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Bayesian Convnets

In this talk we’ll —

I Offer insights into why recent state-of-the-art models in image
processing work so well.

I Start with an approximation of a BNP model and through a
(beautiful) derivation...

I ... obtain insights into getting state-of-the-art results on
CIFAR-10 dataset (7.71% test error).
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GP regression

Gaussian processes (GPs) are a powerful tool for probabilistic
inference over functions.

I GP regression captures non-linear functions

GPs offer:
I uncertainty estimates,

I robustness to over-fitting,

I and principled ways for tuning hyper-parameters
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GP regression
I Training dataset with N inputs X ∈ RN×Q (Q dimensional)

I Corresponding D dimensional outputs Fn = f(Xn)

I We place a Gaussian process prior over the space of functions

f ∼ GP(mean µ(x), covariance k(x,x′))

Every finite subset of variables follows a joint Gaussian
distribution

I This implies a joint Gaussian distribution over function values:

p(F |X ) = N (F ;µ(X ),K ), Kij = k(xi ,xj)

I Y consists of noisy observations, making the functions F latent:

p(Y |F ) = N (Y ; F , τ−1In)

I Prior and likelihood conjugate:

p(Y |X ) = N (Y ; 0,K + τ−1In)
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However...

Problem – time and space complexity

I Evaluating p(Y |X ) directly is an expensive operation

I Involves the inversion of the N by N matrix K

I requiring O(N3) time complexity
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Many Approximations

Full GP:
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I Sparse pseudo-input cannot handle complex functions well:
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I Sparse spectrum is known to over-fit:
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Main Idea:

I Variational Sparse Spectrum GP (VSSGP)
I use variational inference for the sparse spectrum approximation

I avoids over-fitting, efficiently captures globally complex
behaviour

I In short—
I we replace the GP covariance function with a finite Monte Carlo

approximation

I we view this as a random covariance function

I conditioned on data this random variable has an intractable
posterior

I we approximate this posterior with variational inference
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2-Slide Review of Variational Inference

I Condition model on a finite set of random variables ω.

I Predictive distribution

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y) dω.

I Can’t evaluate p(ω|X,Y) analytically —

I define an “easier” approximating variational distribution qθ(ω)
parametrised by variational parameters θ.
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2-Slide Review of Variational Inference

I Minimise the Kullback–Leibler (KL) divergence:

argminθKL(qθ(ω) | p(ω|X,Y)).

I Minimising KL = maximising log evidence lower bound with
respect to θ:

LVI :=

∫
qθ(ω) log p(Y|X,ω)dω − KL(qθ(ω)||p(ω)).

I Gives approximate predictive distribution:

qθ(y∗|x∗) =

∫
p(y∗|x∗,ω)qθ(ω)dω.
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How do we apply this to our GP situation? (with a squared
exponential covariance function)

Given Fourier transform of the covariance function:

K(x− y) = σ2e−
(x−y)T (x−y)

2

= σ2
∫
N (w; 0, IQ) cos

(
2πwT (x− y)

)
dw.



Fourier transform of the squared exponential covariance function:

K(x− y) = σ2
∫
N (w; 0, IQ) cos

(
2πwT (x− y)

)
dw,

Auxiliary variable b:

K(x− y) = 2σ2
∫
N (w; 0, IQ)Unif[0,2π]

cos
(
2πwT x + b

)
cos

(
2πwT y + b

)
dwdb.



Auxiliary variable b:

K(x− y) = 2σ2
∫
N (w; 0, IQ)Unif[0,2π]

cos
(
2πwT x + b

)
cos

(
2πwT y + b

)
dwdb,

Monte Carlo integration with K terms:

K̂(x− y) =
2σ2

K

K∑
k=1

cos
(
2πwT

k x + bk
)

cos
(
2πwT

k y + bk
)

with wk ∼ N (0, IQ), bk ∼ Unif[0,2π].



Monte Carlo integration with K terms:

K̂(x− y) =
2σ2

K

K∑
k=1

cos
(
2πwT

k x + bk
)

cos
(
2πwT

k y + bk
)
,

Rewrite the covariance function with Φ ∈ RN×K

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

Φn,k (ω) =

√
2σ2

K
cos

(
2πwT

k xn + bk
)
,

K̂(x− y) = Φ(ω)Φ(ω)T .



Rewrite the covariance function with Φ ∈ RN×K

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

Φn,k (ω) =

√
2σ2

K
cos

(
2πwT

k xn + bk
)
,

K̂(x− y) = Φ(ω)Φ(ω)T ,

Integrate the GP over the random covariance function

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

p(Y|X,ω) = N
(
Y; 0,Φ(ω)Φ(ω)T + τ−1IN

)
p(Y|X) =

∫
p(Y|X,ω) p(ω)dω

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y)dω.



Integrate the GP over the random covariance function

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

p(Y|X,ω) = N
(
Y; 0,Φ(ω)Φ(ω)T + τ−1IN

)
p(Y|X) =

∫
p(Y|X,ω)p(ω)dω

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y)dω.

Use variational distribution q(ω) =
∏

q(wk )q(bk ) to
approximate posterior p(ω|X,Y):

q(wk ) = N (µk ,ΣK ), q(bk ) = Unif(αk , βk ),

with ΣK diagonal.



Maximise log evidence lower bound

LVSSGP =
1
2

D∑
d=1

(
log(|τ−1 Σ |) + τyT

d Eq(ω)(Φ) Σ Eq(ω)(ΦT ) yd + ...

)
− KL(q(ω)||p(ω))

with Σ = ( Eq(ω)(ΦT Φ) + τ−1I)−1. We can evaluate the KL and
the expectations analytically using the identity

Eq(w)

(
cos(wT x + b)

)
= e−

1
2 xT Σx cos(µT x + b).

Requires O(NK 2 + K 3) time complexity.



Factorised VSSGP

Factorised VSSGP (fVSSGP)
I We often use large K .

I K by K matrix inversion is still slow: O(K 3).

I It is silly to invert the whole matrix every time
— slightly changing the parameters we expect the inverse to
not change too much.

I We can do better with an additional auxiliary variable.
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We integrated the GP over the random covariance function

wk ∼ N (0, IQ), bk ∼ Unif[0,2π], ω = {wk ,bk}Kk=1

p(Y|X,ω) = N
(
Y; 0,Φ(ω)Φ(ω)T + τ−1IN

)
p(Y|X) =

∫
p(Y|X,ω)p(ω)dω,

Introduce auxiliary random variables A ∈ RK×D

A ∼ N (0, IK×D),

p(Y|X,A,ω) = N
(
Y; Φ(ω)A, τ−1IN

)
p(Y|X) =

∫
p(Y|X,A,ω)p(A)p(ω)dωdA.



Introduce auxiliary random variables A ∈ RK×D

A ∼ N (0, IK×D),

p(Y|X,A,ω) = N
(
Y; Φ(ω)A, τ−1IN

)
p(Y|X) =

∫
p(Y|X,A,ω)p(A)p(ω)dωdA,

Use variational distribution q(ω) =
∏

q(wk )q(bk )
∏

q(ad ) to
approximate posterior p(ω,A|X,Y):

q(ad ) = N (md ,sd )

over the rows of A with sd diagonal.



Maximise log evidence lower bound

LfVSSGP =
D∑

d=1

(
τyT

d Eq(ω)

(
Φ
)
md −

τ

2
tr
(

Eq(ω)(ΦT Φ)(sd + mdmT
d )
)

+ ...

)
− KL(q(A)||p(A))− KL(q(ω)||p(ω)).

Requires O(NK 2) time complexity — no matrix inversion.



Looks Familiar?
Let’s rewrite the last model with different notation:

W1 ∼ N (0, IQ×K ), W2 ∼ N (0, IK×D),

ω = {W1,W2,b}
p(y|x,ω) = N

(
y; W2 cos

(
W1x + b

)
, τ−1IN

)
p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y)dω.
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ω = {W1,W2,b}
p(y|x,ω) = N

(
y; W2 cos

(
W1x + b

)
, τ−1IN

)
p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y)dω.

This is a Bayesian neural
network.
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Looks Familiar?

I Started with a GP and using variational inference→ Bayesian
neural network

I We (approximately) integrate over the weights of the NN

I But we have weird cosine non-linearities

I Let’s replace the covariance function with

K(x,y) =

∫
N (w; 0, IQ)p(b)σ(wT x + b)σ(wT y + b)dwdb

with non-linear function σ(·) (ReLU/TanH) and distribution p(b)

I We get σ(·) non-linearities (ReLU/TanH) in our Bayesian NN
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Convolutional NNs

We have Bayesian NNs with arbitrary non-linearities
approximating various Gaussian processes.

I Replace the neural network with a convolutional neural network

I Convolution operation = inner-product of transformed input

I Integrate over the filters

I But these are often HUGE

I We have wayy too many parameters in our approximation
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Computational Efficiency

Too many parameters...

I Gaussian approximating distributions→ Bernoullis

I Random weights defined as Wi = MiBi with variational
parameters Mi and Bi diagonal: Bi,jj ∼ Bern(pi)

I Doesn’t use more parameters than normal NNs
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Computational Efficiency

Problem: can’t integrate analytically

I Use MC integration instead with stochastic optimisation

In practice
I Sample Bernoulli realisations and multiply rows of Mi
→ identical to setting NN units to zero with probability pi

25 of 34



Computational Efficiency

Problem: can’t integrate analytically
I Use MC integration instead with stochastic optimisation

In practice
I Sample Bernoulli realisations and multiply rows of Mi
→ identical to setting NN units to zero with probability pi

This is dropout
(an empirical technique in deep learning to avoid over-fitting)

→
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Bayesian convnets

So...

Dropout = Bayesian NN = Bernoulli approximate
variational inference in GP

I Can implement Bayesian convnets with Bernoulli approximate
variational inference with existing tools!

I Dropout implemented in every deep learning package

I Just do dropout after every convolution layer

Someone must have tried it in the past?
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Bayesian convnets

Dropout after every convolution layer:

I On CIFAR-10 with a small LeNet model

I Implemented only after inner-product layers in existing
literature — 23.46 test error

I We got test error 41.82.
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Bayesian convnets

Why?

I Dropout implementation uses full weight matrices at test time

But...
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Bayesian convnets

Why?

I Dropout implementation uses full weight matrices at test time

But...
I Dropout is a Bayesian model

I Should estimate mean of posterior (e.g. MC integration):

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗,ω)p(ω|X,Y)dω

≈
∫

p(y∗|x∗,ω)q(ω)dω

≈ 1
T

T∑
t=1

p(y∗|x∗,ωt )q(ωt ),
(
ωt ∼ q(ω)

)
.

referred to as MC dropout.
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Bayesian convnets

MC dropout after every convolution layer:

I On CIFAR-10 with a small LeNet model

I Training same as before, at test time average T stochastic
samples from the network

I We get 16.05± 0.07 test error averaging 100 samples!
(41.82 before, 23.46 after inner-product alone)
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Bayesian convnets

How do we compare to standard techniques? (CIFAR-10 LeNet)
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Standard dropout (lenet-all)

MC dropout (lenet-all)

Standard dropout (lenet-ip)

MC dropout (lenet-ip)

No dropout (lenet-none)
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Bayesian convnets

How do we compare to standard techniques? (MNIST LeNet)
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No dropout (lenet-none)
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State of the art

MC dropout in state-of-the-art models (T = 100 averaged with 5
repetitions):

Test error Test error
Model (Standard dropout) (MC dropout)

NIN 10.43 10.27± 0.05

DSN 9.37 9.32± 0.02

Augmented-DSN 7.95 7.71± 0.09

Lowest error obtained is 7.51
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What’s next

Many new insights

I Existing techniques in deep learning approximate Bayesian
non-parametrics models

I Dropout integrates over network weights

I Dropout approximation doesn’t work in convnets but integrating
over the weights is still good

I

Opens the door for many new ap-
plications (model uncertainty, princi-
pled extensions, etc.)
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What’s next

Finally, have a look at http://goo.gl/q8OlGK

Thank you for listening
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