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Continual Learning ?

Incremental learning
Lifelong learning
Sequential learning

Never-ending Learning



An Continual Learning Scenario

* Growing up in India
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An Continual Learning Scenario

* And then during travels
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An Continual Learning Scenario

* And then during travels

But can still remember holy cows!

KA: Incremental Learning
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Standard Machine Learning

TRAIN — VALIDATION — TEST

All sampled from the same distribution
-> benchmarks and academic datasets
-> real-world systems

-> embodied learning 'Y

Slide credit: T. Tuytelaars



Slide credit: T. Tuytelaags
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Incremental Learning Setup

- Task-incremental learning
- Class-incremental learning
- Domain-incremental learning

KA: Incremental Learning Slide credit: T. Tuytelaars



Incremental Learning

e A classical problem in machine learning, e.g.,

[Carpenter et al. '92, Cauwenberghs and Poggio ‘00, Polikar et al. '01,
Schlimmer and Fisher ’86, Thrun ’96]

e Some methods

— Zero-shot learning, e.g., [Lampert et al. "13]
No training step for unseen classes

— Continuously update the training set, e.g., [Chen et al. "13]
Keep data and retrain

— Use a fixed data representation, e.g., [Mensink et al. "13]
Simplify the learning problem



Brute Force Solution
(non-incremental)
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Brute Force Solution
(non-incremental)

Retrain full model with both old and new data

 Computationally expensive

e Needs access to old data

* Storage capacity limitations

* Privacy issues
* Scalability issues

Slide credit: T. Tuytelaars

Feature
Extraction
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KA: Incremental Learning
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Why not brute force ?

e No access to all the data
e Can not store all the data

* Access to only a previously learned model, e.g.,
trained by others



Naive Solution 1
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Naive Solution 1

* Finetune only last layer using new data only

— Leads to suboptimal results

Feature
Extraction

Classification
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Fine tuning
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Naive Solution 2
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Naive Solution 2

* Finetune the network using new data only

— Leads to catastrophic forgetting

Feature
Extraction

Classification
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Incremental Learning: Computer Vision Task

CNN

CNN

B

training on
horse images

horse
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How well does network B perform ?

Training with

methodr the initial set of classes

old new all

A(1-10)

+B(11-20) hining with

A(I-ZO) the new set of classes
'\\ Baseline, i.e., training

with all the classes

658 - -
12.8 64.5 38.7

4 713 693

No guidance for retaining the old classes

[Catastrophic forgetting: McCloskey and Cohen 1989, Rateliff 1990]
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Incremental Learning: The Rules !

Learn one task after the other

Without storing data from previous tasks
Without memory footprint growing over time
Without forgetting old tasks

Slide credit: T. Tuytelaars



Incremental Learning: The Rules |

Learn one task after the other
Without storing (many) data from previous tasks
Without memory footprint growing (significantly) over time

Without (completely) forgetting old tasks

KA: Incremental Learning Slide credit: T. Tuytelaars



What else will we see today?

* Flavour of different approaches:
1. Regularization based: LwF, EBLL, EWC, S|, MAS, IMM, ...
2. Rehearsal / Replay: iCaRL, DGR, GEM, ...
3. Architecture based: PackNet, progressive nets , HAT, ...

e More than classification?

 Takeaways



