Apprentissage continu de
representations visuelles

ENSIMAG \ 1
2023-2024 Grenoble INP
ENSIMAQ ,} l

Karteek Alahari & Diane Larlus

Apprentissage continu

https://project.inria.fr/bigvisdata/

&

(rrzia— ===

NAVER LABS

https://project.inria.fr/bigvisdata/

Incremental Learning: The Rules |

Learn one task after the other

Without storing (many) data from previous tasks

Without memory footprint growing (significantly) over tim
Without (completely) forgetting old tasks

Slide credit: T. Tuytelaars

What else will we see today?

* Flavour of different approaches:
1. Regularization based: LwF, EBLL, EWC, S|, MAS, IMM, ...
2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
3. Architecture based: PackNet, progressive nets , HAT, ...

e More than classification?

 Takeaways

What else will we see today?

* Flavour of different approaches:
1. Regularization based: LwF, EBLL, EWC, S|, MAS, IMM, ...

Regularization-based Models

 When training a new task,
— add a regularization term to the loss

— i.e., term to penalize catastrophic forgetting

e R1: data-focused methods
* R2: model/prior-focused methods

Slide credit: T. Tuytelaars

Data-focused Regularization:
Learning without Forgetting

* Knowledge distillation loss

— i.e., preservation of responses

5| |0
= Previ del’s output
, = revious mo
New task Input N Feature S N O for old tasks P S —

Extraction 2 :
O
5| O

-, 8 New task annotations €

[Li & Hoiem 2016] KA: Incremental Learning Slide credit: T. Tuytelaass

Data-focused Regularization:
Learning without Forgetting

Simple method; good results for related tasks

'T: Poor results for unrelated tasks

? Need to store the old model

[Li & Hoiem 2016]

KA: Incremental Learning

Model-focused Regularization

* Penalize changes to ‘important’ parameters

Y Y
Loss on new task(s) Regularization

L(6) =£B<9“>+a2y<92—02‘1>2

Different variants possible for
“importance” and regularization

Model-focused Regularization

* Elastic weight consolidation [Kirkpatrick et al., 2017]

— Indiv. penalty for each previous task Z Z)\n_i(en B en_@~>2
— Fisher information matrix for) k k k

k 1<n

Model-focused Regularization

* Elastic weight consolidation [Kirkpatrick et al., 2017]

— Indiv. penalty for each previous task Z Z)\n_iwn B Hn_,')g
— Fisher information matrix for) k k K

k 1<n
O Low error fortask B == EW(C
= Low error for task A ™= L2
== N0 penalty

(T

FIgU re from paper KA: Incremental Learning 10

Model-focused Regularization

* Elastic weight consolidation [Kirkpatrick et al., 2017]

— Indiv. penalty for each previous task Z Z)\n_iwn B (9”_,')2
— Fisher information matrix for) k k K

k 1<n
Agnostic to architecture; Good results empirically
i Only valid locally
? Need to store importance weights

KA: Incremental Learning 11

Model-focused Regularization

 Two examples
— Elastic weight consolidation [Kirkpatrick et al., 2017]

— Memory aware synapses [Aljundi et al., 2018]

e Other alternatives

— Path Integral / Synaptic Intelligence: large changes during
training [Zenke et al., 2017]

— Moment matching [Lee et al., 2017]
— Pathnet [Fernando et al., 2017]

What else will we see today?

* Flavour of different approaches:

2. Rehearsal / Replay: iCaRL, DGR, GEM, ...

Rehearsal / Replay-based methods

e Store a couple of examples from previous tasks
* Or produce samples from a generative model

* But
— How many?
— How to select them?
— How to use them?

iCaRL: Incremental classifier and
representation learning

e Selects samples that are closest to the feature mean
of each class

 Knowledge distillation loss [Hinton et al.14]

* Clever use of available memory (see the following)

[Rebuffi et al. 2017]

iCaRL: Incremental classifier and
representation learning

Algorithm i1CaRL INCREMENTALTRAIN

input X%,..., X" //training examples in per-class sets
input K /[l memory size

require © /I current model parameters
require P = (Py,...,P;_1) // current exemplar sets

© « UPDATEREPRESENTATION(X®,..., X% P, 0)

Split the problem into:
e |earning features, and then

* using NCM classifier
m ¢« K/t [/ number of exemplars per class

fory=1,...,s—1do
P, + REDUCEEXEMPLARSET(P,,m)

end for
fory=s,...,tdo
P, + CONSTRUCTEXEMPLARSET(X,, m,0)
end for
P+ (P,...,B) /I new exemplar sets

[Rebuffi et al. 2017]

KA: Incremental Learning

16

iCaRL: Incremental classifier and
representation learning

Algorithm i1CaRL CLASSIFY

input z // image to be classified
require P = (Py,...,P;) //class exemplar sets
require ¢ : X — R¢ // feature map

fory=1,...,tdo

1
by & Z p(p) // mean-of-exemplars
end for
y* argmin||p(z) — py|| //nearest prototype
yzla"'at

output class label y*

[Rebuffi et al. 2017]

KA: Incremental Learning

17

iCaRL: Incremental classifier and
representation learning [Rebuffi et al’17]

Algorithm iCaRL UPDATEREPRESENTATION

input X°,..., X% //training images of classes s, ...,t
require P = (Py,...,P;_1) // exemplar sets
require © // current model parameters

// form combined training set:
D+ J{=y) :ze X} U | {(z,9) : z € P}
y=38,...,t y=1,...,s—1
// store network outputs with pre-update parameters:
fory=1,...,s—1do
q; < gy(z;) forall (z;,-) €D
end for
run network training (e.g. BackProp) with loss function

t
£(O)= _Z [Z5y=yi log gy (i) + dyy; log(1—gy(i))
(zi,y:)ED yY=s
s—1

+a¥ log gy (z:)+(1—g¥) log(1—gy ()]

y=1

that consists of classification and distillation terms.

[Rebuffi et al. 2017]

KA: Incremental Learning

S ——

Classification loss

Distillation loss:
Comparing old vs new

18

iCaRL: Incremental classifier and
representation learning [Rebuffi et al’17]

[Rebuffi et al. 2017]

Algorithm i1CaRL CONSTRUCTEXEMPLARSET

input image set X = {z1,...,z,} of class y
input m target number of exemplars
require current feature function ¢ : X — R¢

p L3 p(z) I/ current class mean

fork=1,....,mdo

: k—1
pr ¢ argmin |u — Flo(a) + 3571 o(oy)]|
TE
end for

P < (p1,...,Pm)
output exemplar set P

Algorithm i1CaRL REDUCEEXEMPLARSET

input m // target number of exemplars
input P = (py,...,pp|) // current exemplar set
P+ (p1,---,Pm) /] i.e. keep only first m

output exemplar set P

KA INcrementdl Ledrning 19

ICaRL: Incremental classifier and
representation learning

Clever use of available memory

Potential issues with storing data, e.g., privacy

Limited by the memory capacity (the more the better)

& O@

[Rebuffi et al. 2017]

KA: Incremental Learning

20

What else will we see today?

* Flavour of different approaches:

2. Rehearsal / Replay: iCaRL, DGR, GEM, ...

Deep Generative Replay

o The model “Scholar” is composed of: scholar
o a generator + a solver (classifier)

o The generator and the solver are updated in every
incremental step

[Shin et al. 2017]

Figure from the paper ,
KA: Incremental Learning 22

Deep Generative Replay

Training procedure: Scholary
v

e At taskt, we train a new Scholar Scholar,

v
e with data from the task t, and Scholar,
e data generated by the previously
trained Scholar at task t-1 v
Scholary

[Shin et al. 2017]

Figure from the paper Slide courtesy: A. Massenet

Deep Generative Replay

Current Task

Training procedure (Generator):
New Scholar

e With data from task t, and Current . * '

Replay *'

e data generated by the previously |
trained Scholar for task t-1 A

0ld Scholar

[Shin et al. 2017]

Figure from the paper : .
8 Pap KA: Incremental Learning Slide courtesy: A. Massenet ,,

Deep Generative Replay

larget = Label

Current Task

Training procedure (Solver):
New Scholar

e With data from task t, and Current| 1 Y |
Replay y

e Data from generator and solver A i
of the previously trained Scholar (Al

for task t-1 0ld Scholar

[Shin et al. 2017]

Figure from the paper : .
8 Pap KA: Incremental Learning Slide courtesy: A. Massenet .

Deep Generative Replay

Eﬁ} Avoids memory issues

} Scholary
v

} Scholar,
v

} Scholar,

. v
} Scholary

No control over the class of the generated samples

Accumulation of errors

/!

/!

[Shin et al. 2017]

Figure from the paper : .
g pap KA: Incremental Learning Slide courtesy: A. Massenet .

What else will we see today?

* Flavour of different approaches:

3. Architecture based: PackNet, progressive nets, HAT, ...

Architecture-based

00

O O
O O
O O
O O

00000
00000
OX X JOX
00000
JOX JOX

00000
O 000
0000

00 O
0000

00000
00000
0000#®
CJOX X X0
00000

(a) Initial filter for Task |

60% pruning + re-training

(b) Final filter for Task |

(c) Initial filter for Task Il

NS

PackNet [Mallya & Lazebnik’17]

Figure from the paper

training

KA: Incremental Learning

33% pruning + re-training

(d) Final filter for Task Il

(e) Initial filter for Task Il

NS

training

28

Architecture-based

Fixed memory consumption

Needs the total number of tasks

Iﬁ Avoids forgetting

PackNet [Mallya & Lazebnik’17]

KA: Incremental Learning

29

A Comparative Analysis

 Tinylmagenet: small, balanced, class-incremental

* iNaturalist: large-scale, unbalanced, task-incremental

Tiny Imagenet iNaturalist
Tasks 10 10
Classes per task 20 5to 314
o |raining data pertask 8k 0.6k to 66k
Validation data per task 1k 0.1k to 9k
Task Constitution random class selection supercategory

[Lange et al., 2020] KA: Incremental Learning

30

Comparative Evaluation (Tinylmagenet)

-~ finetuning: 21.30 (26.90) —— PackNet: 49.13 (0.00) SI: 33.93 (15.77) —— MAS: 46.90 (1.58) —v— LwF: 41.91 (3.08)
» joint*: 55.70 (n/a) HAT: 43.57 (0.00) EWC: 42.43 (7.51) —+— mode-IMM: 36.89 (0.98) —v— EBLL: 45.34 (1.44)
Evaluation on Task
T1 i T3 T4 T5 T6 T7 T8 T9 T10
60 y
N r
T I -
501 3 \’\ r—— i
; : N =
Sl SR
> | /
230] A
5 d . +
Q H 3 :‘
Q 3 : :
< i i
20- k L " ".'x k
10{ |
0 i T2 T3 T4 T5 T6 T7 T8 T9 T10

Training Sequence Per Task ..]
Regularization & Architecture based

Image credit: [Lange et al., 2020]

KA: Incremental Learning 31

Comparative Evaluation (Tinylmagenet)

-+ finetuning: 21.30 (26.90)
» joint*: 55.70 (n/a)

R-PM 4.5k: 36.09 (10.96)
= R-PM 9k: 38.69 (7.23)

- R-FM 9k: 42.36 (3.94)

R-FM 4.5k: 37.31 (9.21) —— GEM 4.5k: 45.13 (4.96)

—— GEM 9k: 41.75 (5.18)

iCaRL 4.5k: 47.27 (-1.11)
—— iCaRL 9k: 48.76 (-1.76)

Evaluation on Task
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
N >
> > 3§7 >
3 LY &
> ‘;
Q : 8
© i
5301 ¢ a
3 s " a
0 : f :
< | | 'a.
201
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Training Sequence Per Task

Image credit: [Lange et al., 2020]

KA: Incremental Learning

Rehearsal/Replay based

32

General Trends

* Rehearsal/replay based methods only pay off when
storing significant amount of exemplars

* PackNet results in no-forgetting and produces top
results

e MAS more robust than EWC

Slide credit: T. Tuytelaars

What kind of model should | use ?

* Larger models give more capacity (but: overfitting)
 Wide is better than deep

* Regularization may interfere with incremental learning
* Dropout usually better than weight decay

Slide credit: T. Tuytelaars

