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1 Overview

The Bocop project aims to develop an open-source toolbox for solving optimal control
problems, with collaborations involving industrial and academic partners. Optimal con-
trol (optimization of dynamical systems governed by differential equations) has numerous
applications in the fields of transportation, energy, process optimization, and biology. It
began in 2010 in the framework of the Inria-Saclay initiative for an open source optimal
control toolbox, and is supported by the team Commands.

The original Bocop package implements a local optimization method. The optimal
control problem is approximated by a finite dimensional optimization problem (NLP) us-
ing a time discretization (the direct transcription approach). The NLP problem is solved
by the well known software Ipopt, using sparse exact derivatives computed by Adol-C.

The second package BocopHJB implements a global optimization method. Simi-
larly to the Dynamic Programming approach, the optimal control problem is solved in
two steps. First we solve the Hamilton-Jacobi-Bellman equation satisfied by the value
function of the problem. Then we simulate the optimal trajectory from any chosen initial
condition. The computational effort is essentially taken by the first step, whose result,
the value function, can be stored for subsequent trajectory simulations.

Please visit the website for the latest news and updates.

Website: http://bocop.org
Contact: Pierre Martinon (pierre.martinon@inria.fr).
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In this document we present a collection of classical optimal control problems which have
been implemented and solved with Bocop. We recall the main features of the problems
and of their solutions, and describe the numerical results obtained. The presented nu-
merical tests generally use 100 time steps or so, with initialization of the control and state
variables by simple constant values. The solution is usually computed in a few seconds.

Users are encouraged to experiment with the data in these problems in order to get
acquainted with the use of Bocop. It is interesting to observe how the convergence is af-
fected by changes in the initialisation of the control and state, the number of time steps,
or the discretization scheme. A further step might be to make changes in the dynamics
or cost function.

We hope that providing these documented examples will help users to write and solve
their own applications with Bocop. The following problems are sorted in four general
categories: integrator systems, process control, mechanical systems and aerospace, and
PDE control of parabolic equations.
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2 Integrator systems

2.1 Generic form

We consider integrator systems of the form

x(k)(t) = u(t), t ∈ [0, T ], (1)

for k = 1 to 3. The state variables are therefore y1 = x, and for k > 1, y2 = ẋ,. . . ,yk =
x(k−1). The cost function is

∫ T
0
`(t, u(t), y(t))dt, with

`(t, u(t), y(t)) := αx(t) + β1x
2(t) + β2ẋ

2(t) + γu(t) + δu2(t). (2)

Setting the constants α, . . . , δ allows for a wide variety of cost functions (note that of
course β2 = 0 when k = 1). We add the control and state constraints for all t

u(t) ∈ [−1, 1]; y(t) ≥ a. (3)

2.2 First-order system

While these examples are very simple, they nevertheless show some typical behavior that
will be extended later to higher order systems. Consider first the problem Min

∫ T

0

x2(t) + γu(t) + δu2(t) dt

ẋ(t) = u(t), t ∈ [0, T ], x(0) = x0.
(4)

If (γ, δ) = (1, 0), x(0) = 1, and T > 1, then the solution is u(t) = −1 for t ∈ [0, 1], and
u(t) = 0 for t > 1. In particular, the control is discontinuous but piecewise continuous.
If we change δ to a small positive value, say 0.1, we see that the control is continuous,
althought it varies sharply when the time comes close to 1.

The user may experiment what happens when the state constraint threshold a is pos-
itive: again the control is discontinuous when δ = 0, and continuous when δ > 0.

We next discuss the optimal control of two second order integrator systems.
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2.3 Fuller problem [Bocop] [BocopHJB]

Here is a very classical example of a chattering phenomenon describeb by Fuller [11]:

Min

∫ T

0

x2(t)dt; ẍ(t) = u(t) ∈ [−1, 1]. (5)

The solution is, for large enough T , bang-bang (i.e., with values alternately ±1), the
switching times geometrically converging to a value τ > 0, and then the (trivial) singular
arc x = 0 and u = 0. These switches are not easy to reproduce numerically.

Simulations with Bocop and BocopHJB are shown on Figs 1-2. We take here
T = 3.5, x(0) = 0, ẋ(0) = 1, x(T ) = ẋ(T ) = 0 and u(t) ∈ [−1, 1]. We observe that the
HJB method does not find the correct chattering structure for the control. The state
trajectory, however, is close to the optimal one, with an objective value of 0.2789 versus
0.2731. On this problem, applying Pontryagin’s Principle indicates that the optimal
control is either bang (-1 or 1) or singular (0). Therefore we can use only these 3 values
to discretize the control, which gives a similar solution with faster computations.

Figure 1: fuller: state x, v and chattering control u
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Figure 2: fuller (BocopHJB): state x, v and control u

2.4 Relaxed oscillations problem [BocopHJB]

We consider the optimal control problem

min
∫ 1

0
y2 − u2

ẏ = u
u ∈ [−1, 1]
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The Hamiltonian is H = y2−u2 +up. A minimizing control u∗ is either −1 or 1. The
intuition is that the control has to oscillate very quickly between −1 and 1 to obtain the
optimal value. The infimum is −1, as attained for instance with the sequence of controls
un(t) = 1 if t ∈ [ 2k

2n
, 2k+1

2n
], −1 otherwise.

Consider that the control is randomized at any time, with probability α for u = 1.
We can formulate the relaxed problem

min
∫ 1

0
y2 − 1

ẏ = E(u) = α1 + (1− α)(−1) = 2α− 1
α ∈ [0, 1]

The optimal solution for the relaxed problem is given by α = 0.5. Therefore when solving
the original problem with the dynamic programming principle, we expect the simulated
trajectory to present a sequence of very fast oscillations.

Figure 3: relaxed (BocopHJB): value function (left) and optimal trajectory (state,
control). The trajectory exhibits the oscillations predicted by the relaxed problem.

2.5 Second order singular regulator [Bocop] [BocopHJB]

We consider a second order singular regulator problem, see Aly [1], or [2]:

Min

∫ T

0

x2(t) + ẋ2(t) dt; ẍ(t) = u(t) ∈ [−1, 1]. (6)

The difference with Fuller’s problem is that the cost function includes a penalization of
the “speed” ẋ(t). Taking for instance T = 5, x(0) = 0, ẋ(0) = 1, we observe in figure
4-5 the occurrence of a singular arc. The optimal control has a structure (Bang(-1) -
Singular).

State constraint. Now we add the pure state constraint ẋ(t) ≥ −0.25. This changes
the structure of the optimal control from (Bang(-1) - Singular) to (Bang(-1) - Con-
strained(0) - Singular), cf fig. 6.
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Figure 4: regulator: state and control (bang-singular structure).
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Figure 5: regulator (BocopHJB): state and control. The singular arc is correctly
captured on the state variables, even though the singular control is not.
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Figure 6: State constraint. The control structure is now (Bang(-1) - Constrained(0) -
Singular). Once again the HJB method finds the correct singular arc with respect to the
state variables, but not the singular control.

2.6 Third order state constraints [Bocop]

Robbins [24] considered the following family of problems:

Min
1

2

∫ T

0

αy(t) +
1

2
u(t)2 dt; y(3)(t) = u(t); y(t) ≥ 0,

and proved that, for appropriate initial conditions, the exact solution has infinitely many
isolated contact points, such that the length of unconstrained arcs decreases geometrically.
The isolated contact points have an accumulation point, followed by the trivial singular
arc u = 0, y = 0. Detailed computations can be found in [16]. It is not easy to reproduce
numerically this behaviour, since the unconstrained arcs rapidly become too small to be
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captured by a given time discretization. We display in Figure 7 the value of the first
state component and of the control, computed with Bocop. We take here α = 3, T = 10,
y(0) = 1, ẏ(0) = −2, ÿ(0) = 0.

Figure 7: robbins: first order state constraint and control.

It seems that no “generic” (stable with respect to a perturbation) example of a third
order state constraint with a regular entry/exit point for a singular arc is known. It
is conjectured that no such point exists. Jacobson et al. [19] considered the following
example:

Min
1

2

∫ T

0

u(t)2 dt; y(3)(t) = u(t); y(t) ≤ ymax.

with initial condition for which there is no boundary arc, and one or two touch points.

Fourth order state constraints
No example with a nontrivial boundary arc is known, and it is conjectured that this does
not occur. Let us mention the example studied by Jacobson et al. [19]:

Min
1

2

∫ T

0

u(t)2 dt; y(4)(t) = u(t); |y(t)| ≤ ymax.
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3 Process control

3.1 Bio-reactor converting micro-algae to methane [Bocop]

Coupling microalgae culture and anaerobic digestion is a promising process to convert
solar energy into methane. In [5, 4] we consider a dual-tank reactor: a first one in
which microalgae are cultivated and a second one where the microalgae are converted
into biogas. Our first aim is to find an optimal feeding strategy in order to maximize the
production of biogas in the second reactor during one day.

Figure 8: A dual tank bioreactor for converting microalgae into methane

The dual-tank bioreactor can be modeled as a 3-dimensional dynamical system. The
state variables are the concentration of micro-algae y, biomass x and substrate s. The
control variable is the input flow u throughout the whole reactor. The dynamics are

(∗)


dy
dt

= µ(t)y
1+y
− ry − uy

ds
dt

= −µ2(s)x+ uβ(γy − s)
dx
dt

= [µ2(s)− uβ]x

where µ is the light model, µ2(s) = µm2
s

Ks+s
the growth function in reactor 2 (Monod),

and β the volume ratio between the two tanks

The objective is to maximize the methane production over time, starting from initial
concentrations free in a certain domain. We can add some optional periodicity conditions
on the concentrations. The optimal control problem is written as

(OCP )


Max 1

β+c

∫ tf
0
µ2(s(t))x(t)dt

d
dt

(y, s, x) = f(t, y, s, x, u) (∗)
u ∈ [0, 1]
(y(0), s(0), x(0)) ∈ Z0

(y(tt), s(tf ), x(tf )) = (y(0), s(0), x(0)) (optional)

The optimal solution for a periodic optimization over 1 day is shown on Fig.9. Algae
concentration increases during the first half of period ie day, then decreases at night.
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Biomass concentration in the second tank is almost constant. Here the control structure
is 0 - Singular - 0, which is consistent with the Hamiltonian being linear in the control.
The arcs u = s = 0 at the beginning and ending of the time frame are actually due to a
limit in design, namely β = 1.

Generally speaking, simulations over a larger time period indicate that the optimal
long-term strategy consists in three phases, see fig.10. First we observe an initial phase of
growth, starting from the initial conditions to reach some optimal concentrations levels.
Then for almost the whole time interval we see a sequence of identical, optimal 1-day
periodic cycles. Finally there is a wash-out phenomenon at the end of the time frame,
which is more a perturbation.

Figure 9: bioreactor: optimal 1-day periodic cycle

Figure 10: bioreactor: optimization over 30 and 300 days.

Attraction property
We also illustrate an attraction property of the dynamical system, established in [4]. We
now set the control as the optimal solution from the 1-day periodic problem, and simulate
the evolution of the system from different initial conditions. Simulations confirm this fixed
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sequence of controls drives the system to an optimal mode, after which the trajectory
becomes periodic, see fig.11. We can check that these periodic 1-day cycles are identical
to the ones obtained when performing the full optimization with free control, cf fig.12.

Figure 11: Attraction property (fixed periodic control, different initial conditions).

Figure 12: Fixed periodic control vs full optimization (with zoom).

Optimal tank volume ratio
Finally, we check this by solving the same problem while also optimizing the volume
ratio β. It turns out the optimal ratio β∗ depends on the optimization horizon, with an
asymptotic value corresponding to the periodic 1-day optimization.
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Figure 13: Optimizing the tank volume ratio β.
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3.2 Jackson problem (parameter identification) [Bocop]

Consider the model in Jackson [18], also discussed in Biegler [6], of chemical reactions

A
1

 B

2
⇀ C

The first reaction is reversible, converting A to B and vice-versa, and the second one
is one-sided, converting B to C. Here the control u(t) ∈ [0, 1] is the fraction of catalyst
which sets the balance between the reactions 1 and 2, and we want to maximize the
production of C. The initial feed is assumed to consist of pure substance A. Noting a, b, c
the mole fractions of A,B,C and k1, k2, k3 the velocity constants of chemical reactions,
the optimal control problem is written as

(OCP )



Max c(T )
ȧ(t) = −u(t) (k1a(t)− k2b(t))
ḃ(t) = u(t) (k1a(t)− k2b(t))− (1− u(t))k3b(t)
ċ(t) = (1− u(t))k3b(t)
u(t) ∈ [0, 1]
a(0) = 1, b(0) = c(0) = 0

Remark: note that since a(t) + b(t) + c(t) is an invariant, we could eliminate one of
the state variables.

The Hamiltonian being linear in the control, we expect a solution whose optimal
control is a sequence of bang and/or singular arcs. We show on figure 14 the solution
obtained for k1 = k3 = 1, k2 = 10, and T = 4. In this case the control has one singular
arc, with a bang (1) - singular - bang(0) structure.

Figure 14: jackson basic: concentrations a, b, c and control u.

Parameter identification with fixed control
Now we consider the velocity constants k1, k2 and k3 as unknown parameters. We want
to identify these parameters based on some observations of the concentrations a(t), b(t)
and c(t) from an experiment with a known control. Here we will replace the experiment
with a simulation, taking for instance the constant control u = 0.5. For this simulation
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we set the parameters to the values k1 = k3 = 1, k2 = 10. We take some sample values
from the simulation and add some small noise to reflect the errors in measurements, see
fig.15. In this case we made the assumption that a, b and c were measured at different
time steps, hence the use of weights equal to 0 or 1 in the observation file. Then we
perform the identification on the ki, using theses values as observation data, with the
least square method featured in Bocop. The results of the identification are very close to
the original values (Table 1).

Figure 15: Comma-separated observation data

Parameter k1 k2 k3
Original value 1 10 1

Identified value 0.997614 9.97377 1.00095

Table 1: Parameter identification results

Problem variants

• jackson id: basic parameter identification problem. Single observation file with 0
weights for missing values.

• jackson id 2: Two separate observation files, one for a, b and the other for c. Ob-
servation times are specific to each file.

• jackson id 3: Two separate data files again. Identification method is Manual, used
to reproduce the least square criterion as an illustration.
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4 Medical applications

4.1 Contrast in Magnetic Resonance Imaging (MRI) [Bocop]

A medical MRI device

Magnetic Resonance Imaging (MRI) is a medical imagery technique that does not ex-
pose the body to ionizing radiation such as X-ray. Instead, it relies on a strong magnetic
field to excite atoms in the tissues, more specifically hydrogen atoms present in water
(water accounts for 70% of the human body mass). Measuring the rate at which the
atoms go back to their equilibrium state allows to reconstruct the spatial distribution of
water, and by extension to differentiate tissue types.

Finding the magnetic field that maximizes the contrast between two types of tissue can
be written as an optimal control problem, studied for instance in [7, 8]. The magnetization
vector q = (x, y, z) ∈ B(0, 1) for each 1/2 spin particle follows the Bloch equation

ẋ = −Γx+ u2z
ẏ = −Γy − u1z
ż = γ(1− z) + u1y − u2x

with u the magnetic field (control) and γ,Γ relaxation parameters depending on the
tissue. In the simplified, two-dimensional mono-input case, we get

ẏ = −Γy − u1z
ż = γ(1− z) + u1y

Considering two different particles with spins q1, q2, the contrast is linked to |‖q1‖ −
‖q2‖| at the end of the excitation phase. The classical “contrast by saturation” method
consists in bringing one spin to the origin (“saturation”) and the other as far as possible.
Assuming both spins start from the equilibrium point at the north pole, the optimal
control problem is

(OCP )


Max |q2(tf )|
q̇ = f(q, u)
|u(·)| ≤ 1
q1(0) = q2(0) = (0, 1)
q1(tf ) = 0

with the final time set to a multiple of the minimum time Tmin for the saturation of q1,
ie tf = λTmin, α ≥ 1. The Hamiltonian is linear in the control, and it can be shown
([10]) that the optimal control is a sequence of Bang and Singular arcs, noted nBS (ie
2BS denotes a bang-singular-bang-singular structure).
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We illustrate this problem on the (cerebro-spinal fluid,water) case, see fig.16 (τ = t/tf
is the normalized time), with an example of a 2BS structure. A comprehensive study
using indirect shooting and differential continuation methods (HAMPATH,[10]) indicates
the existence of numerous families of local solutions with different structures, and shows
that the optimal structure depends on the final time, as illustrated on fig.17.

Figure 16: contrast: (cerebro-spinal fluid,water) case.

Figure 17: contrast: branches of local solutions (1BS: black, 2BS: blue, 3BS: red)
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5 Mechanical systems, aerospace

5.1 Clamped beam [Bocop]

A classical example of second-order state constraint is the Euler-Bernoulli beam, see
Bryson et al. [9]

Min 1
2

∫ 1

0
u(t)2dt

ẍ(t) = u(t)
x(t) ≤ a
x(0) = x(1) = 0
ẋ(0) = −ẋ(1) = 1.

The exact solution, for various values of a, is displayed in figure 18, and is such that
- if a ≥ 1/4, the constraint is not active and the solution is x(t) = t(1− t).
- if a ∈ [1/6, 1/4], there is a touch point at t = 1/2.
- if a < 1/6, there is a boundary arc without strict complementarity: the measure has its
support at end points. The locus of switching points is piecewise affine.
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Figure 18: Shape of a beam: the three cases and the locus of junction points

The numerical results are consistent with the theory: we display in figure 19 the
displacement and control when a = 0.1, with the expected boundary arc.

Figure 19: beam: state and control. Boundary arc case (a = 0.1).
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5.2 Lagrange equations

We briefly recall the derivation of rational mechanics by the Lagrange approach [20].
Given generalized coordinates q ∈ RN , we note E(q, q̇) and U(q) the expression of cinetic
and potential energy. The associated Lagrangian function and action functional are

L(q, q̇) := E(q, q̇)− U(q); A(q, q̇) :=

∫ T

0

L(q(t), q̇(t))dt. (7)

The Lagrange equations are the Euler Lagrange equations of the classical calculus of
variations, namely

0 =
d

dt

∂L

∂q̇
− ∂L

∂q
=

d

dt

(
∂E(q, q̇)

∂q̇

)
− ∂E(q, q̇)

∂q
+ U ′(q) (8)

with U ′(q) the derivative of the potential function (opposite of the force deriving from
the potential). The above relation must be understood as

d

dt

(
∂E(q, q̇)

∂q̇i

)
=
∂E(q, q̇)

∂qi
− ∂U(q)

∂qi
, i = 1, . . . , N. (9)

The cinetic energy is usually of the form

E(q, q̇) =
1

2
q̇>M(q)q̇, (10)

where theN×N mass matrixM(q) is symmetric, positive definite. Since ∂E(q,q̇)
∂q̇i

= M(q)q̇i,
the Lagrangian equations gives

d

dt
(M(q)q̇)i =

1

2
(q̇)>

∂M(q)

∂qi
q̇ − ∂U(q)

∂qi
, i = 1, . . . , N. (11)

For the simplest spring model, we have E(q, q̇) = 1
2
mq̇2 and U(q) = 1

2
kq2, where m and

k are the mass and spring stiffness. The Lagrangian equations reduce to mq̈(t) = −kq(t),
as expected.

5.3 Holonomic constraints

A (vector) holonomic constraint G(q) = 0, with G : RN → RM , generates (generalized)
forces of the type DG(q)>λ, i.e., orthogonal to KerDG(q). The simplest way to express
the resulting equations is to apply the Euler-Lagrange equation to the “augmented”
Lagrangian L[λ](q, q̇) := L(q, q̇) + λ ·G(q). The resulting equations are

d

dt
(M(q)q̇)i =

1

2
(q̇)>

∂M(q)

∂qi
q̇ + λ · ∂G(q)

∂qi
− ∂U(q)

∂qi
, i = 1, . . . , N (12)

G(q) = 0. (13)

This is an example of an algebraic differential system. The successive time derivatives of
the algebraic constraint are

G(1)(q) = DG(q)q̇; G(2)(q) = D2G(q)(q̇)(q̇) +DG(q)q̈ (14)
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Substituting the expression of q̈ in (12), we obtain

G(2)(q) = DG(q)M(q)−1D>G(q)λ+ F (q, q̇) = 0. (15)

If DG(q) is onto, and M(q) is positive definite, then DG(q)M(q)−1D> is invertible, mean-
ing that we can eliminate the algebraic variable λ from the algebraic equation (15). This
is a highly desirable property for the numerical schemes, and hence, the reader is advised
to use the second derivative of the holonomic constraint in the discretized problem, rather
than the holonomic constraint itself.

Of course the intial condition (q0, q̇0) should be compatible with the holonomic con-
straint, i.e., it should satisfy

G(q0) = G(1)(q) = DG(q0)q̇0 = 0. (16)

5.4 Inverted pendulum [Bocop]

We study the pendulum problem to illustrate the use of algebraic variables. The inverted
pendulum is governed by the equation mθ̈ = g sin θ where θ is the angle to the vertical.
The Lagrangian is L = 1

2
mθ̇2−g cos θ. Alternately, let (x, y) be the Cartesian coordinates

of the position of the pendulum, subject to the constraint G(x, y) = 1
2
(x2 + y2 − 1) = 0.

The Lagrangian is then

L =
1

2
(ẋ2 + ẏ2) +mgy +

1

2
λ(x2 + y2 − 1), (17)

and the mechanical equations are

mẍ = λx+ u, mÿ = λy −mg. (18)

where we have set an horizontal force as the control u.

We want to minimize the objective

Min

∫ T

0

x2(t) + (y(t)− 1)2 + γu2(t) dt

Figure 20 shows the states x, y, the control u and multiplier λ. We take here T = 12, m =
1, g = 1 and γ = 1, with the boundary conditions x(0) = −0.4794255, y(0) = 0.8775826,
ẋ(0) = 1.0530991, ẏ(0) = 0.5753106 and x(T ) = 0, y(T ) = 1, ẋ(T ) = 0, ẏ(T ) = 0.
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Figure 20: pendulum: state x, y, control u and multiplier λ.

5.5 Car with obstacle [BocopHJB]

We consider here a model for a very simplified car. The state variables x and y are
the coordinates of a pointlike car in R2. The control coordinates u and θ correspond
respectively to the velocity and the direction of the car. Then the dynamics is

ẋ = u cos θ, ẏ = u sin θ

We want to reach a prescribed position as fast as possible, so the objective is

min

∫ T

0

f(x(t), y(t))dt

where f(x, y) is 0 if we are close enough to (xf , yf ) = (0.2, 0.75), and 1 else. We define
the part of the space where the car can go in order to illustrate the use of state contraints
with BocopHJB. First x and y are both in [0,1]. In addition, we consider a forbidden
zone defined by the constraints

{(x, y) : x < 0.5, 0.25 + 0.5x < y < 0.75− 0.5x}

Figure 21 shows the value function we get, with the simulated trajectory for the initial
conditions (x0, y0) = (0.2, 0.2).
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Figure 21: car: value function and simulated trajectory.

5.6 Goddard problem [Bocop]

This well-known problem (see for instance [14, 25]) models the ascent of a rocket
through the atmosphere, and we restrict the study to vertical (monodimensional) tra-
jectories. The state variables are the altitude, speed and mass of the rocket during the
flight. The rocket is subject to gravity, thrust and drag forces. The final time is free, and
the objective is to reach a certain altitude with a minimal fuel consumption, ie a maximal
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final mass. The optimal control problem is written as (all units are renormalized)

max m(T )
ṙ = v
v̇ = − 1

r2
+ 1

m
(Tmaxu−D(r, v))

ṁ = −bu
u(·) ∈ [0, 1]
r(0) = 1, v(0) = 0,m(0) = 1
r(T ) = 1.01
D(r(·), v(·)) ≤ C
T free

The expression of the drag force is

D(r, v) = Av2ρ(r), with the volumic mass ρ(r) = e−k(r−r0).

Control structure and state constraint
The Hamiltonian is an affine function of the control, so singular arcs may occur. We
consider here a path constraint limiting the value of the drag effect D(r, v) ≤ C, to model
some kind of structural limit of the rocket. We will see that depending on the value of C,
the control structure changes. In the unconstrained case, the optimal trajectory presents
a singular arc with a non-maximal thrust. When C is set under the maximal value
attained by the drag in the unconstrained case, a constrained arc appears. If C is small
enough, the singular arc is completely replaced by the constrained arc. These different
structures are illustrated on Fig.22, with the parameters b = 7, Tmax = 3.5, A = 310,
k = 500 and r0 = 1.
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Figure 22: goddard: control structure is BSB, BCSB or BCB depending on the severity
of the drag path constraint.
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5.7 3-Link Purcell micro-swimmer [Bocop]

A nematode microscopic worm

The study of optimal swimming strategies at the microscopic scale draws interest from
both fields of biological and robotic systems. In [12, 13] we study the so-called N-link
swimmer, more precisely the 3-link swimmer introduced by Purcell in [23].

Purcell’s 3-link swimmer

Swimming at low Reynolds number, Resistive Force Theory
At the microscopic scale, the situation is the one of low Reynolds numbers, with inertial
forces neglected compared to viscosity. Therefore the hydrodynamics of the system are
governed by the Stokes equation, and the dynamics of the swimmer follow the Newton
laws without inertia. The Resistive Force Theory ([15]) provides a local drag approxima-
tion, assuming that the force exerted on the swimmer by the fluid is linear with respect
to velocity. In this framework, the dynamics of the N-link swimmer in a plane can be
expressed as follows, noting (x, y, θ) the position and orientation of the swimmer, and βi
the shape angles between two adjacent links:ẋ1ẏ1

θ̇1

 =
N−1∑
i=1

(
gi (θ1, β2, · · · , βN)

)
β̇i+1

We observe that the dynamics has no drift term, meaning that without deformation of
its shape, the swimmer remains motionless. The actual expression of the gi can be found
in [13].

Optimal swimming problem
Noting the state z = (x, y, θ) and the control u = β̇, we can formulate the optimal
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swimming problem for different objective functions (maximal displacement, minimum
time, minimum work, ...).

(OCP )


Min J(z, u)
ż = f(z, u)

β̇ = u ∈ [−b, b]N
β ∈ [−a, a]N

Simulations: maximal displacement along x-axis
We solve the above problem while maximizing horizontal displacement, with no a priori
assumption on periodicity. We observe on Fig.23 that the optimal trajectory is indeed a
sequence of periodic strokes, different from the classical Purcell strokes. More precisely,
the state constraints on the shape angles are active and the control structure has both
bang and constrained arcs. The optimal stroke appears to be shorter (in time) than the
classical Purcell stroke, see Fig.24.

Figure 23: purcell: comparison of Purcell and optimal strokes

Figure 24: purcell: deformation of shape angles β1, β2 along time

Micro-swimmer optimal design
In [13] we address the question of the optimal length for each link, in order to maximize
the displacement of the swimmer. The classical Purcell swimmer is defined by L1 = L3 =
L = 1, L2 = 2, meaning the central link is twice as long as the other two. Assuming an
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octagonal-shaped stroke (in the (β1, β2) plane), we use an asymptotic expansion of the
displacement for small amplitudes to derive the optimal ratio(

L2

L

)∗
=

√
10− 1

3
∼ 0.721

For a total length of 4 this corresponds to L∗ = 1.4702, L∗2 = 1.0596. Numerical simu-
lations give results quite close to these values, and show a gain in displacement about
60% versus the traditional Purcell swimmer. We show below the comparison between
the Purcell swimmer and the optimal swimmer for an amplitude a = π/6 and different
deformation speed limits b.

Purcell vs optimal swimmer for different speed limits b

Finally, if we set the speed limit to b = 1 and solve the problem for different amplitudes
a, we observe a change in the stroke phase portrait. For large amplitudes, we obtain
unconstrained solutions instead of octagonal shapes. These solutions typically have a
control structure with bang and singular arcs (instead of constrained arcs).

Phase portrait for different amplitudes, including an unconstrained solution (most
exterior one)
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6 PDE control of parabolic equations

The space discretization of parabolic equations allows to obtain large scale, stiff ODE
models for which an implicit Euler scheme is well suited. In the case of complex ge-
ometries, one should import the dynamics from finite elements libraries such as FreeFem
(available on FreeFem.org). Relevent references on this subject are Barbu [3], Hinze et
al. [17], Tröltzsch [26], and of course the pioneering book by J.L. Lions [21].

6.1 Control of the heat equation [Bocop]

We next give a simple example for the one dimensional heat equation, over the domain
Ω = [0, 1]. We set Q = Ω× [0, T ], where the final time is fixed. The control u(t) is either
over a part of the domain, with Dirichlet conditions, or at the boundary by the Neumann
condition. So the state equation is in the Dirichlet case

d

dt
y(x, t)− c0 yxx(x, t) = χ[0,a]c1 u(t), (x, t) ∈ Q, (19)

y(·, 0) = y0(x); y(0, t) = y(1, t) = 0, t ∈ [0, T ], (20)

where 0 < a ≤ 1, and χ[0,a] is the characteristic function of [0, a], and in the Neumann
case

d

dt
y(x, t)− c0 yxx(x, t) = 0, (x, t) ∈ Q, (21)

y(·, 0) = y0(x); yx(0, t) = −c1u(t); yx(1, t) = 0, t ∈ [0, T ]. (22)

The cost function is, for γ ≥ 0 and δ ≥ 0:

1

2

∫
Q

y(x, t)2dxdt+

∫ T

0

(
γu(t) + δu(t)2

)
dt. (23)

We discretize in space by standard finite difference approximations.

As an example, we take 50 space variables, with c0 = 0.02, c1 = 20, and a final time
T=20. The discretization method is implicit Euler with 200 steps, and we set γ = δ = 0,
which gives a singular arc for the control. We display on Fig.25 the results in the case
of the Dirichlet boundary condition (a = 0), while Fig.26 shows the Neumann case (with
c0 = 0.2). We can clearly see the differences between the boundary conditions y(1, t) = 0
and yx(1, t) = 0.
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Figure 25: heat: Dirichlet condition, u(t) and y(·, t).

Figure 26: heat: Neumann condition, u(t) and y(·, t).
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7 Switched systems

7.1 Thermostat [BocopHJB]

Here is an example of a system that can switch between different modes. We use a very
simple thermostat system. The state x represents the temperature in the room. There is
no control, only two modes corresponding to the heater being on or off. The dynamics
of the thermostat is

ẋ = +10 when the heater is on

ẋ = −10 when the heater is off.

We define the objective as follows: there is no cost when the heater is off, and we have
a constant cost of 1 per unit of time when the heater is on. We also have a switching
cost of 1 when turning the heater on, and we set an additional cost of 10 per unit of time
when the temperature goes below 50.

Figure 27: thermostat: simulated trajectory (state, mode) and value function V (., t0).

7.2 Mouse & Maze [BocopHJB]

To illustrate the use of both several switching possibilities and controls, we designed the
following maze problem. A mouse trapped in a maze tries to get out. This mouse has
a ”bomberman” control space. The state can be described with the variable (x, y) ∈ R2

which defines the position of the unlucky pointlike mouse. The mouse has 4 modes
modeling its direction: north, south, east, west. In addition to the direction modes, the
mouse has a control variable for its velocity, which is positive and upper-bounded. We
consider a running cost of 10 per unit of time in the maze, and each change of direction
costs 1 as a switching cost. The mouse starts at the triangle center while the exit of the
maze is at the green square. We show on Fig. 28 the optimal trajectories with unrestricted
turns, and when allowing only counterclockwise or clockwise turns. The objective is 18.5
(unrestricted turns) versus 20.5 (counterclockwise turns) and 21.5 (clockwise turns).
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Figure 28: maze: the mouse & maze trajectory, with unrestricted and counter-clockwise
turns. Below, the clockwise turns case, with its control and mode: what looks like a ’left’
turn is actually a sequence of 3 turns to the right with null speed.
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8 Stochastic applications in finance

8.1 Call option

We use the Black-Scholes model as an example of a stochastic problem without control
variables. We compute the price of a European call option, with S the price of a stock
as the state variable. In the Black-Scholes model, S follows the dynamics

dS = S(µdt+ σdW )

and the payoff is given by g(S) = (S −K)+ e−rT where K is the strike and the interest
rate is r. We solve Black-Scholes equation to compute the value of the option. We show
on Fig. 29 the results for r = 0.05, σ = 0.2, K = 105, T = 1, S0 = 100. We check that the
value function is quite close to the explicit solution given by the Black-Scholes formula.
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Figure 29: option: the price of a call option, computed with BocopHJB and with
explicit formula (left), and an example of simulated trajectory (right)

Remark: we recall that for a call option the Black-Scholes formula gives the solution

C(S, t) = N(d1)S −N(d2)Ke
−r(T−t)

d1 =
1

σ
√

(T − t)
(ln(

S

K
) + (r +

σ2

2
)(T − t))

d2 = d1 − σ
√
T − t

where N is the cumulative standard normal distribution function.

8.2 Portfolio allocation

As an example of a stochastic control problem, we consider the Merton portfolio allocation
problem in finite horizon, for which the solution is known (see for instance [22]). The
portfolio consists in a risky asset whose value S follows dS = S(µdt+ σdW ) and a non-
risky asset whose value S0 follows dS0 = S0rdt. The portfolio is invested in the risky asset
with proportion α, and the value of the portfolio X is the state variable with dynamics

dXt =
Xtαt
St

dSt +
Xt(1− αt)

S0
t

dS0
t = Xt(αtµ+ (1− αt)r)dt+XtαtσdWt.
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We want to solve the utility maximization problem V (x) = supα E(U(Xx,α
T )), where

U is the CRRA utility function defined by U(x) = xp

p
. The solution is given by

V (x) = eρTU(x), with ρ =
(µ− r)2

2σ2

p

1− p
+ rp,

and the optimal control is constant, equal to α̂ = µ−r
σ2(1−p) . The results for p = 0.5 and

other parameters as in [22] are displayed in Fig 30-31.

Figure 30: portfolio (BocopHJB): value function V .

Figure 31: portfolio (BocopHJB): simulated trajectory (α,X).
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