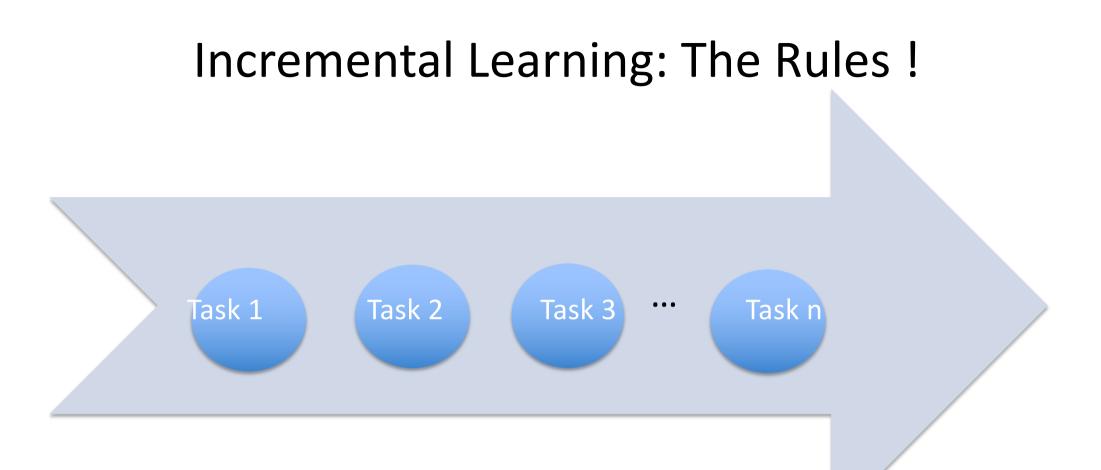
Apprentissage continu de représentations visuelles

ENSIMAG 2023-2024

Karteek Alahari & Diane Larlus

Apprentissage continu

https://project.inria.fr/bigvisdata/



- Learn one task after the other
- Without storing (many) data from previous tasks
- Without memory footprint growing (significantly) over time
- Without (completely) forgetting old tasks

KA: Incremental Learning

Slide credit: T. Tuytelaars

What else will we see today?

- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...
- More than classification?
- Takeaways

What else will we see today?

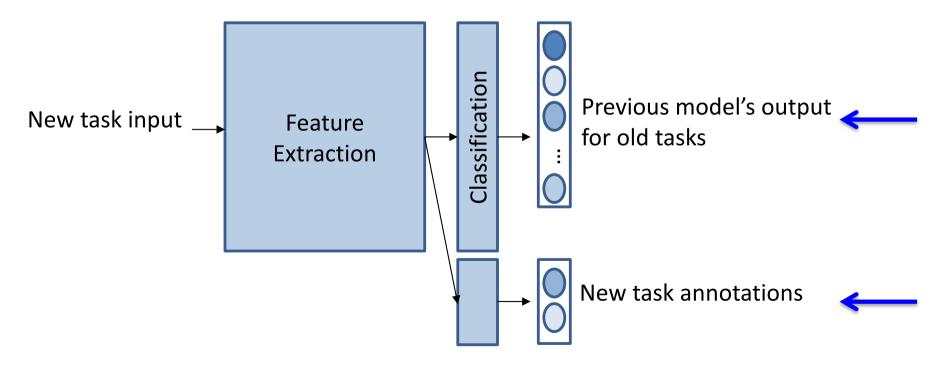
- Flavour of different approaches:
 - **1. Regularization based**: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...
- More than classification?
- Takeaways

Regularization-based Models

- When training a new task,
 - add a regularization term to the loss
 - i.e., term to penalize catastrophic forgetting
- R1: data-focused methods
- R2: model/prior-focused methods

Data-focused Regularization: Learning without Forgetting

- Knowledge distillation loss
 - i.e., preservation of responses



[Li & Hoiem 2016]

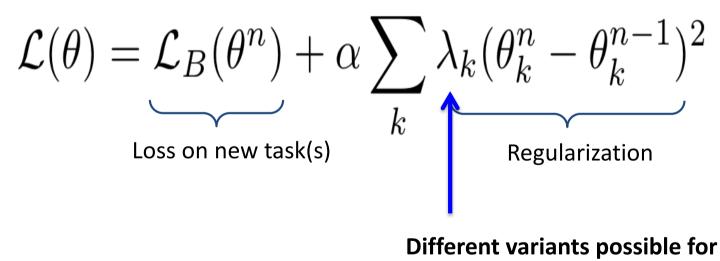
Data-focused Regularization: Learning without Forgetting

Simple method; good results for related tasks

Poor results for unrelated tasks

? Need to store the old model

• Penalize changes to 'important' parameters



"importance" and regularization

- Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Indiv. penalty for each previous task
 - Fisher information matrix for λ

$$\sum_{k} \sum_{i < n} \lambda_k^{n-i} (\theta_k^n - \theta_k^{n-i})^2$$

- Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Indiv. penalty for each previous task
 - Fisher information matrix for λ

 $\sum_{k} \sum_{i < n} \lambda_k^{n-i} (\theta_k^n - \theta_k^{n-i})^2$

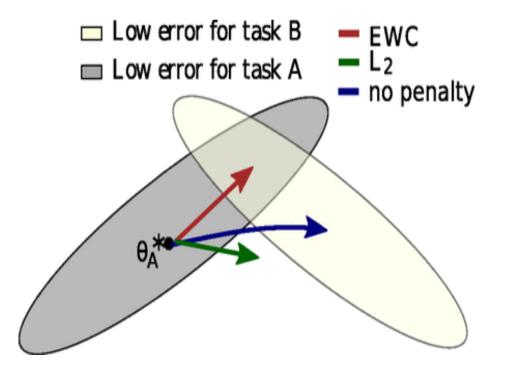


Figure from paper

- Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Indiv. penalty for each previous task
 - Fisher information matrix for λ

 $\sum_{k} \sum_{i < n} \lambda_k^{n-i} (\theta_k^n - \theta_k^{n-i})^2$

Agnostic to architecture; Good results empirically

?

Only valid locally

Need to store importance weights

- Two examples
 - Elastic weight consolidation [Kirkpatrick et al., 2017]
 - Memory aware synapses [Aljundi et al., 2018]
- Other alternatives
 - Path Integral / Synaptic Intelligence: large changes during training [Zenke et al., 2017]
 - Moment matching [Lee et al., 2017]
 - Pathnet [Fernando et al., 2017]

— ...

What else will we see today?

- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...
- More than classification?
- Takeaways

Rehearsal / Replay-based methods

- Store a couple of examples from previous tasks
- Or produce samples from a generative model
- But
 - How many?
 - How to select them?
 - How to use them?

- Selects samples that are closest to the feature mean of each class
- Knowledge distillation loss [Hinton et al.'14]
- Clever use of available memory (see the following)

Split the problem into:

- learning features, and then
- using NCM classifier

[Rebuffi et al. 2017]

Algorithm iCaRL INCREMENTALTRAIN input X^s, \ldots, X^t // training examples in per-class sets input K // memory size **require** Θ // current model parameters require $\mathcal{P} = (P_1, \dots, P_{s-1})$ // current exemplar sets $\Theta \leftarrow \text{UPDATEREPRESENTATION}(X^s, \dots, X^t; \mathcal{P}, \Theta)$ $m \leftarrow K/t$ // number of exemplars per class for y = 1, ..., s - 1 do $P_u \leftarrow \text{REDUCEEXEMPLARSET}(P_u, m)$ end for for $y = s, \ldots, t$ do $P_y \leftarrow \text{CONSTRUCTEXEMPLARSET}(X_y, m, \Theta)$ end for $\mathcal{P} \leftarrow (P_1, \ldots, P_t)$ // new exemplar sets

Algorithm iCaRL CLASSIE	FY	-
input x	// image to be classified	
require $\mathcal{P} = (P_1, \ldots, P_t)$	// class exemplar sets	
require $\varphi: \mathcal{X} \to \mathbb{R}^d$	// feature map	←
for $y = 1, \ldots, t$ do		
$\mu_y \leftarrow \frac{1}{ P_y } \sum_{p \in P_y} \varphi(p)$	// mean-of-exemplars	←
end for $p \in Y_y$		
$y^* \leftarrow \operatorname*{argmin}_{y=1,,t} \ \varphi(x) - \mu_y\ $	// nearest prototype	←
output class label y^*		

iCaRL: Incremental classifier and representation learning [Rebuffi et al.'17]

Algorithm iCaRL UPDATEREPRESENTATION

input X^s, \ldots, X^t // training images of classes s, \ldots, t require $\mathcal{P} = (P_1, \ldots, P_{s-1})$ // exemplar sets require Θ // current model parameters

// form combined training set:

$$\mathcal{D} \leftarrow \bigcup_{y=s,\dots,t} \{(x,y) : x \in X^y\} \cup \bigcup_{y=1,\dots,s-1} \{(x,y) : x \in P^y\}$$

// store network outputs with pre-update parameters:

for
$$y = 1, \dots, s - 1$$
 do
 $q_i^y \leftarrow g_y(x_i)$ for all $(x_i, \cdot) \in \mathcal{D}$

end for

run network training (e.g. BackProp) with loss function

that consists of *classification* and *distillation* terms.

[Rebuffi et al. 2017]

iCaRL: Incremental classifier and representation learning [Rebuffi et al.'17]

Algorithm iCaRL CONSTRUCTEXEMPLARSET

input image set $X = \{x_1, ..., x_n\}$ of class yinput m target number of exemplars require current feature function $\varphi : \mathcal{X} \to \mathbb{R}^d$ $\mu \leftarrow \frac{1}{n} \sum_{x \in X} \varphi(x)$ // current class mean for k = 1, ..., m do $p_k \leftarrow \underset{x \in X}{\operatorname{argmin}} \left\| \mu - \frac{1}{k} [\varphi(x) + \sum_{j=1}^{k-1} \varphi(p_j)] \right\|$ end for $P \leftarrow (p_1, ..., p_m)$ output exemplar set P

AlgorithmiCaRL REDUCEEXEMPLARSETinputm// target number of exemplarsinput $P = (p_1, \dots, p_{|P|})$ // current exemplar set $P \leftarrow (p_1, \dots, p_m)$ // i.e. keep only first moutputexemplar set P

[Rebuffi et al. 2017]

Clever use of available memory

Potential issues with storing data, e.g., privacy

Limited by the memory capacity (the more the better)

What else will we see today?

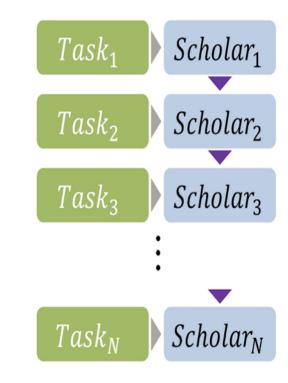
- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...
- More than classification?
- Takeaways

- The model "Scholar" is composed of:
 - a generator + a solver (classifier)

 The generator and the solver are updated in every incremental step

Training procedure:

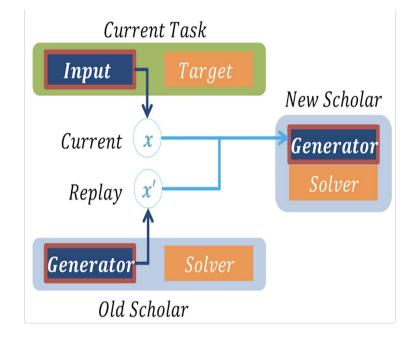
- At task *t*, we train a new Scholar
 - with data from the task t, and
 - data generated by the previously trained Scholar at task *t-1*



[Shin et al. 2017] Figure from the paper

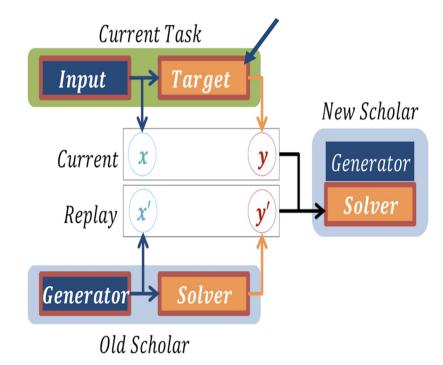
Training procedure (Generator):

- With data from task *t*, and
- data generated by the previously trained Scholar for task *t-1*



Training procedure (Solver):

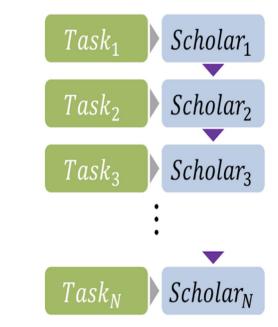
- With data from task *t*, and
- Data from generator and solver of the previously trained Scholar for task *t-1*



Target = *Label*

Avoids memory issues

Accumulation of errors



No control over the class of the generated samples

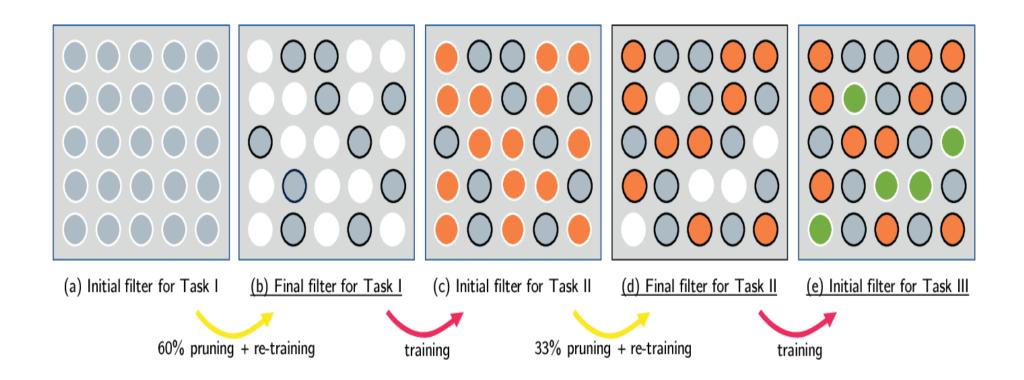
[Shin et al. 2017] Figure from the paper

Slide courtesy: A. Massenet 26

What else will we see today?

- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...
- More than classification?
- Takeaways

Architecture-based



PackNet [Mallya & Lazebnik'17] Figure from the paper

Architecture-based

Fixed memory consumption

Needs the total number of tasks

Avoids forgetting

PackNet [Mallya & Lazebnik'17]

A Comparative Analysis

- TinyImagenet: small, balanced, class-incremental
- iNaturalist: large-scale, unbalanced, task-incremental

	Tiny Imagenet	iNaturalist
Tasks	10	10
Classes per task	20	5 to 314
Training data per task	8k	0.6k to 66k
Validation data per task	1k	0.1k to 9k
Task Constitution	random class selection	supercatego

Comparative Evaluation (TinyImagenet)

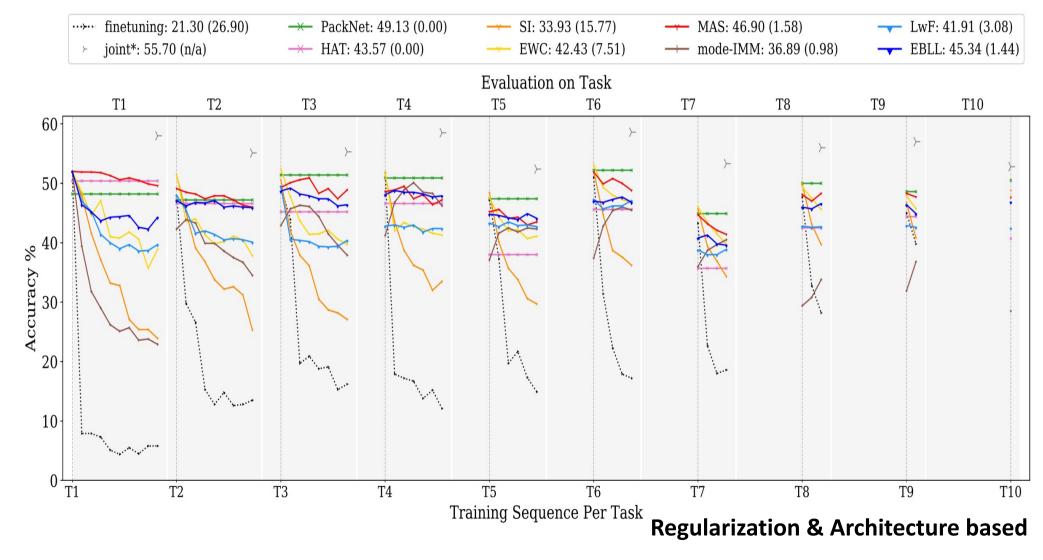
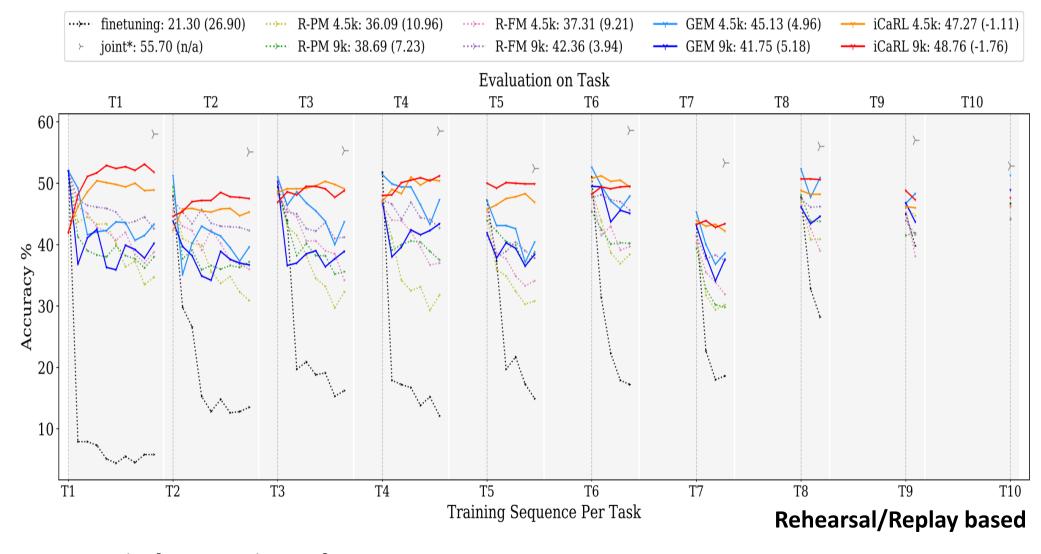


Image credit: [Lange et al., 2020]

Comparative Evaluation (TinyImagenet)



General Trends

- Rehearsal/replay based methods only pay off when storing significant amount of exemplars
- PackNet results in no-forgetting and produces top results
- MAS more robust than EWC

What kind of model should I use ?

- Larger models give more capacity (but: overfitting)
- Wide is better than deep
- Regularization may interfere with incremental learning
- Dropout usually better than weight decay