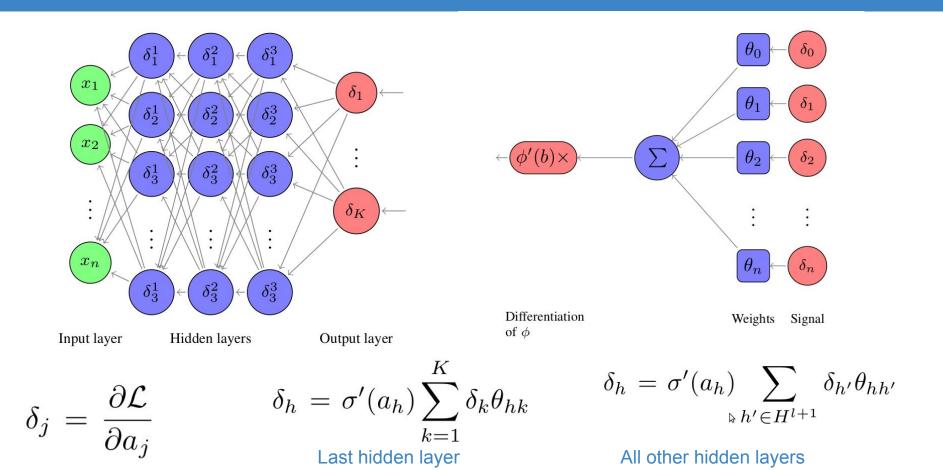
 b^5

 \mathbf{x}_5

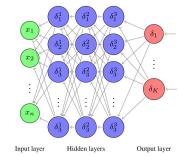
t = 5



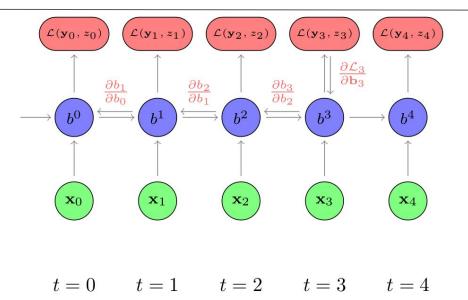
Equations of the back-propagation



Equations of the back-propagation



$$\delta_{h} = \sigma'(a_{h}) \sum_{k=1}^{K} \delta_{k} \theta_{hk}$$
$$\delta_{h} = \sigma'(a_{h}) \sum_{k \in H^{l+1}} \delta_{h'} \theta_{hh'}$$



$$\delta_j^t = \frac{\partial \mathcal{L}}{\partial a_j^t}$$

$$\delta_h^t = \sigma'(a_h^t) \left(\sum_{k=1}^K \delta_k^t \theta_{hk} + \sum_{h'=1}^H \delta_{h'}^{t+1} \theta_{hh'}\right)$$

$$\frac{\partial \mathcal{L}}{\partial \theta_{ij}} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\partial a_j^t} \frac{\partial a_j^t}{\partial \theta_{ij}} = \sum_{t=1}^{T} \delta_j^t b_i^t$$

The vanishing gradient problem

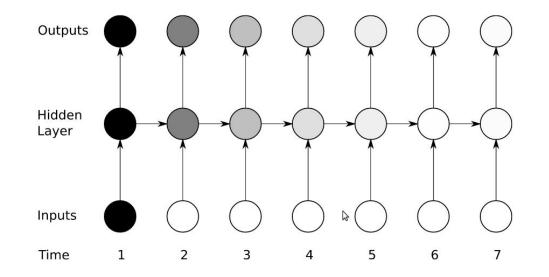
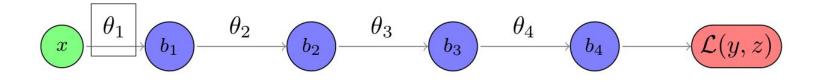


Figure credit: Alex Graves

A simple case of vanishing gradient



 $\frac{\partial \mathcal{L}}{\partial \theta_1} = \frac{\partial \mathcal{L}}{\partial h_4} \times \theta_4 \times \sigma'(h_3) \times \theta_3 \times \sigma'(h_2) \times \theta_2 \times \sigma'(h_1) \times x$

Improved RNNs

Gated Units

- Long-Short Term Memory RNN
- Gated Recurrent Unit
- Skip connections
 - Clockwork RNN
 - Hierarchical Multi-resolution RNN