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Motivation

Typical converation:
• I have a faster ABC DEF sampler for a fancy

non-parametric Bayesian model XYZ

• Bayesian: cool!
• Others: Isn’t the non-Bayesian parametric version, like 100

times faster? Why should I care?

Lots of neat ideas in Bayesian non-parametrics; can we use
these in a non-Bayesian context?
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Problem setup

• Input: attributes X = {xn}Nn=1, labels Y = {yn}Nn=1 (i.i.d)
• xn ∈ X (we assume X = [0,1]D but could be more general)
• yn ∈ {1, . . . ,K} (classification) or yn ∈ R (regression)
• Goal: Predict y∗ for test data x∗

• Recipe for prediction: Use a random forest
– Ensemble of randomized decision trees
– State-of-the-art for lots of real world prediction tasks
– Do we Need Hundreds of Classifiers to Solve Real World

Classification Problems? [Fernández-Delgado et al., 2014]

• What is a decision tree?
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Example: Classification tree

• Hierarchical axis-aligned binary partitioning of input space
• Rule for predicting label within each block

x1 > 0.37

x2 > 0.5
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T : list of nodes, feature-id + location of splits for internal nodes
θ: Multinomial parameters at leaf nodes
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Prediction using decision tree

• Example:
– Multi-class classification: θ = [θr , θb, θg ]
– Prediction = smoothed empirical histogram in node j
– Label counts in left node [nr = 2,nb = 0,ng = 0]
– θ ∼ Dirichlet(α/3, α/3, α/3)

– Prediction = Posterior mean of θ =
[ 2+α/3

2+α , α/3
2+α ,

α/3
2+α

]
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Prediction using decision tree

• Example:
– Multi-class classification: θ = [θr , θb, θg ]
– Prediction = smoothed empirical histogram in node j
– Label counts in left node [nr = 2,nb = 0,ng = 0]
– θ ∼ Dirichlet(α/3, α/3, α/3)

– Prediction = Posterior mean of θ =
[ 2+α/3

2+α , α/3
2+α ,

α/3
2+α

]
• Likelihood for nth data point = p(yn|θj) assuming xn lies in

leaf node j of T
• Prior over θj : independent or hierarchical
• Prediction for x∗ falling in j = Eθj |T ,X ,Y

[
p(y∗|θj)

]
, where

p(θj | T ,X ,Y ) ∝ p(θj |...)︸ ︷︷ ︸
prior

∏
n∈N(j)

p(yn|θj)︸ ︷︷ ︸
likelihood of data points in node j

• Smoothing is done independently for each tree
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From decision trees to Random forests (RF)

• Generate randomized trees {Tm}M1
• Prediction for x∗:

p(y∗|x∗) =
1
M

∑
m

p(y∗|x∗, Tm)

• Model combination and not Bayesian model averaging

• Advantages of RF
– Excellent predictive performance (test accuracy)
– Fast to train (in batch setting) and test
– Trees can be trained in parallel
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Disadvantages of RF

• Not possible to train incrementally
– Re-training batch version periodically is slow O(N2 log N)
– Existing online RF variants

[Saffari et al., 2009, Denil et al., 2013] require
– lots of memory / computation or
– need lots of training data before they can deliver good test

accuracy (data inefficient)

• Random forests do not give useful uncertainty estimates
– Predictions outside range of training data can be

overconfident
– Uncertainty estimates are crucial in applications such as

Bayesian optimization, Just-in-time learning, reinforcement
learning, etc.
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Mondrian Forests

Mondrian forests = Mondrian process + Random forests

• Can operate in either batch mode or online mode
• Online speed O(N log N)

• Data efficient (predictive performance of online mode
equals that of batch mode!)

• Better uncertainty estimate than random forests
• Predictions outside range of training data exhibit higher

uncertainty and shrink to prior as you move farther away
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Popular batch RF variants

How to generate individual trees in RF?
• Breiman-RF [Breiman, 2001]: Bagging + Randomly

subsample features and choose best location amongst
subsampled features

• Extremely Randomized Trees [Geurts et al., 2006]
(ERT-k ): Randomly sample k (feature-id, location) pairs
and choose the best split amongst this subset

– no bagging
– ERT-1 does not use labels Y to guide splits!
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Mondrian process [Roy and Teh, 2009]

• MP(λ,X ) specifies a distribution over hierarchical
axis-aligned binary partitions of X (e.g. RD, [0,1]D)

• λ is complexity parameter of the Mondrian process

Figure: Mondrian Composition II in Red, Blue and Yellow (Source: Wikipedia)
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Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop,

�1 u1

u2

�2
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Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop, ELSE, sample a split

– split dimension: choose dimension d with prob ∝ ud − `d
– split location: choose uniformly from [`d ,ud ]

�1 u1

u2

�2
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Generative process: MP(λ, {[`1,u1], [`2,u2]})
1. Draw ∆ from exponential with rate u1 − `1 + u2 − `2
2. IF ∆ > λ stop, ELSE, sample cut

– Choose dimension d with probability ∝ ud − `d
– Choose cut location uniformly from [`d ,ud ]
– Recurse on left and right subtrees with parameter λ−∆

�1 u1

u2

�2
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Self-consistency of Mondrian process

• Simulate T ∼ MP(λ, [`1,u1], [`2,u2])

�1 u1

u2

�2

• Restriction has distribution MP(λ, [`′1,u
′
1], [`′2,u

′
2])!
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Mondrian trees

• Use X to define lower and upper limits within each node
and use MP to sample splits.

• Difference between Mondrian tree and usual decision tree
– split in node j is committed only within extent of training

data in node j
– node j is associated with ‘time of split’ tj > 0 (split time

increases with depth and will be useful in online training)
– splits are chosen independent of the labels Y
– λ is ‘weighted max-depth’.

x1 > 0.37

x2 > 0.5
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Mondrian trees: online learning

• As dataset grows, we extend the Mondrian tree T by
simulating from a conditional Mondrian process MTx

T ∼ MT (λ,D1:n)

T ′ | T ,D1:n+1 ∼ MTx(λ, T ,Dn+1)
=⇒ T ′ ∼ MT (λ,D1:n+1)

• Distribution of batch and online trees are the same!
• Order of the data points does not matter
• MTx can perform one or more of the following 3 operations

– insert new split above an existing split
– extend existing split to new range
– split leaf further

• Computational complexity MTx is linear in depth of tree

19
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Online training cartoon

Start with data points a and b
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Online training cartoon

Adding new data point c: update visible range

x2

x10

1

1

 
a

 b

 c

x2 > 0.23

a b

−

−

−

0

2.42

∞

20



Online training cartoon

Adding new data point c: introduce new split (above an existing
split). New split in Rabc should be consistent with Rab.
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Online training cartoon

Examples of splits that are not self-consistent.
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Online training cartoon

Adding new data point d : traverse to left child and update range
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Online training cartoon

Adding new data point d : extend the existing split to new range
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Online training cartoon

Adding new data point d : split leaf further
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Key differences between Mondrian forests and
existing online random forests

• Splits extended in a self-consistent fashion
• Splits not extended to unobserved regions
• New split can be introduced anywhere in the tree (as long

as it’s consistent with subtree below)
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Prediction and Hierarchical smoothing

• Extend Mondrian to range of test data
– Test data point can potentially branch off and form separate

leaf node of its own!
– Points far away from range of training data are more likely

to brach off
– We analytically average over every possible extension

• Hierarchical smoothing for posterior mean of θ|T
– Independent prior would predict from prior if test data

branches off into its own leaf node
– Bayesian smoothing done independently within each tree
– Ensemble: model combination and not BMA
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Prediction and Hierarchical smoothing

• Classification
– Multinomial likelihoods, Hierarchical Normalized Stable

process prior [Wood et al., 2009]
– Fast approximate inference using Interpolated Kneser Ney

approximation
• Regression

– Gaussian likelihood, Gaussian prior
– Fast exact inference using belief propagation

• Both models are closed under marginalization, so
introducing new nodes does not change the model
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Classification: Experimental setup

• Competitors
– Periodically re-trained batch versions (RF, ERT)
– Online RF [Saffari et al., 2009]

• Datasets:

Name D #Classes #Train #Test
Satellite images 36 6 3104 2000

Letter 16 26 15000 5000
USPS 256 10 7291 2007
DNA 180 3 1400 1186

• Training data split into 100 mini batches (unfair to MF)
• Number of trees = 100
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Classification results: Letter dataset
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Figure: Test accuracy

• Data efficiency: Online MF very close to batch RF (ERT,
Breiman-RF) and significantly outperforms ORF-Saffari

• Speed: MF much faster than periodically re-trained batch
RF and ORF-Saffari
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Classification results: USPS dataset
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Classification results: Satellite Images dataset
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Uncertainty estimation: Experimental setup

• Application: Just-In-Time learning in Expectation
Propagation [Jitkrittum et al., 2015]

• Goal: learn to predict output message from incoming
messages

– If current input is similar to previous input, use estimate
– Whenever estimate is uncertain, evaluate the true value

• Setup: Test dataset differs from training dataset
• Desiderata: Predictions should exhibit higher uncertainty

as we move farther away
• How does MF uncertainty compare to other RFs?
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(b) Uncertainty estimate of MF
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(c) Uncertainty estimate of ERT
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(d) Uncertainty of Breiman-RF
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Comparison to large-scale Gaussian processes

• Experiments on airline delay dataset [Hensman et al., 2013]

• Large scale approximate Gaussian processes:
– Variational approximations: SVI-GP [Hensman et al., 2013] and Dist-VGP

[Gal et al., 2014]
– Combine GP outputs from subsets of data: robust BCM (rBCM)

[Deisenroth and Ng, 2015]

700K/100K 2M/100K 5M/100K
RMSE NLPD RMSE NLPD RMSE NLPD

SVI-GP 33.0 - - - - -
Dist-VGP 33.0 - - - - -

rBCM 27.1 9.1 34.4 8.4 35.5 8.8
Breiman-RF 24.07 ± 0.02 27.3 ± 0.01 39.47 ± 0.02

ERT 24.32 ± 0.02 27.95 ± 0.02 38.38 ± 0.02
MF 26.57 ± 0.04 4.89 ± 0.02 29.46 ± 0.02 4.97 ± 0.01 40.13 ± 0.05 6.91 ± 0.06
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So, what’s the catch?
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DNA (classification with irrelevant features)
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Figure: Test accuracy

• Irrelevant features: Choosing splits independent of labels
(MF, ERT-1) harmful in presence of irrelevant features

• Removing irrelevant features (use only the 60 most
relevant features1) improves test accuracy (MF†, ERT-1†)

1https://www.sgi.com/tech/mlc/db/DNA.names 35

https://www.sgi.com/tech/mlc/db/DNA.names


Conclusion

• Mondrian Forests (attempt to) combine the strengths of
random forests and Bayesian non-parametrics

– Computationally faster compared to existing online RF and
periodically re-trained batch RF

– Data efficient compared to existing online RF
– Better uncertainty estimates than existing random forests

• Future work
– Mondrian forests for high dimensional data with lots of

irrelevant features
– Explore other likelihoods and hierarchical models (e.g.

linear regression at leaf node will extrapolate better)
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• Mondrian Forests: Efficient Online Random Forests, NIPS 2014

• Mondrian Forests for Large-Scale Regression when Uncertainty
Matters, arXiv:1506.03805, 2015

http://www.gatsby.ucl.ac.uk/∼balaji

Thank you!
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Hierarchical prior over θ

• Gj parametrizes p(y |x) in Bx
j

• Normalized stable process
(NSP): special case of PYP
where concentration = 0

• dj ∈ (0,1) is discount for node j
• Gε|H ∼ NSP(dε,H),

Gj0|Gj ∼ NSP(dj0,Gj),
Gj1|Gj ∼ NSP(dj1,Gj)

H

Gε

G0 G1

G10 G11

0 1

0 1

• E[Gε(s)] = H(s)

• Var[Gε(s)] = (1− dH)H(s)
(
1− H(s)

)
• Closed under Marginalization: G0|H ∼ NSP(dεd0,H)

• dj = e−γ∆j where ∆j = tj − tparent(j) (time difference
between split times)
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Posterior inference for NSP

• Special case of approximate inference for PYP [Teh, 2006]
• Chinese restaurant process representation
• Interpolated Kneser-Ney smoothing

– fast approximation
– Restrict number of tables serving a dish to at most 1
– popular smoothing technique in language modeling
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Interpolated Kneser-Ney smoothing

• Prediction for x∗ lying in node j is given by

Gjk = p(y∗ = k |x∗ ∈ Bx
j ,X ,Y , T )

=


cj,k − dj tabj,k

cj,·
+

dj tabj,·
cj,·

Gparent(j),k cj,· > 0

Gparent(j),k cj,· = 0

• cj,k = number of points in node j with label k
• tabj,k = min(cj,k ,1) and dj = exp

(
−γ(tj − tparent(j))

)
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