
Mondrian Forests

Balaji Lakshminarayanan

Gatsby Unit, University College London

Joint work with Daniel M. Roy and Yee Whye Teh

1

Outline

Motivation and Background

Mondrian Forests
Randomization mechanism
Online training
Prediction and Hierarchical smoothing
Classification Experiments: online vs batch
Regression Experiments: evaluating uncertainty estimates

Conclusion

2

Motivation

Typical converation:
• I have a faster ABC DEF sampler for a fancy

non-parametric Bayesian model XYZ

• Bayesian: cool!
• Others: Isn’t the non-Bayesian parametric version, like 100

times faster? Why should I care?

Lots of neat ideas in Bayesian non-parametrics; can we use
these in a non-Bayesian context?

3

Motivation

Typical converation:
• I have a faster ABC DEF sampler for a fancy

non-parametric Bayesian model XYZ
• Bayesian: cool!

• Others: Isn’t the non-Bayesian parametric version, like 100
times faster? Why should I care?

Lots of neat ideas in Bayesian non-parametrics; can we use
these in a non-Bayesian context?

3

Motivation

Typical converation:
• I have a faster ABC DEF sampler for a fancy

non-parametric Bayesian model XYZ
• Bayesian: cool!
• Others: Isn’t the non-Bayesian parametric version, like 100

times faster? Why should I care?

Lots of neat ideas in Bayesian non-parametrics; can we use
these in a non-Bayesian context?

3

Motivation

Typical converation:
• I have a faster ABC DEF sampler for a fancy

non-parametric Bayesian model XYZ
• Bayesian: cool!
• Others: Isn’t the non-Bayesian parametric version, like 100

times faster? Why should I care?

Lots of neat ideas in Bayesian non-parametrics; can we use
these in a non-Bayesian context?

3

Problem setup

• Input: attributes X = {xn}Nn=1, labels Y = {yn}Nn=1 (i.i.d)
• xn ∈ X (we assume X = [0,1]D but could be more general)
• yn ∈ {1, . . . ,K} (classification) or yn ∈ R (regression)
• Goal: Predict y∗ for test data x∗

• Recipe for prediction: Use a random forest
– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks
– Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems? [Fernández-Delgado et al., 2014]

• What is a decision tree?

4

Problem setup

• Input: attributes X = {xn}Nn=1, labels Y = {yn}Nn=1 (i.i.d)
• xn ∈ X (we assume X = [0,1]D but could be more general)
• yn ∈ {1, . . . ,K} (classification) or yn ∈ R (regression)
• Goal: Predict y∗ for test data x∗
• Recipe for prediction: Use a random forest

– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks
– Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems? [Fernández-Delgado et al., 2014]

• What is a decision tree?

4

Problem setup

• Input: attributes X = {xn}Nn=1, labels Y = {yn}Nn=1 (i.i.d)
• xn ∈ X (we assume X = [0,1]D but could be more general)
• yn ∈ {1, . . . ,K} (classification) or yn ∈ R (regression)
• Goal: Predict y∗ for test data x∗
• Recipe for prediction: Use a random forest

– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks
– Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems? [Fernández-Delgado et al., 2014]

• What is a decision tree?

4

Example: Classification tree

• Hierarchical axis-aligned binary partitioning of input space
• Rule for predicting label within each block

x1 > 0.37

x2 > 0.5

 , �,�F,F

�

�

F

F
x2

x10

1

1

Bj

T : list of nodes, feature-id + location of splits for internal nodes
θ: Multinomial parameters at leaf nodes

5

Prediction using decision tree

• Example:
– Multi-class classification: θ = [θr , θb, θg]
– Prediction = smoothed empirical histogram in node j
– Label counts in left node [nr = 2,nb = 0,ng = 0]
– θ ∼ Dirichlet(α/3, α/3, α/3)

– Prediction = Posterior mean of θ =
[2+α/3

2+α , α/3
2+α ,

α/3
2+α

]

×

�

�

F

F
x2

x10

1

1

Bj

6

Prediction using decision tree

• Example:
– Multi-class classification: θ = [θr , θb, θg]
– Prediction = smoothed empirical histogram in node j
– Label counts in left node [nr = 2,nb = 0,ng = 0]
– θ ∼ Dirichlet(α/3, α/3, α/3)

– Prediction = Posterior mean of θ =
[2+α/3

2+α , α/3
2+α ,

α/3
2+α

]
• Likelihood for nth data point = p(yn|θj) assuming xn lies in

leaf node j of T
• Prior over θj : independent or hierarchical
• Prediction for x∗ falling in j = Eθj |T ,X ,Y

[
p(y∗|θj)

]
, where

p(θj | T ,X ,Y) ∝ p(θj |...)︸ ︷︷ ︸
prior

∏
n∈N(j)

p(yn|θj)︸ ︷︷ ︸
likelihood of data points in node j

• Smoothing is done independently for each tree
6

From decision trees to Random forests (RF)

• Generate randomized trees {Tm}M1
• Prediction for x∗:

p(y∗|x∗) =
1
M

∑
m

p(y∗|x∗, Tm)

• Model combination and not Bayesian model averaging

• Advantages of RF
– Excellent predictive performance (test accuracy)
– Fast to train (in batch setting) and test
– Trees can be trained in parallel

7

From decision trees to Random forests (RF)

• Generate randomized trees {Tm}M1
• Prediction for x∗:

p(y∗|x∗) =
1
M

∑
m

p(y∗|x∗, Tm)

• Model combination and not Bayesian model averaging

• Advantages of RF
– Excellent predictive performance (test accuracy)
– Fast to train (in batch setting) and test
– Trees can be trained in parallel

7

Disadvantages of RF

• Not possible to train incrementally
– Re-training batch version periodically is slow O(N2 log N)
– Existing online RF variants

[Saffari et al., 2009, Denil et al., 2013] require
– lots of memory / computation or
– need lots of training data before they can deliver good test

accuracy (data inefficient)

• Random forests do not give useful uncertainty estimates
– Predictions outside range of training data can be

overconfident
– Uncertainty estimates are crucial in applications such as

Bayesian optimization, Just-in-time learning, reinforcement
learning, etc.

8

Disadvantages of RF

• Not possible to train incrementally
– Re-training batch version periodically is slow O(N2 log N)
– Existing online RF variants

[Saffari et al., 2009, Denil et al., 2013] require
– lots of memory / computation or
– need lots of training data before they can deliver good test

accuracy (data inefficient)

• Random forests do not give useful uncertainty estimates
– Predictions outside range of training data can be

overconfident
– Uncertainty estimates are crucial in applications such as

Bayesian optimization, Just-in-time learning, reinforcement
learning, etc.

8

Mondrian Forests

Mondrian forests = Mondrian process + Random forests

• Can operate in either batch mode or online mode
• Online speed O(N log N)

• Data efficient (predictive performance of online mode
equals that of batch mode!)

• Better uncertainty estimate than random forests
• Predictions outside range of training data exhibit higher

uncertainty and shrink to prior as you move farther away

9

Mondrian Forests

Mondrian forests = Mondrian process + Random forests
• Can operate in either batch mode or online mode
• Online speed O(N log N)

• Data efficient (predictive performance of online mode
equals that of batch mode!)

• Better uncertainty estimate than random forests
• Predictions outside range of training data exhibit higher

uncertainty and shrink to prior as you move farther away

9

Outline

Motivation and Background

Mondrian Forests
Randomization mechanism
Online training
Prediction and Hierarchical smoothing
Classification Experiments: online vs batch
Regression Experiments: evaluating uncertainty estimates

Conclusion

10

Popular batch RF variants

How to generate individual trees in RF?
• Breiman-RF [Breiman, 2001]: Bagging + Randomly

subsample features and choose best location amongst
subsampled features

• Extremely Randomized Trees [Geurts et al., 2006]
(ERT-k): Randomly sample k (feature-id, location) pairs
and choose the best split amongst this subset

– no bagging
– ERT-1 does not use labels Y to guide splits!

11

Popular batch RF variants

How to generate individual trees in RF?
• Breiman-RF [Breiman, 2001]: Bagging + Randomly

subsample features and choose best location amongst
subsampled features

• Extremely Randomized Trees [Geurts et al., 2006]
(ERT-k): Randomly sample k (feature-id, location) pairs
and choose the best split amongst this subset

– no bagging
– ERT-1 does not use labels Y to guide splits!

11

Mondrian process [Roy and Teh, 2009]

• MP(λ,X) specifies a distribution over hierarchical
axis-aligned binary partitions of X (e.g. RD, [0,1]D)

• λ is complexity parameter of the Mondrian process

Figure: Mondrian Composition II in Red, Blue and Yellow (Source: Wikipedia)

12

Mondrian process [Roy and Teh, 2009]

• MP(λ,X) specifies a distribution over hierarchical
axis-aligned binary partitions of X (e.g. RD, [0,1]D)

• λ is complexity parameter of the Mondrian process

Figure: Mondrian Composition II in Red, Blue and Yellow (Source: Wikipedia)

12

Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop,

�1 u1

u2

�2

13

Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop, ELSE, sample a split

– split dimension: choose dimension d with prob ∝ ud − `d
– split location: choose uniformly from [`d ,ud]

�1 u1

u2

�2

14

Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop, ELSE, sample cut

– Choose dimension d with probability ∝ ud − `d
– Choose cut location uniformly from [`d ,ud]
– Recurse on left and right subtrees with parameter λ−∆

�1 u1

u2

�2

15

Self-consistency of Mondrian process

• Simulate T ∼ MP(λ, [`1,u1], [`2,u2])

�1 u1

u2

�2

• Restriction has distribution MP(λ, [`′1,u
′
1], [`′2,u

′
2])!

16

Self-consistency of Mondrian process

• Simulate T ∼ MP(λ, [`1,u1], [`2,u2])
• Restrict T to a smaller rectangle [`′1,u

′
1]× [`′2,u

′
2]

�1 u1

u2

�2

• Restriction has distribution MP(λ, [`′1,u
′
1], [`′2,u

′
2])!

16

Self-consistency of Mondrian process

• Simulate T ∼ MP(λ, [`1,u1], [`2,u2])
• Restrict T to a smaller rectangle [`′1,u

′
1]× [`′2,u

′
2]

�1 u1

u2

�2

• Restriction has distribution MP(λ, [`′1,u
′
1], [`′2,u

′
2])!

16

Mondrian trees

• Use X to define lower and upper limits within each node
and use MP to sample splits.

• Difference between Mondrian tree and usual decision tree
– split in node j is committed only within extent of training

data in node j
– node j is associated with ‘time of split’ tj > 0 (split time

increases with depth and will be useful in online training)
– splits are chosen independent of the labels Y
– λ is ‘weighted max-depth’.

x1 > 0.37

x2 > 0.5

 , �,�F,F

−

−

−

−

0

0.42

0.7

∞

�

�

F

F
x2

x10

1

1

Bx
j

17

Mondrian trees

• Use X to define lower and upper limits within each node
and use MP to sample splits.

• Difference between Mondrian tree and usual decision tree
– split in node j is committed only within extent of training

data in node j
– node j is associated with ‘time of split’ tj > 0 (split time

increases with depth and will be useful in online training)
– splits are chosen independent of the labels Y
– λ is ‘weighted max-depth’.

x1 > 0.37

x2 > 0.5

 , �,�F,F

−

−

−

−

0

0.42

0.7

∞

�

�

F

F
x2

x10

1

1

Bx
j

17

Outline

Motivation and Background

Mondrian Forests
Randomization mechanism
Online training
Prediction and Hierarchical smoothing
Classification Experiments: online vs batch
Regression Experiments: evaluating uncertainty estimates

Conclusion

18

Mondrian trees: online learning

• As dataset grows, we extend the Mondrian tree T by
simulating from a conditional Mondrian process MTx

T ∼ MT (λ,D1:n)

T ′ | T ,D1:n+1 ∼ MTx(λ, T ,Dn+1)
=⇒ T ′ ∼ MT (λ,D1:n+1)

• Distribution of batch and online trees are the same!
• Order of the data points does not matter
• MTx can perform one or more of the following 3 operations

– insert new split above an existing split
– extend existing split to new range
– split leaf further

• Computational complexity MTx is linear in depth of tree

19

Mondrian trees: online learning

• As dataset grows, we extend the Mondrian tree T by
simulating from a conditional Mondrian process MTx

T ∼ MT (λ,D1:n)

T ′ | T ,D1:n+1 ∼ MTx(λ, T ,Dn+1)
=⇒ T ′ ∼ MT (λ,D1:n+1)

• Distribution of batch and online trees are the same!
• Order of the data points does not matter

• MTx can perform one or more of the following 3 operations
– insert new split above an existing split
– extend existing split to new range
– split leaf further

• Computational complexity MTx is linear in depth of tree

19

Mondrian trees: online learning

• As dataset grows, we extend the Mondrian tree T by
simulating from a conditional Mondrian process MTx

T ∼ MT (λ,D1:n)

T ′ | T ,D1:n+1 ∼ MTx(λ, T ,Dn+1)
=⇒ T ′ ∼ MT (λ,D1:n+1)

• Distribution of batch and online trees are the same!
• Order of the data points does not matter
• MTx can perform one or more of the following 3 operations

– insert new split above an existing split
– extend existing split to new range
– split leaf further

• Computational complexity MTx is linear in depth of tree

19

Online training cartoon

Start with data points a and b

x2

x10

1

1

a

 b
x2 > 0.23

a b

−

−

−

0

2.42

∞

20

Online training cartoon

Adding new data point c: update visible range

x2

x10

1

1

a

 b

 c

x2 > 0.23

a b

−

−

−

0

2.42

∞

20

Online training cartoon

Adding new data point c: introduce new split (above an existing
split). New split in Rabc should be consistent with Rab.

x2

x10

1

1

a

 b

 c

x1 > 0.75

x2 > 0.23

a b c

−

−

−

−

0

1.01

2.42

∞

20

Online training cartoon

Examples of splits that are not self-consistent.

x2

x10

1

1

a

 b

 c

x2

x10

1

1

a

 b

 c

20

Online training cartoon

Adding new data point d : traverse to left child and update range

x2

x10

1

1

a

 b

 c

 d
x1 > 0.75

x2 > 0.23

a b c

−

−

−

−

0

1.01

2.42

∞

20

Online training cartoon

Adding new data point d : extend the existing split to new range

x2

x10

1

1

a

 b

 c

 d
x1 > 0.75

x2 > 0.23

a b c

−

−

−

−

0

1.01

2.42

∞

20

Online training cartoon

Adding new data point d : split leaf further

x2

x10

1

1

a

 b

 c

 d
x1 > 0.75

x2 > 0.23

x1 > 0.47

a b cd

−

−

−

−

−

0

1.01

2.42

3.97

∞

20

Key differences between Mondrian forests and
existing online random forests

• Splits extended in a self-consistent fashion
• Splits not extended to unobserved regions
• New split can be introduced anywhere in the tree (as long

as it’s consistent with subtree below)

21

Outline

Motivation and Background

Mondrian Forests
Randomization mechanism
Online training
Prediction and Hierarchical smoothing
Classification Experiments: online vs batch
Regression Experiments: evaluating uncertainty estimates

Conclusion

22

Prediction and Hierarchical smoothing

• Extend Mondrian to range of test data
– Test data point can potentially branch off and form separate

leaf node of its own!
– Points far away from range of training data are more likely

to brach off
– We analytically average over every possible extension

• Hierarchical smoothing for posterior mean of θ|T
– Independent prior would predict from prior if test data

branches off into its own leaf node
– Bayesian smoothing done independently within each tree
– Ensemble: model combination and not BMA

23

Prediction and Hierarchical smoothing

• Extend Mondrian to range of test data
– Test data point can potentially branch off and form separate

leaf node of its own!
– Points far away from range of training data are more likely

to brach off
– We analytically average over every possible extension

• Hierarchical smoothing for posterior mean of θ|T
– Independent prior would predict from prior if test data

branches off into its own leaf node
– Bayesian smoothing done independently within each tree
– Ensemble: model combination and not BMA

23

Prediction and Hierarchical smoothing

• Classification
– Multinomial likelihoods, Hierarchical Normalized Stable

process prior [Wood et al., 2009]
– Fast approximate inference using Interpolated Kneser Ney

approximation
• Regression

– Gaussian likelihood, Gaussian prior
– Fast exact inference using belief propagation

• Both models are closed under marginalization, so
introducing new nodes does not change the model

24

Outline

Motivation and Background

Mondrian Forests
Randomization mechanism
Online training
Prediction and Hierarchical smoothing
Classification Experiments: online vs batch
Regression Experiments: evaluating uncertainty estimates

Conclusion

25

Classification: Experimental setup

• Competitors
– Periodically re-trained batch versions (RF, ERT)
– Online RF [Saffari et al., 2009]

• Datasets:

Name D #Classes #Train #Test
Satellite images 36 6 3104 2000

Letter 16 26 15000 5000
USPS 256 10 7291 2007
DNA 180 3 1400 1186

• Training data split into 100 mini batches (unfair to MF)
• Number of trees = 100

26

Classification: Experimental setup

• Competitors
– Periodically re-trained batch versions (RF, ERT)
– Online RF [Saffari et al., 2009]

• Datasets:

Name D #Classes #Train #Test
Satellite images 36 6 3104 2000

Letter 16 26 15000 5000
USPS 256 10 7291 2007
DNA 180 3 1400 1186

• Training data split into 100 mini batches (unfair to MF)
• Number of trees = 100

26

Classification results: Letter dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

MF
ERT-k
ERT-1
ORF-Saffari
Breiman-RF*

101 102 103 104 1050.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

MF
ERT-k
ERT-1
ORF-Saffari

Fraction of training data Time (s)

Figure: Test accuracy

• Data efficiency: Online MF very close to batch RF (ERT,
Breiman-RF) and significantly outperforms ORF-Saffari

• Speed: MF much faster than periodically re-trained batch
RF and ORF-Saffari

27

Classification results: USPS dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MF
ERT-k
ERT-1
ORF-Saffari
Breiman-RF*

101 102 103 104 1050.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

MF
ERT-k
ERT-1
ORF-Saffari

Fraction of training data Time (s)

Figure: Test accuracy

28

Classification results: Satellite Images dataset

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

MF
ERT-k
ERT-1
ORF-Saffari
Breiman-RF*

101 102 103 1040.75

0.80

0.85

0.90

0.95

1.00

1.05

MF
ERT-k
ERT-1
ORF-Saffari

Fraction of training data Time (s)

Figure: Test accuracy

29

Outline

Motivation and Background

Mondrian Forests
Randomization mechanism
Online training
Prediction and Hierarchical smoothing
Classification Experiments: online vs batch
Regression Experiments: evaluating uncertainty estimates

Conclusion

30

Uncertainty estimation: Experimental setup

• Application: Just-In-Time learning in Expectation
Propagation [Jitkrittum et al., 2015]

• Goal: learn to predict output message from incoming
messages

– If current input is similar to previous input, use estimate
– Whenever estimate is uncertain, evaluate the true value

• Setup: Test dataset differs from training dataset
• Desiderata: Predictions should exhibit higher uncertainty

as we move farther away
• How does MF uncertainty compare to other RFs?

31

Uncertainty estimation: Experimental setup

• Application: Just-In-Time learning in Expectation
Propagation [Jitkrittum et al., 2015]

• Goal: learn to predict output message from incoming
messages

– If current input is similar to previous input, use estimate
– Whenever estimate is uncertain, evaluate the true value

• Setup: Test dataset differs from training dataset
• Desiderata: Predictions should exhibit higher uncertainty

as we move farther away
• How does MF uncertainty compare to other RFs?

31

−15 −10 −5 0 5 10 15
x1

−1

0

1

2

3

4

x
2

Training data
Test data #1
Test data #2

(a) Distribution of train/test in-
puts (labels not depicted)

−10 −5 0 5 10
x1

−4

−3

−2

−1

0

1

2

3

L
og

of
pr

ed
ic

ti
ve

va
ri

an
ce

Uncertainty test #1
Uncertainty test #2

(b) Uncertainty estimate of MF

−10 −5 0 5 10
x1

−5

−4

−3

−2

−1

0

1

2

3

L
og

of
pr

ed
ic

ti
ve

va
ri

an
ce

Uncertainty test #1
Uncertainty test #2

(c) Uncertainty estimate of ERT

−10 −5 0 5 10
x1

−12

−10

−8

−6

−4

−2

0

L
og

of
pr

ed
ic

ti
ve

va
ri

an
ce

Uncertainty test #1
Uncertainty test #2

(d) Uncertainty of Breiman-RF
32

Comparison to large-scale Gaussian processes

• Experiments on airline delay dataset [Hensman et al., 2013]

• Large scale approximate Gaussian processes:
– Variational approximations: SVI-GP [Hensman et al., 2013] and Dist-VGP

[Gal et al., 2014]
– Combine GP outputs from subsets of data: robust BCM (rBCM)

[Deisenroth and Ng, 2015]

700K/100K 2M/100K 5M/100K
RMSE NLPD RMSE NLPD RMSE NLPD

SVI-GP 33.0 - - - - -
Dist-VGP 33.0 - - - - -

rBCM 27.1 9.1 34.4 8.4 35.5 8.8
Breiman-RF 24.07 ± 0.02 27.3 ± 0.01 39.47 ± 0.02

ERT 24.32 ± 0.02 27.95 ± 0.02 38.38 ± 0.02
MF 26.57 ± 0.04 4.89 ± 0.02 29.46 ± 0.02 4.97 ± 0.01 40.13 ± 0.05 6.91 ± 0.06

33

So, what’s the catch?

34

DNA (classification with irrelevant features)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

MF
MF†

ERT-k
ERT-1
ERT-1†

ORF-Saffari
Breiman-RF*

101 102 103 1040.5

0.6

0.7

0.8

0.9

1.0

1.1
MF
MF†

ERT-k
ERT-1
ERT-1†

ORF-Saffari

Fraction of training data Time (s)

Figure: Test accuracy

• Irrelevant features: Choosing splits independent of labels
(MF, ERT-1) harmful in presence of irrelevant features

• Removing irrelevant features (use only the 60 most
relevant features1) improves test accuracy (MF†, ERT-1†)

1https://www.sgi.com/tech/mlc/db/DNA.names 35

https://www.sgi.com/tech/mlc/db/DNA.names

Conclusion

• Mondrian Forests (attempt to) combine the strengths of
random forests and Bayesian non-parametrics

– Computationally faster compared to existing online RF and
periodically re-trained batch RF

– Data efficient compared to existing online RF
– Better uncertainty estimates than existing random forests

• Future work
– Mondrian forests for high dimensional data with lots of

irrelevant features
– Explore other likelihoods and hierarchical models (e.g.

linear regression at leaf node will extrapolate better)

36

Conclusion

• Mondrian Forests (attempt to) combine the strengths of
random forests and Bayesian non-parametrics

– Computationally faster compared to existing online RF and
periodically re-trained batch RF

– Data efficient compared to existing online RF
– Better uncertainty estimates than existing random forests

• Future work
– Mondrian forests for high dimensional data with lots of

irrelevant features
– Explore other likelihoods and hierarchical models (e.g.

linear regression at leaf node will extrapolate better)

36

• Mondrian Forests: Efficient Online Random Forests, NIPS 2014

• Mondrian Forests for Large-Scale Regression when Uncertainty
Matters, arXiv:1506.03805, 2015

http://www.gatsby.ucl.ac.uk/∼balaji

Thank you!

37

http://www.gatsby.ucl.ac.uk/~balaji

References I

Breiman, L. (2001).
Random forests.
Machine Learning, 45:5–32.

Deisenroth, M. P. and Ng, J. W. (2015).
Distributed Gaussian processes.
In ICML.

Denil, M., Matheson, D., and de Freitas, N. (2013).
Consistency of online random forests.
In ICML.

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D.
(2014).
Do we need hundreds of classifiers to solve real world classification
problems?
JMLR, 15:3133–3181.

38

References II

Gal, Y., van der Wilk, M., and Rasmussen, C. (2014).
Distributed variational inference in sparse Gaussian process regression
and latent variable models.
In NIPS, pages 3257–3265.

Geurts, P., Ernst, D., and Wehenkel, L. (2006).
Extremely randomized trees.
Machine learning, 63(1):3–42.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013).
Gaussian processes for big data.
In UAI.

Jitkrittum, W., Gretton, A., Heess, N., Eslami, S. M. A.,
Lakshminarayanan, B., Sejdinovic, D., and Szabó, Z. (2015).
Kernel-based just-in-time learning for passing expectation propagation
messages.
In UAI.

39

References III

Roy, D. M. and Teh, Y. W. (2009).
The Mondrian process.
In NIPS.

Saffari, A., Leistner, C., Santner, J., Godec, M., and Bischof, H. (2009).
On-line random forests.
In ICCV.

Teh, Y. W. (2006).
A hierarchical Bayesian language model based on Pitman–Yor
processes.
In ACL.

Wood, F., Archambeau, C., Gasthaus, J., James, L., and Teh, Y. W.
(2009).
A stochastic memoizer for sequence data.
In ICML.

40

Extra slides

41

Hierarchical prior over θ

• Gj parametrizes p(y |x) in Bx
j

• Normalized stable process
(NSP): special case of PYP
where concentration = 0

• dj ∈ (0,1) is discount for node j
• Gε|H ∼ NSP(dε,H),

Gj0|Gj ∼ NSP(dj0,Gj),
Gj1|Gj ∼ NSP(dj1,Gj)

H

Gε

G0 G1

G10 G11

0 1

0 1

• E[Gε(s)] = H(s)

• Var[Gε(s)] = (1− dH)H(s)
(
1− H(s)

)
• Closed under Marginalization: G0|H ∼ NSP(dεd0,H)

• dj = e−γ∆j where ∆j = tj − tparent(j) (time difference
between split times)

42

Posterior inference for NSP

• Special case of approximate inference for PYP [Teh, 2006]
• Chinese restaurant process representation
• Interpolated Kneser-Ney smoothing

– fast approximation
– Restrict number of tables serving a dish to at most 1
– popular smoothing technique in language modeling

43

Interpolated Kneser-Ney smoothing

• Prediction for x∗ lying in node j is given by

Gjk = p(y∗ = k |x∗ ∈ Bx
j ,X ,Y , T)

=


cj,k − dj tabj,k

cj,·
+

dj tabj,·
cj,·

Gparent(j),k cj,· > 0

Gparent(j),k cj,· = 0

• cj,k = number of points in node j with label k
• tabj,k = min(cj,k ,1) and dj = exp

(
−γ(tj − tparent(j))

)

44

	Motivation and Background
	Mondrian Forests
	Randomization mechanism
	Online training
	Prediction and Hierarchical smoothing
	Classification Experiments: online vs batch
	Regression Experiments: evaluating uncertainty estimates

	Conclusion

