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Continual Learning ?

• Incremental learning

• Lifelong learning

• Sequential learning

• Never-ending Learning
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An Continual Learning Scenario

• Growing up in India
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An Continual Learning Scenario

• And then during travels
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An Continual Learning Scenario

• And then during travels

But can still remember holy cows!
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TRAIN – VALIDATION – TEST

All sampled from the same distribution
-> benchmarks and academic datasets
-> real-world systems
-> embodied learning

Standard Machine Learning
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- Task-incremental learning
- Class-incremental learning
- Domain-incremental learning

Incremental Learning Setup
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Incremental Learning
• A classical problem in machine learning, e.g.,

[Carpenter et al. ’92, Cauwenberghs and Poggio ’00, Polikar et al. ’01, 
Schlimmer and Fisher ’86, Thrun ’96]

• Some methods
– Zero-shot learning, e.g., [Lampert et al. ’13]

No training step for unseen classes
– Continuously update the training set, e.g., [Chen et al. ’13]

Keep data and retrain
– Use a fixed data representation, e.g., [Mensink et al. ’13]

Simplify the learning problem
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Original model

Joint training

“golden” baseline

Figures from [Li and Hoiem 2016]

Brute Force Solution
(non-incremental)
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Retrain full model with both old and new data
• Computationally expensive

• Needs access to old data
• Storage capacity limitations
• Privacy issues
• Scalability issues
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Brute Force Solution
(non-incremental)
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Why not brute force ?

• No access to all the data

• Can not store all the data

• Access to only a previously learned model, e.g., 
trained by others
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Original model

Feature extraction

Figures from [Li and Hoiem 2016]

Naïve Solution 1
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• Finetune only last layer using new data only
– Leads to suboptimal results
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Naïve Solution 1
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Original model

Fine tuning

Figures from [Li and Hoiem 2016]

Naïve Solution 2
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Naïve Solution 2

• Finetune the network using new data only
– Leads to catastrophic forgetting
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Incremental Learning: Computer Vision Task

A

B

18



Baseline, i.e., training
with all the classes

Training with
the initial set of classes

Training with
the new set of classes

How well does network B perform ?

12.8
68.4

64.5
71.3

38.7
69.8

No guidance for retaining the old classes
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• Learn one task after the other
• Without storing data from previous tasks
• Without memory footprint growing over time (significan
• Without forgetting old tasks

Incremental Learning: The Rules !

Slide credit: T. Tuytelaars

Task 1 Task 2 Task 3 Task n…
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• Learn one task after the other
• Without storing (many) data from previous tasks
• Without memory footprint growing (significantly) over time
• Without (completely) forgetting old tasks

Incremental Learning: The Rules !

Slide credit: T. Tuytelaars

Task 1 Task 2 Task 3 Task n…
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What else will we see today? 

• Flavour of different approaches:
1. Regularization based: LwF, EBLL, EWC, SI, MAS, IMM, …
2. Rehearsal / Replay: iCaRL, DGR, GEM, …
3. Architecture based: PackNet, progressive nets , HAT, …

• More than classification?

• Takeaways
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