

Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference

Yarin Gal

yg279@cam.ac.ul

Bayesian Convnets

In this talk we'll —

- Offer insights into why recent state-of-the-art models in image processing work so well.
- Start with an approximation of a BNP model and through a (beautiful) derivation...
- ... obtain insights into getting state-of-the-art results on CIFAR-10 dataset (7.71% test error).

Gaussian processes (GPs) are a powerful tool for probabilistic inference over functions.

GP regression captures non-linear functions

GPs offer:

- uncertainty estimates,
- robustness to over-fitting,
- and principled ways for tuning hyper-parameters

- ▶ Training dataset with *N* inputs $X \in \mathbb{R}^{N \times Q}$ (*Q* dimensional)
- ▶ Corresponding *D* dimensional outputs $F_n = \mathbf{f}(X_n)$
- ▶ We place a *Gaussian process prior* over the space of functions

$$\mathbf{f} \sim \mathcal{GP}(\text{mean } \mu(\mathbf{x}), \text{covariance } k(\mathbf{x}, \mathbf{x}'))$$

Every finite subset of variables follows a joint Gaussian distribution

► This implies a joint Gaussian distribution over function values:

$$p(F|X) = \mathcal{N}(F; \mu(X), K), \quad K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

▶ *Y* consists of noisy observations, making the functions *F* latent:

$$p(Y|F) = \mathcal{N}(Y; F, \tau^{-1}I_n)$$

$$p(Y|X) = \mathcal{N}(Y; 0, K + \tau^{-1}I_n)$$

- ▶ Training dataset with *N* inputs $X \in \mathbb{R}^{N \times Q}$ (*Q* dimensional)
- ▶ Corresponding *D* dimensional outputs $F_n = \mathbf{f}(X_n)$
- ▶ We place a *Gaussian process prior* over the space of functions

$$\mathbf{f} \sim \mathcal{GP}(\mathsf{mean}\; \mu(\mathbf{x}), \mathsf{covariance}\; k(\mathbf{x}, \mathbf{x}'))$$

Every finite subset of variables follows a joint Gaussian distribution

► This implies a joint Gaussian distribution over function values:

$$p(F|X) = \mathcal{N}(F; \mu(X), K), \quad K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

▶ *Y* consists of noisy observations, making the functions *F* latent:

$$p(Y|F) = \mathcal{N}(Y; F, \tau^{-1}I_n)$$

$$p(Y|X) = \mathcal{N}(Y; 0, K + \tau^{-1}I_n)$$

- ▶ Training dataset with *N* inputs $X \in \mathbb{R}^{N \times Q}$ (*Q* dimensional)
- ▶ Corresponding *D* dimensional outputs $F_n = \mathbf{f}(X_n)$
- ► We place a *Gaussian process prior* over the space of functions

$$\mathbf{f} \sim \mathcal{GP}(\mathsf{mean}\; \mu(\mathbf{x}), \mathsf{covariance}\; k(\mathbf{x}, \mathbf{x}'))$$

Every finite subset of variables follows a joint Gaussian distribution

► This implies a joint Gaussian distribution over function values:

$$p(F|X) = \mathcal{N}(F; \mu(X), K), \quad K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

▶ *Y* consists of noisy observations, making the functions *F* latent:

$$p(Y|F) = \mathcal{N}(Y; F, \tau^{-1}I_n)$$

$$p(Y|X) = \mathcal{N}(Y; 0, K + \tau^{-1}I_n)$$

- ▶ Training dataset with *N* inputs $X \in \mathbb{R}^{N \times Q}$ (*Q* dimensional)
- ▶ Corresponding *D* dimensional outputs $F_n = \mathbf{f}(X_n)$
- ► We place a *Gaussian process prior* over the space of functions

$$\mathbf{f} \sim \mathcal{GP}(\mathsf{mean}\; \mu(\mathbf{x}), \mathsf{covariance}\; k(\mathbf{x}, \mathbf{x}'))$$

Every finite subset of variables follows a joint Gaussian distribution

► This implies a joint Gaussian distribution over function values:

$$p(F|X) = \mathcal{N}(F; \mu(X), K), \quad K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

▶ *Y* consists of noisy observations, making the functions *F* latent:

$$p(Y|F) = \mathcal{N}(Y; F, \tau^{-1}I_n)$$

$$p(Y|X) = \mathcal{N}(Y; 0, K + \tau^{-1}I_n)$$

- ▶ Training dataset with *N* inputs $X \in \mathbb{R}^{N \times Q}$ (*Q* dimensional)
- ▶ Corresponding *D* dimensional outputs $F_n = \mathbf{f}(X_n)$
- ► We place a *Gaussian process prior* over the space of functions

$$\mathbf{f} \sim \mathcal{GP}(\mathsf{mean}\; \mu(\mathbf{x}), \mathsf{covariance}\; k(\mathbf{x}, \mathbf{x}'))$$

Every finite subset of variables follows a joint Gaussian distribution

► This implies a joint Gaussian distribution over function values:

$$p(F|X) = \mathcal{N}(F; \mu(X), K), \quad K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

► *Y* consists of noisy observations, making the functions *F* latent:

$$p(Y|F) = \mathcal{N}(Y; F, \tau^{-1}I_n)$$

$$p(Y|X) = \mathcal{N}(Y; 0, K + \tau^{-1}I_n)$$

- ▶ Training dataset with *N* inputs $X \in \mathbb{R}^{N \times Q}$ (*Q* dimensional)
- ▶ Corresponding *D* dimensional outputs $F_n = \mathbf{f}(X_n)$
- ▶ We place a *Gaussian process prior* over the space of functions

$$\mathbf{f} \sim \mathcal{GP}(\mathsf{mean}\; \mu(\mathbf{x}), \mathsf{covariance}\; k(\mathbf{x}, \mathbf{x}'))$$

Every finite subset of variables follows a joint Gaussian distribution

► This implies a joint Gaussian distribution over function values:

$$p(F|X) = \mathcal{N}(F; \mu(X), K), \quad K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$$

► *Y* consists of noisy observations, making the functions *F* latent:

$$p(Y|F) = \mathcal{N}(Y; F, \tau^{-1}I_n)$$

$$p(Y|X) = \mathcal{N}(Y; 0, K + \tau^{-1}I_n)$$

However...

Problem – time and space complexity

- ▶ Evaluating p(Y|X) directly is an expensive operation
- ► Involves the inversion of the *N* by *N* matrix *K*
- ▶ requiring $\mathcal{O}(N^3)$ time complexity

Many Approximations

Full GP:

► Sparse pseudo-input cannot handle complex functions well:

► Sparse spectrum is known to over-fit:

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

Variational Sparse Spectrum GP (VSSGP)

- use variational inference for the sparse spectrum approximation
- avoids over-fitting, efficiently captures globally complex behaviour

- we replace the GP covariance function with a finite Monte Carlo approximation
- we view this as a random covariance function
- conditioned on data this random variable has an intractable posterior
- we approximate this posterior with variational inference

2-Slide Review of Variational Inference CAMBRIDGE

- Condition model on a finite set of random variables ω .
- Predictive distribution

$$p(\mathbf{y}^*|\mathbf{x}^*,\mathbf{X},\mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*,\omega)p(\omega|\mathbf{X},\mathbf{Y}) \; \mathrm{d}\omega.$$

- ▶ Can't evaluate $p(\omega|\mathbf{X},\mathbf{Y})$ analytically —
- \blacktriangleright define an "easier" approximating *variational* distribution $q_{\theta}(\omega)$ parametrised by variational parameters θ .

2-Slide Review of Variational Inference CAMBRIDGE

Minimise the Kullback–Leibler (KL) divergence:

$$\operatorname{argmin}_{\theta} \mathsf{KL}(q_{\theta}(\omega) \mid p(\omega | \mathbf{X}, \mathbf{Y})).$$

Minimising KL = maximising *log evidence lower bound* with respect to θ :

$$\mathcal{L}_{\mathsf{VI}} := \int q_{ heta}(\omega) \log p(\mathbf{Y}|\mathbf{X},\omega) \mathsf{d}\omega - \mathsf{KL}(q_{ heta}(\omega)||p(\omega)).$$

Gives approximate predictive distribution:

$$q_{ heta}(\mathbf{y}^*|\mathbf{x}^*) = \int
ho(\mathbf{y}^*|\mathbf{x}^*,\omega) q_{ heta}(\omega) \mathrm{d}\omega.$$

How do we apply this to our GP situation? (with a squared exponential covariance function)

Given Fourier transform of the covariance function:

$$\mathbf{K}(\mathbf{x} - \mathbf{y}) = \sigma^2 e^{-\frac{(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y})}{2}}$$
$$= \sigma^2 \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \cos(2\pi \mathbf{w}^T (\mathbf{x} - \mathbf{y})) d\mathbf{w}.$$

Fourier transform of the squared exponential covariance function:

$$\mathbf{K}(\mathbf{x} - \mathbf{y}) = \sigma^2 \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \cos(2\pi \mathbf{w}^T (\mathbf{x} - \mathbf{y})) d\mathbf{w},$$

Auxiliary variable *b*:

$$\mathbf{K}(\mathbf{x} - \mathbf{y}) = 2\sigma^2 \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \mathsf{Unif}[0, 2\pi]$$
$$\cos (2\pi \mathbf{w}^T \mathbf{x} + b) \cos (2\pi \mathbf{w}^T \mathbf{y} + b) \mathsf{dwd}b.$$

Auxiliary variable b:

$$\mathbf{K}(\mathbf{x} - \mathbf{y}) = 2\sigma^2 \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \mathsf{Unif}[0, 2\pi]$$
$$\cos (2\pi \mathbf{w}^T \mathbf{x} + b) \cos (2\pi \mathbf{w}^T \mathbf{y} + b) \mathsf{dwd}b,$$

Monte Carlo integration with K terms:

$$\widehat{\mathbf{K}}(\mathbf{x} - \mathbf{y}) = \frac{2\sigma^2}{K} \sum_{k=1}^{K} \cos(2\pi \mathbf{w}_k^T \mathbf{x} + b_k) \cos(2\pi \mathbf{w}_k^T \mathbf{y} + b_k)$$

with $\mathbf{w}_k \sim \mathcal{N}(0, \mathbf{I}_Q)$, $b_k \sim \text{Unif}[0, 2\pi]$.

Monte Carlo integration with K terms:

$$\widehat{\mathbf{K}}(\mathbf{x} - \mathbf{y}) = \frac{2\sigma^2}{K} \sum_{k=1}^K \cos(2\pi \mathbf{w}_k^T \mathbf{x} + b_k) \cos(2\pi \mathbf{w}_k^T \mathbf{y} + b_k),$$

Rewrite the covariance function with $\Phi \in \mathbb{R}^{N \times K}$

$$\mathbf{w}_k \sim \mathcal{N}(0, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[0, 2\pi], \quad \boldsymbol{\omega} = \{\mathbf{w}_k, b_k\}_{k=1}^K$$

$$\Phi_{n,k}(\boldsymbol{\omega}) = \sqrt{\frac{2\sigma^2}{K}}\cos\left(2\pi\mathbf{w}_k^T\mathbf{x}_n + b_k\right),$$

$$\widehat{\mathbf{K}}(\mathbf{x} - \mathbf{y}) = \Phi(\boldsymbol{\omega})\Phi(\boldsymbol{\omega})^T.$$

Rewrite the covariance function with $\Phi \in \mathbb{R}^{N \times K}$

$$\begin{aligned} \mathbf{w}_k &\sim \mathcal{N}(0, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[0, 2\pi], \quad \boldsymbol{\omega} = \{\mathbf{w}_k, b_k\}_{k=1}^K \\ \Phi_{n,k}(\boldsymbol{\omega}) &= \sqrt{\frac{2\sigma^2}{K}} \cos \left(2\pi \mathbf{w}_k^T \mathbf{x}_n + b_k\right), \\ \widehat{\mathbf{K}}(\mathbf{x} - \mathbf{y}) &= \Phi(\boldsymbol{\omega}) \Phi(\boldsymbol{\omega})^T, \end{aligned}$$

Integrate the GP over the random covariance function

$$\begin{aligned} \mathbf{w}_k &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[\mathbf{0}, 2\pi], \quad \boldsymbol{\omega} = \{\mathbf{w}_k, b_k\}_{k=1}^K \\ & p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\omega}) = \mathcal{N}\big(\mathbf{Y}; \quad \mathbf{0}, \Phi(\boldsymbol{\omega})\Phi(\boldsymbol{\omega})^T + \tau^{-1}\mathbf{I}_N \big) \\ & p(\mathbf{Y}|\mathbf{X}) = \int p(\mathbf{Y}|\mathbf{X}, \boldsymbol{\omega}) \frac{p(\boldsymbol{\omega})d\boldsymbol{\omega}}{p(\boldsymbol{\omega})d\boldsymbol{\omega}} \\ & p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \boldsymbol{\omega})p(\boldsymbol{\omega}|\mathbf{X}, \mathbf{Y})d\boldsymbol{\omega}. \end{aligned}$$

Integrate the GP over the random covariance function

$$\begin{aligned} \mathbf{w}_k &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_Q), \quad b_k \sim \mathsf{Unif}[\mathbf{0}, 2\pi], \quad \omega = \{\mathbf{w}_k, b_k\}_{k=1}^K \\ & p(\mathbf{Y}|\mathbf{X}, \omega) = \mathcal{N}(\mathbf{Y}; \mathbf{0}, \Phi(\omega)\Phi(\omega)^T + \tau^{-1}\mathbf{I}_N) \\ & p(\mathbf{Y}|\mathbf{X}) = \int p(\mathbf{Y}|\mathbf{X}, \omega)p(\omega)d\omega \\ & p(\mathbf{y}^*|\mathbf{x}^*, \mathbf{X}, \mathbf{Y}) = \int p(\mathbf{y}^*|\mathbf{x}^*, \omega)p(\omega|\mathbf{X}, \mathbf{Y})d\omega. \end{aligned}$$

Use variational distribution $q(\omega) = \prod q(\mathbf{w}_k)q(b_k)$ to approximate posterior $p(\omega|\mathbf{X},\mathbf{Y})$:

$$q(\mathbf{w}_k) = \mathcal{N}(\mu_k, \Sigma_K), \quad q(b_k) = \mathsf{Unif}(\alpha_k, \beta_k),$$

with Σ_K diagonal.

Maximise log evidence lower bound

$$\mathcal{L}_{VSSGP} = \frac{1}{2} \sum_{d=1}^{D} \left(\log(|\tau^{-1} \mathbf{\Sigma}|) + \tau \mathbf{y}_{d}^{T} \mathbf{E}_{q(\omega)}(\Phi) \mathbf{\Sigma} \mathbf{E}_{q(\omega)}(\Phi^{T}) \mathbf{y}_{d} + ... \right) - \text{KL}(q(\omega)||p(\omega))$$

with $\Sigma = (E_{q(\omega)}(\Phi^T \Phi) + \tau^{-1}I)^{-1}$. We can evaluate the KL and the expectations analytically using the identity

$$E_{q(\mathbf{w})}(\cos(\mathbf{w}^T\mathbf{x}+b)) = e^{-\frac{1}{2}\mathbf{x}^T\Sigma\mathbf{x}}\cos(\mu^T\mathbf{x}+b).$$

Requires $\mathcal{O}(NK^2 + K^3)$ time complexity.

Factorised VSSGP (fVSSGP)

- ▶ We often use large *K*.
- ▶ *K* by *K* matrix inversion is still slow: $\mathcal{O}(K^3)$.
- ► It is silly to invert the whole matrix every time
 - slightly changing the parameters we expect the inverse to not change too much.
- We can do better with an additional auxiliary variable.

We integrated the GP over the random covariance function

$$\mathbf{w}_{k} \sim \mathcal{N}(0, \mathbf{I}_{Q}), \quad b_{k} \sim \mathsf{Unif}[0, 2\pi], \quad \omega = \{\mathbf{w}_{k}, b_{k}\}_{k=1}^{K}$$

$$p(\mathbf{Y}|\mathbf{X}, \omega) = \mathcal{N}(\mathbf{Y}; \mathbf{0}, \Phi(\omega)\Phi(\omega)^{T} + \tau^{-1}\mathbf{I}_{N})$$

$$p(\mathbf{Y}|\mathbf{X}) = \int p(\mathbf{Y}|\mathbf{X}, \omega)p(\omega)d\omega,$$

Introduce auxiliary random variables $\mathbf{A} \in \mathbb{R}^{K \times D}$

$$\begin{split} \mathbf{A} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{K \times D}), \\ p(\mathbf{Y} | \mathbf{X}, \mathbf{A}, \boldsymbol{\omega}) &= \mathcal{N}(\mathbf{Y}; \boxed{\Phi(\boldsymbol{\omega}) \mathbf{A}, \tau^{-1} \mathbf{I}_{N}}) \\ p(\mathbf{Y} | \mathbf{X}) &= \int p(\mathbf{Y} | \mathbf{X}, A, \boldsymbol{\omega}) p(A) p(\boldsymbol{\omega}) \mathrm{d} \boldsymbol{\omega} \mathrm{d} \mathbf{A}. \end{split}$$

Introduce auxiliary random variables $\mathbf{A} \in \mathbb{R}^{K \times D}$

$$\begin{split} \mathbf{A} &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{K \times D}), \\ p(\mathbf{Y} | \mathbf{X}, \mathbf{A}, \boldsymbol{\omega}) &= \mathcal{N} \left(\mathbf{Y}; \Phi(\boldsymbol{\omega}) \mathbf{A}, \tau^{-1} \mathbf{I}_{N} \right) \\ p(\mathbf{Y} | \mathbf{X}) &= \int p(\mathbf{Y} | \mathbf{X}, A, \boldsymbol{\omega}) p(A) p(\boldsymbol{\omega}) \mathrm{d} \boldsymbol{\omega} \mathrm{d} \mathbf{A}, \end{split}$$

Use variational distribution $q(\omega) = \prod q(\mathbf{w}_k)q(b_k) \prod q(\mathbf{a}_d)$ to approximate posterior $p(\omega, \mathbf{A}|\mathbf{X}, \mathbf{Y})$:

$$q(\mathbf{a}_d) = \mathcal{N}(\mathbf{m}_d, \mathbf{s}_d)$$

over the rows of A with \mathbf{s}_d diagonal.

Maximise log evidence lower bound

$$\mathcal{L}_{fVSSGP} = \sum_{d=1}^{D} \left(\tau \mathbf{y}_{d}^{T} E_{q(\omega)}(\Phi) \mathbf{m}_{d} - \frac{\tau}{2} \text{tr}(E_{q(\omega)}(\Phi^{T}\Phi)(\mathbf{s}_{d} + \mathbf{m}_{d}\mathbf{m}_{d}^{T})) + ... \right) - \text{KL}(q(\mathbf{A})||p(\mathbf{A})) - \text{KL}(q(\omega)||p(\omega)).$$

Requires $\mathcal{O}(NK^2)$ time complexity — no matrix inversion.

Let's rewrite the last model with different notation:

$$\begin{split} \mathbf{W}_1 &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{Q \times K}), \quad \mathbf{W}_2 \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{K \times D}), \\ \boldsymbol{\omega} &= \{\mathbf{W}_1, \mathbf{W}_2, \mathbf{b}\} \\ \boldsymbol{p}(\mathbf{y} | \mathbf{x}, \boldsymbol{\omega}) &= \mathcal{N}\big(\mathbf{y}; \mathbf{W}_2 \cos\big(\mathbf{W}_1 \mathbf{x} + \mathbf{b}\big), \boldsymbol{\tau}^{-1} \mathbf{I}_N\big) \\ \boldsymbol{p}(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{Y}) &= \int \boldsymbol{p}(\mathbf{y}^* | \mathbf{x}^*, \boldsymbol{\omega}) \boldsymbol{p}(\boldsymbol{\omega} | \mathbf{X}, \mathbf{Y}) \mathrm{d}\boldsymbol{\omega}. \end{split}$$

Let's rewrite the last model with different notation:

$$\begin{split} \mathbf{W}_1 &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{Q \times K}), \quad \mathbf{W}_2 \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_{K \times D}), \\ \boldsymbol{\omega} &= \{\mathbf{W}_1, \mathbf{W}_2, \mathbf{b}\} \\ \boldsymbol{p}(\mathbf{y} | \mathbf{x}, \boldsymbol{\omega}) &= \mathcal{N}\big(\mathbf{y}; \mathbf{W}_2 \cos\big(\mathbf{W}_1 \mathbf{x} + \mathbf{b}\big), \boldsymbol{\tau}^{-1} \mathbf{I}_N\big) \\ \boldsymbol{p}(\mathbf{y}^* | \mathbf{x}^*, \mathbf{X}, \mathbf{Y}) &= \int \boldsymbol{p}(\mathbf{y}^* | \mathbf{x}^*, \boldsymbol{\omega}) \boldsymbol{p}(\boldsymbol{\omega} | \mathbf{X}, \mathbf{Y}) \mathrm{d}\boldsymbol{\omega}. \end{split}$$

This is a **Bayesian neural** network.

- ► Started with a GP and using variational inference → Bayesian neural network
- ▶ We (approximately) integrate over the weights of the NN
- ▶ But we have weird cosine non-linearities
- ► Let's replace the covariance function with

$$\mathbf{K}(\mathbf{x}, \mathbf{y}) = \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \rho(b) \sigma(\mathbf{w}^T \mathbf{x} + b) \sigma(\mathbf{w}^T \mathbf{y} + b) d\mathbf{w} db$$

with non-linear function $\sigma(\cdot)$ (ReLU/TanH) and distribution p(b)

▶ We get $\sigma(\cdot)$ non-linearities (ReLU/TanH) in our Bayesian NN

- ► Started with a GP and using variational inference → Bayesian neural network
- ► We (approximately) integrate over the weights of the NN
- But we have weird cosine non-linearities
- ► Let's replace the covariance function with

$$\mathbf{K}(\mathbf{x}, \mathbf{y}) = \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \rho(b) \sigma(\mathbf{w}^T \mathbf{x} + b) \sigma(\mathbf{w}^T \mathbf{y} + b) d\mathbf{w} db$$

with non-linear function $\sigma(\cdot)$ (ReLU/TanH) and distribution p(b)

• We get $\sigma(\cdot)$ non-linearities (ReLU/TanH) in our Bayesian NN

- ► Started with a GP and using variational inference → Bayesian neural network
- ► We (approximately) integrate over the weights of the NN
- But we have weird cosine non-linearities
- Let's replace the covariance function with

$$\mathbf{K}(\mathbf{x}, \mathbf{y}) = \int \mathcal{N}(\mathbf{w}; 0, \mathbf{I}_Q) \rho(b) \sigma(\mathbf{w}^T \mathbf{x} + b) \sigma(\mathbf{w}^T \mathbf{y} + b) d\mathbf{w} db$$

with non-linear function $\sigma(\cdot)$ (ReLU/TanH) and distribution p(b)

• We get $\sigma(\cdot)$ non-linearities (ReLU/TanH) in our Bayesian NN

- ► Started with a GP and using variational inference → Bayesian neural network
- ► We (approximately) integrate over the weights of the NN
- ▶ But we have weird cosine non-linearities
- Let's replace the covariance function with

$$\mathbf{K}(\mathbf{x}, \mathbf{y}) = \int \mathcal{N}(\mathbf{w}; \mathbf{0}, \mathbf{I}_Q) \rho(b) \sigma(\mathbf{w}^T \mathbf{x} + b) \sigma(\mathbf{w}^T \mathbf{y} + b) d\mathbf{w} db$$

with non-linear function $\sigma(\cdot)$ (ReLU/TanH) and distribution p(b)

• We get $\sigma(\cdot)$ non-linearities (ReLU/TanH) in our Bayesian NN

- ► Started with a GP and using variational inference → Bayesian neural network
- ► We (approximately) integrate over the weights of the NN
- ▶ But we have weird cosine non-linearities
- Let's replace the covariance function with

$$\mathbf{K}(\mathbf{x}, \mathbf{y}) = \int \mathcal{N}(\mathbf{w}; \mathbf{0}, \mathbf{I}_Q) \rho(b) \sigma(\mathbf{w}^T \mathbf{x} + b) \sigma(\mathbf{w}^T \mathbf{y} + b) d\mathbf{w} db$$

with non-linear function $\sigma(\cdot)$ (ReLU/TanH) and distribution p(b)

▶ We get $\sigma(\cdot)$ non-linearities (ReLU/TanH) in our Bayesian NN

We have **Bayesian NNs with arbitrary non-linearities** approximating various Gaussian processes.

► Replace the neural network with a convolutional neural network

- ► Convolution operation = inner-product of transformed input
- ▶ Integrate over the filters
- ▶ But these are often HUGE
- ▶ We have wayy too many parameters in our approximation

We have **Bayesian NNs with arbitrary non-linearities** approximating various Gaussian processes.

► Replace the neural network with a convolutional neural network

- ► Convolution operation = inner-product of transformed input
- Integrate over the filters
- ▶ But these are often HUGE
- ▶ We have wayy too many parameters in our approximation

We have **Bayesian NNs with arbitrary non-linearities** approximating various Gaussian processes.

Replace the neural network with a convolutional neural network

- ► Convolution operation = inner-product of transformed input
- Integrate over the filters
- ▶ But these are often HUGE
- ▶ We have wayy too many parameters in our approximation

We have **Bayesian NNs with arbitrary non-linearities** approximating various Gaussian processes.

► Replace the neural network with a convolutional neural network

- ► Convolution operation = inner-product of transformed input
- Integrate over the filters
- But these are often HUGE
- We have wayy too many parameters in our approximation

We have **Bayesian NNs with arbitrary non-linearities** approximating various Gaussian processes.

► Replace the neural network with a convolutional neural network

- ► Convolution operation = inner-product of transformed input
- Integrate over the filters
- ▶ But these are often HUGE
- ▶ We have wayy too many parameters in our approximation

Computational Efficiency

Too many parameters...

- ► Gaussian approximating distributions → Bernoullis
- ► Random weights defined as $\mathbf{W}_i = \mathbf{M}_i B_i$ with variational parameters \mathbf{M}_i and B_i diagonal: $B_{i,ij} \sim \text{Bern}(p_i)$
- ► Doesn't use more parameters than normal NNs

Computational Efficiency

Problem: can't integrate analytically

▶ Use MC integration instead with stochastic optimisation

In practice

- ► Sample Bernoulli realisations and multiply rows of M_i
 - ightarrow identical to setting NN units to zero with probability p_i

Computational Efficiency

Problem: can't integrate analytically

▶ Use MC integration instead with stochastic optimisation

In practice

- ► Sample Bernoulli realisations and multiply rows of M_i
 - \rightarrow identical to setting NN units to zero with probability p_i

This is dropout

(an empirical technique in deep learning to avoid over-fitting)

So...

Dropout = Bayesian NN = Bernoulli approximate variational inference in GP

- ► Can implement Bayesian convnets with Bernoulli approximate variational inference with existing tools!
- ► Dropout implemented in every deep learning package
- Just do dropout after every convolution layer

Someone must have tried it in the past?

Dropout after every convolution layer:

- ➤ On CIFAR-10 with a small LeNet model
- ► Implemented only after inner-product layers in existing literature 23.46 test error
- ► We got test error 41.82.

Why?

► Dropout implementation uses full weight matrices at test time

But...

Why?

Dropout implementation uses full weight matrices at test time

But...

- ► Dropout is a Bayesian model
- ► Should estimate mean of posterior (e.g. MC integration):

$$egin{aligned}
ho(\mathbf{y}^*|\mathbf{x}^*,\mathbf{X},\mathbf{Y}) &= \int
ho(\mathbf{y}^*|\mathbf{x}^*,\omega)
ho(\omega|\mathbf{X},\mathbf{Y}) \mathrm{d}\omega \ &pprox \int
ho(\mathbf{y}^*|\mathbf{x}^*,\omega) q(\omega) \mathrm{d}\omega \ &pprox rac{1}{T} \sum_{t=1}^T
ho(\mathbf{y}^*|\mathbf{x}^*,\omega_t) q(\omega_t), \quad ig(\omega_t \sim q(\omega)ig). \end{aligned}$$

referred to as MC dropout.

MC dropout after every convolution layer:

- On CIFAR-10 with a small LeNet model
- ► Training same as before, at test time average T stochastic samples from the network
- ► We get 16.05 ± 0.07 test error averaging 100 samples! (41.82 before, 23.46 after inner-product alone)

How do we compare to standard techniques? (CIFAR-10 LeNet)

How do we compare to standard techniques? (MNIST LeNet)

MC dropout in state-of-the-art models (T = 100 averaged with 5 repetitions):

	Test error	Test error
Model	(Standard dropout)	(MC dropout)
NIN	10.43	$\textbf{10.27} \pm \textbf{0.05}$
DSN	9.37	$\textbf{9.32} \pm \textbf{0.02}$
Augmented-DSN	7.95	7.71 ± 0.09

Lowest error obtained is 7.51

- Existing techniques in deep learning approximate Bayesian non-parametrics models
- Dropout integrates over network weights
- Dropout approximation doesn't work in convnets but integrating over the weights is still good

Opens the door for many new ap

plications (model uncertainty, principled extensions, etc.)

- Existing techniques in deep learning approximate Bayesian non-parametrics models
- Dropout integrates over network weights
- Dropout approximation doesn't work in convnets but integrating
- ▶ plications (model uncertainty, princi-

- Existing techniques in deep learning approximate Bayesian non-parametrics models
- Dropout integrates over network weights
- Dropout approximation doesn't work in convnets but integrating over the weights is still good

▶ plications (model uncertainty, princi-

- Existing techniques in deep learning approximate Bayesian non-parametrics models
- Dropout integrates over network weights
- Dropout approximation doesn't work in convnets but integrating over the weights is still good

Opens the door for many new ap-

plications (model uncertainty, principled extensions, etc.)

What's next

Finally, have a look at http://goo.gl/q801GK

What My Deep Model Doesn't Know...

JULY 3RD, 2015

I come from the Cambridge machine learning group. More than once I heard people referring to us as "the most Bayesian machine learning group in the world". I mean, we do work with probabilistic models and uncertainty on a daily basis. Maybe that's why it felt so weird playing with those deep learning models (I know, joining the party very late). You see. I spent the last several years working mostly with Gaussian processes, modelling

Thank you for listening