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In this talk we’ll —

» Offer insights into why recent state-of-the-art models in image
processing work so well.

» Start with an approximation of a BNP model and through a
(beautiful) derivation...

» ... obtain insights into getting state-of-the-art results on
CIFAR-10 dataset (7.71% test error).
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GP regression "§" CAMBRIDGE

Gaussian processes (GPs) are a powerful tool for probabilistic
inference over functions.

» GP regression captures non-linear functions

GPs offer:
» uncertainty estimates,

» robustness to over-fitting,

» and principled ways for tuning hyper-parameters
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GP regression "§" CAMBRIDGE
» Training dataset with N inputs X € RN*@ (Q dimensional)

» Corresponding D dimensional outputs F, = f(Xj)

v

We place a Gaussian process prior over the space of functions
f ~ GP(mean pu(x), covariance k(x,x’))

Every finite subset of variables follows a joint Gaussian
distribution

v

This implies a joint Gaussian distribution over function values:
p(FI1X) = N(F; u(X),K), Kj = k(xi,x))
Y consists of noisy observations, making the functions F latent:
P(Y|F) =N(Y;F,77 )
Prior and likelihood conjugate:
p(Y|X) =N(Y;0,K+71""1I)

v

v
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Problem — time and space complexity

» Evaluating p(Y|X) directly is an expensive operation
» Involves the inversion of the N by N matrix K

» requiring O(N®) time complexity
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Many Approximations
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» Sparse spectrum is known to over-fit:
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» Variational Sparse Spectrum GP (VSSGP)
» use variational inference for the sparse spectrum approximation

» avoids over-fitting, efficiently captures globally complex
behaviour
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Main Idea: CAMBRIDGE

» Variational Sparse Spectrum GP (VSSGP)

» use variational inference for the sparse spectrum approximation

» avoids over-fitting, efficiently captures globally complex
behaviour

» In short—

» we replace the GP covariance function with a finite Monte Carlo
approximation

» we view this as a random covariance function

» conditioned on data this random variable has an intractable
posterior

» we approximate this posterior with variational inference

7 of 34
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>

Condition model on a finite set of random variables w.

Predictive distribution

v

pYIX X.Y) = [ p(y'[x" w)p(lX.Y) dw

v

Can’t evaluate p(w|X,Y) analytically —

v

define an “easier” approximating variational distribution g (w)
parametrised by variational parameters 6.

8 of 34



w&. UNIVERSITY OF

2-Slide Review of Variational Inference "§" CAMBRIDGE

» Minimise the Kullback—Leibler (KL) divergence:
argminyKL(gy(w) | p(w|X, Y)).

» Minimising KL = maximising /og evidence lower bound with
respect to 6:

v = / g () og p(Y|X, w)dw — KL(gp(w)][p(w)).

» Gives approximate predictive distribution:

Qy'x') = [ Py, )au(ew)d

9 of 34



How do we apply this to our GP situation? (with a squared
exponential covariance function)
Given Fourier transform of the covariance function:

=) T (x~y)
2

K(x —y) = o%e
= o2 /N(w; 0,1g) cos (27w’ (x —y))dw.



Fourier transform of the squared exponential covariance function:

K(x —y) = o2 /N(w; 0,1g) cos (27w’ (x —y))dw,

Auxiliary variable b:

K(x —y) =202 / N (w; 0,1q)Unif[0, 27]

cos (27w 'x + b) cos (2rwy + b)dwdb.



Auxiliary variable b:

K(x —y) = 202 /N(w; 0, 1) Unif[0, 27]

cos (27w’ x + b) cos (2rw'y + b)dwdb,

Monte Carlo integration with K terms:

. 2 K
Kx-y) = 2% > " cos (2rwjix + by) cos (2rw[y + by)
k=1

with wy ~ N(0,1q), by ~ Unif[0, 27].



Monte Carlo integration with K terms:

K(x Z (27w X + by) cos (2nw]y + by),

Rewrite the covariance function with ¢ ¢ RV*K

wy ~ N(0,1g), by ~ Unif[0,27], w = {wy, bk }K_,

20’2 T
pi(w) = —¢ ©o0s (2w Xn + by),

K(x —y) = o(w)d(w)" .



Rewrite the covariance function with » € RVxK

wyi ~ N(0,lg), bk ~ Unif[0,27], w = {Wx, bx}K_,

O p(w) = 2; 0s (27W] Xy + by),
K(x - y) = d(w)d(w)T .

Integrate the GP over the random covariance function
Wy ~ N(07 IQ)7 bk ~ Unif[0,27r], w = {wk7 bk}5(<21
p(Y|X,w) = N(Y; 0,0(w)d(w)” +7 "Iy )
p(YIX) = [ p(YIX,w) p)d

p(y*[x*, X,Y) = /p(y*]x*,w)p(w|x, Y)dw



Integrate the GP over the random covariance function

wi ~ N(0,1g), bx ~ Unif[0,27], w = {Wx, bx}K_,
p(Y|X,w) = N (Y;0,d(w)d(w)” +77"1y)

pYIX) = [ p(YIX.w)p(e)de

P X X, Y) = [ Py I w)p(ew]X, V),

Use variational distribution g(w) = [] q(wk)q(bx) to
approximate posterior p(w|X,Y):

q(wk) = N(uk, Zk), q(bk) = Unif(ay, Bk),

with ¥ diagonal.



Maximise log evidence lower bound

D

1
Lyssap = 5 Z(Iog TTE )+ 1Y) Egru)(®) E Egu)(®7) ya + - )
=1

KL(q(w)l|p(w))

with X = ( Egey(®"®) +7~'/)~". We can evaluate the KL and
the expectations analytically using the identity

Eqw)(cos(W'x + b)) = e 2X ™ cos(u X + b).

Requires O(NK? + K?) time complexity.
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Factorised VSSGP (fVSSGP)
» We often use large K.

K by K matrix inversion is still slow: O(K?).

v

v

It is silly to invert the whole matrix every time
— slightly changing the parameters we expect the inverse to
not change too much.

v

We can do better with an additional auxiliary variable.
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We integrated the GP over the random covariance function
wy ~ N(0,lg), bx ~ Unif[0,27], w = {Wx, bx}K_,
p(YIX,w) = N (Y; 10, 0(@)d(w)" + 7 'In)

pYIX) = [ p(YIX.w)p(e)de

Introduce auxiliary random variables A ¢ RK*D
A ~ N(0,lkxp),
p(YIX, A, w) =N(Y; d(w)A, 7 'y )

p(Y|X) = / PYIX, A, w)p(A)p(w)dwdA.



Introduce auxiliary random variables A ¢ RK*P

A ~ N(0,lkxp),
p(YIX, A, w) = N(Y; d(w)A, 77 y)

pYIX) = / P(YIX, A, w)p(A)p(w)dwdA,

Use variational distribution q(w) = [ g(wk)q(bk) [ g(ag) to
approximate posterior p(w, A|X,Y):

q(ag) = N(my,sq)

over the rows of A with sy diagonal.



Maximise log evidence lower bound

D

Livssep = Y (Tyg Eq(w) (®)my — %tr( Eq(w)(®T®)(sg + mgm]) )
d—1

+ ) — KL(q(A)[[p(A)) — KL(g(w)l|p(w))-

Requires O(NK?) time complexity — no matrix inversion.



Hm UNIVERSITY OF

Looks Familiar? CAMBRIDGE

Let’s rewrite the last model with different notation:

Wi ~ N(0,lgxk), W2~ N(0,lkxp),
w = {W;, Wa, b}
p(y|x,w) = N (y; Wocos (Wix + b), 7 "ly)

ply*[x*, X, Y) = / Py X, w)p(w|X, Y)dw
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Let’s rewrite the last model with different notation:

Wi ~ N(0,lgxk), W2~ N(0,lkxp),
w = {W;, Wa, b}
p(y|x,w) = N (y; Wocos (Wix + b), 7 "ly)

p(y*|x*, X, Y) = /p(y*|x*,w)p(w|X, Y)dw.

This is a Bayesian neural
network.
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neural network
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» We (approximately) integrate over the weights of the NN
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Looks Familiar? CAMBRIDGE

» Started with a GP and using variational inference — Bayesian
neural network

v

We (approximately) integrate over the weights of the NN

But we have weird cosine non-linearities

v

v

Let’s replace the covariance function with
K(x,y) = / N(W; 0,10)p(b)o (W + b)o(w"y + b)dwdb

with non-linear function o(-) (ReLU/TanH) and distribution p(b)

v

We get o(-) non-linearities (ReLU/TanH) in our Bayesian NN

22 of 34
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We have Bayesian NNs with arbitrary non-linearities
approximating various Gaussian processes.

» Replace the neural network with a convolutional neural network

€3: 1. maps 16@10x10
NPUT G festure mape Sa:l. mapsm@ﬁxﬁ
32¢32 52: f maps.

I 035e F8ilayer QUTRUT
E@‘MMH rr1 ‘84 ver 10
L
=

T |
| Full conmectian Gaussian connections
5 .

.
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Convolutional NNs CAMBRIDGE

We have Bayesian NNs with arbitrary non-linearities
approximating various Gaussian processes.

» Replace the neural network with a convolutional neural network

3: . maps 16@70x10
INPUT % Jethure maps Sa:l. mapsm@ﬁxﬁ

32632 52:1. maps.
- B@ias

» Convolution operation = inner-product of transformed input

» Integrate over the filters

23 0of 34



ml,. UNIVERSITY OF

Convolutional NNs CAMBRIDGE

We have Bayesian NNs with arbitrary non-linearities
approximating various Gaussian processes.

» Replace the neural network with a convolutional neural network

» Convolution operation = inner-product of transformed input
» Integrate over the filters

» But these are often HUGE

23 of 34



+ UNIVERSITY OF

Convolutional NNs "™ CAMBRIDGE

We have Bayesian NNs with arbitrary non-linearities
approximating various Gaussian processes.

» Replace the neural network with a convolutional neural network

€3: 1. maps 16@10x10
Sa:1. maps 16@535

32¢32 52: f maps. C5:
- S v |r mulm( F;.. layer C‘)ETPUT

NPUT 01 feature maps

v

Convolution operation = inner-product of transformed input

v

Integrate over the filters

But these are often HUGE

v

v

We have wayy too many parameters in our approximation

23 0of 34
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Too many parameters...

» Gaussian approximating distributions — Bernoullis

» Random weights defined as W; = M;B; with variational
parameters M; and B; diagonal: B; ; ~ Bern(p;)

» Doesn’t use more parameters than normal NNs

24 of 34
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Problem: can’t integrate analytically

» Use MC integration instead with stochastic optimisation

In practice

» Sample Bernoulli realisations and multiply rows of M;
— identical to setting NN units to zero with probability p;
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Problem: can’t integrate analytically
» Use MC integration instead with stochastic optimisation

In practice
» Sample Bernoulli realisations and multiply rows of M;
— identical to setting NN units to zero with probability p;

This is dropout

(an empirical technique in deep learning to avoid over-fitting)

25 of 34
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So...

Dropout = Bayesian NN = Bernoulli approximate
variational inference in GP

» Can implement Bayesian convnets with Bernoulli approximate
variational inference with existing tools!

» Dropout implemented in every deep learning package

» Just do dropout after every convolution layer

Someone must have tried it in the past?

26 of 34
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Dropout after every convolution layer:
» On CIFAR-10 with a small LeNet model

» Implemented only after inner-product layers in existing
literature — 23.46 test error

» We got test error 41.82.

27 of 34



: . UNIVERSITY OF
Bayesian convnets " CAMBRIDGE

Why?
» Dropout implementation uses full weight matrices at test time
But...
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Why?
» Dropout implementation uses full weight matrices at test time

But...
» Dropout is a Bayesian model

» Should estimate mean of posterior (e.g. MC integration):
p(y*|x*, X,Y) = /p(y*|x*,w)p(w\x, Y)dw
~ [ pyIx w)a(ew)dw
17
~ 3 D PYIX w)g(wr),  (wi~ qw)).
t=1

referred to as MC dropout.
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Bayesian convnets "§" CAMBRIDGE

MC dropout after every convolution layer:
» On CIFAR-10 with a small LeNet model

» Training same as before, at test time average T stochastic
samples from the network

» We get 16.05 + 0.07 test error averaging 100 samples!
(41.82 before, 23.46 after inner-product alone)

29 of 34
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How do we compare to standard techniques? (CIFAR-10 LeNet)

60 T
\ - - Standard dropout (lenet-all)
N\
550 — MC dropout (lenet-all) i
50 \\ - - Standard dropout (lenet-ip)
I Y-~~_-_|— MCdropout (lenet-ip) |
L] No dropout (lenet-none)
< 40} g
s
5 35
30
25
20
15
10°

Batches
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How do we compare to standard techniques? (MNIST LeNet)

Error (%)

1.8

1.6

1.4

1.2

1.0

Standard dropout (lenet-all)

MC dropout (lenet-all)

Standard dropout (lenet-ip)

MC dropout (lenet-ip)

No dropout (lenet-none)

Batches
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MC dropout in state-of-the-art models (T = 100 averaged with 5
repetitions):

Test error Test error

Model (Standard dropout) | (MC dropout)

NIN 10.43 10.27 +0.05
DSN 9.37 9.32+0.02
Augmented-DSN 7.95 7.71 +£0.09

Lowest error obtained is 7.51
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Many new insights

» Existing techniques in deep learning approximate Bayesian
non-parametrics models
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Many new insights

» Existing techniques in deep learning approximate Bayesian
non-parametrics models

» Dropout integrates over network weights

» Dropout approximation doesn’t work in convnets but integrating
over the weights is still good

Opens the door for many new ap-
» plications (model uncertainty, princi-
pled extensions, etc.)
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Finally, have a look at http://goo.gl/g801GK

, O HOME PUBLICATIONS & TALKS SOFTWARE MISC BLOG CONTACT

YARIN GAL

What My Deep Model Doesn't Know...

JULY 3RD, 2015

| come from the Cambridge machine learning group. More than once | heard people referring to us as "the most
Bayesian machine learning group in the world". | mean, we do work with probabilistic models and uncertainty
on a daily basis. Maybe that's why it felt so weird playing with those deep learning madels (1 know, joining the
nartv varvlate). Yau see. | snent the last saveral vears workina mostlv with Gaussian nrocesses. modellina

Thank you for listening
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