Apprentissage continu de représentations visuelles

ENSIMAG 2023-2024

Karteek Alahari & Diane Larlus

Apprentissage continu

https://project.inria.fr/bigvisdata/

Continual Learning?

Incremental learning

Lifelong learning

Sequential learning

Never-ending Learning

An Continual Learning Scenario

Growing up in India

KA: Incremental Learning

An Continual Learning Scenario

And then during travels

An Continual Learning Scenario

And then during travels

I can solve I can solve I can solve tasks 1&2&3. task 1. tasks 1&2. Learning Learning Learning Task 1 Task 2 Task 3

Standard Machine Learning

TRAIN - VALIDATION - TEST

All sampled from the same distribution

- -> benchmarks and academic datasets 🙂
- -> real-world systems
- -> embodied learning

KA: Incremental Learning

Slide credit: T. Tuytelaass

Incremental Learning Setup

- Task-incremental learning
- Class-incremental learning
- Domain-incremental learning

Incremental Learning

A classical problem in machine learning, e.g.,

[Carpenter et al. '92, Cauwenberghs and Poggio '00, Polikar et al. '01, Schlimmer and Fisher '86, Thrun '96]

- Some methods
 - Zero-shot learning, e.g., [Lampert et al. '13]
 No training step for unseen classes
 - Continuously update the training set, e.g., [Chen et al. '13]
 Keep data and retrain
 - Use a fixed data representation, e.g., [Mensink et al. '13]
 Simplify the learning problem

Brute Force Solution (non-incremental)

Original model

(test image) $+\cdots$ (old task 1) \vdots (old task m)

Joint training

"golden" baseline

random initialize + train

fine-tune

unchanged

Brute Force Solution (non-incremental)

Retrain full model with both old and new data

- Computationally expensive
- Needs access to old data
 - Storage capacity limitations
 - Privacy issues
 - Scalability issues

Slide credit: T. Tuytelaars

KA: Incremental Learning

Why not brute force ?

No access to all the data

Can not store all the data

 Access to only a previously learned model, e.g., trained by others

Input:

Original model

Feature extraction

new task image new task ground truth

■ random initialize + train

fine-tune

unchanged

KA: Incremental Learning

Figures from [Li and Hoiem 2016]

Target:

- Finetune only last layer using new data only
 - Leads to suboptimal results

Input:

Original model

Fine tuning

new task image new task ground truth

random initialize + train

fine-tune

unchanged

KA: Incremental Learning

Figures from [Li and Hoiem 2016]

Target:

- Finetune the network using new data only
 - Leads to catastrophic forgetting

Incremental Learning: Computer Vision Task

How well does network B perform?

Training with method the initial set of classes	old	new	all
A(1-10)	65.8	-	-
+ B(11-20) Training with	12.8	64.5	38.7
$\mathbf{A}(1-20)$ the new set of classes	68.4	71.3	69.8
Baseline, i.e., training with all the classes	1		

No guidance for retaining the old classes

Incremental Learning: The Rules!

- Learn one task after the other
- Without storing data from previous tasks
- Without memory footprint growing over time
- Without forgetting old tasks

KA: Incremental Learning

Slide credit: T. Tuytelaars

Incremental Learning: The Rules!

- Learn one task after the other
- Without storing (many) data from previous tasks
- Without memory footprint growing (significantly) over time
- Without (completely) forgetting old tasks

Slide credit: T. Tuytelaars

What else will we see today?

- Flavour of different approaches:
 - 1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, ...
 - 2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
 - 3. Architecture based: PackNet, progressive nets, HAT, ...

More than classification?

Takeaways