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We report on a measurement campaign conducted at a beach on the island of Sylt, located off the
German North Sea Coast with the goal of understanding particle dynamics in the surf zone. Using
oranges as particle tracers in connection with a dual two-camera stereo imaging system, we were
able to track individual tracers as they cycle through the waves approaching the beach. Supporting
measurements were provided using ADV, wave staffs, pressure gauges and drones. The tracer
positions are computed from the pixel positions, and the trajectories and velocities are analyzed
with focus on wave-by-wave behavior, pre-breaking behavior and nearshore circulation.

Wave-by-wave dynamics in non-breaking waves
Pressure measurements show strong variation in mean-water level between consecutive waves due
to the infragravity wave signal. It is shown that elevated or depressed local mean water level
correlates with amplified or reversed Stokes drift. For example in Figure 1, it can be seen that the
wave has a slight set-down of 0.02 meters, and there is no apparent Stokes drift. Indeed, the tracer
drifts slightly seawards in one wave cycle.
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Figure 1: Left: Raw image of south cam showing sea surface, orange tracer and wave staff. Right: Tracer
positions (orange circles) and numerical approximation of particle trajectory (solid line) for a wave with
zero-crosssing period of T = 2.30s. All other measurements in meters. The gray circle shows the initial
position, and the black dot shows the final position. For the numerical approximation, the KdV equation is
used [6]. The right panel shows the projection onto the x− z plane (x for cross-shore direction, z for depth).
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Particle dynamics in pre-breaking waves
Tracking individual tracers in pre-breaking waves allows the testing of common wave-breaking
criteria such as the the kinematic criterion [4, 9, 10, 13] and other criteria [8, 14].

Time-averaged particle dynamics and nearshore circulation
There are a number of recent field campaigns and numerical simulations of wave-driven nearshore
circulations (see [2, 12] and references therein). Using a Boussinesq model, the nearshore wavefield
at the measurement site can be simulated, and velocity fields can be extracted. Numerical tracer
trajectories can be computed and compared to measurement data from the field campaign. Fair
agreement is obtained (see Figure 2).

Figure 2: Comparison between tracer paths (black curves) and Boussinesq simulations with a variety of
parameters defining tide level and spectrum of incoming wave field (likelihood of tracer in a given position
is given by the color bar). The plot shows a projection into the horizontal (cross-shore longshore plane).
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