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Abstract—This paper analyzes the robustness and timeliness
for cooperative lossy communications in unmanned aerial vehicle
(UAV) networks. The analytical framework consists of two steps:
1) calculating the outage probability, and 2) characterizing the
Age-of-Information (AoI) for a given outage probability. Initially,
we determine the outage probability based on the Shannon’s lossy
source-channel separation theorem. Numerical results indicate
that joint decoding reduces the outage probability, and the system
can achieve higher diversity order for less stringent distortion
requirement. Then, we derive a closed-form expression of the
lower bound on the average AoI for the communication system
where outage events are constrained to an acceptable level.
Moreover, we conduct a series of simulations for verifying the
lower bound on the average AoI and evaluating the impact of
UAV locations on the average AoI. It is demonstrated that the
lower bound is tight when the server utilization ratio is either
relatively busy or idle. For the case with a relatively large outage
probability, we propose an intermittent transmission scheme to
refine the AoI performance without extra energy consumption.
The effectiveness of the intermittent transmission scheme for
reducing the average AoI is verified by both the simulations
and the lower bound analysis.

Index Terms—Unmanned aerial vehicles, outage probability,
Age-of-Information, cooperative communications, lossy commu-
nications.

I. INTRODUCTION

It is universally acknowledged that unmanned aerial vehicles
(UAVs) have become an important part of Internet-of-Things
(IoT) infrastructure for supporting smart society [1]. In IoT
systems, UAVs can play versatile roles, such as providing
multiple access services [2]–[4], replenishing energy of IoT
devices [5], [6], and supporting computation offloading [7].
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Fig. 1. A UAV cooperative surveillance system for IoT applications.

When adopting UAVs in surveillance systems, compared to
the devices deployed at a solid location, UAVs can carry
cameras and sensors to collect richer information from various
altitudes and closer to the object over a rough terrain. For
example, Fig. 1 illustrates a typical implementation of UAVs in
cooperative operations. A surveillance center wants to monitor
the state of a remote object. Therefore, it relies on UAVs to de-
tect the object state conveniently and economically. To obtain
more information of the object and increase the robustness
of the surveillance system, multiple UAVs are deployed in
different locations for cooperative surveillance. Noticed that
the information collected by multiple UAVs is correlated for
the same object. Hence, the surveillance center can enhance
the system performance by cooperative communications, i.e.,
jointly utilizing the information uploaded from multiple UAVs.

However, there is an inevitable problem that vehicular
communications are not always reliable. Specifically, the
surveillance center may fail to reconstruct the object informa-
tion, if the UAVs transmit information under harsh channel
conditions. Fortunately, the final goal of IoT is to make
further decisions rather than recover the information itself.
As long as the decision is correct, the information is not
necessarily to be losslessly recovered. Thus, the lossy recovery
is still acceptable if its distortion is no larger than a specified
distortion requirement. Based on the above reality, cooperative
lossy communications in UAV networks are promising for IoT
applications.

In some cases, the IoT system may need to perform opera-
tions according to the object state. Intuitively, the appropriate-
ness of an operation is affected by the information freshness
of the object state. Conventional performance metrics for
timeliness, i.e., delay and latency, are static for each packet.
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Nonetheless, the information freshness of the object state
changes at different time point when the system performs an
operation. Therefore, we need a dynamic metric to indicate
the timeliness as time elapses. Age-of-Information (AoI) [8]
is such a performance metric that continuously characterizes
the dynamics of freshness of the object information. It has
been utilized in diverse communications and control systems,
especially for systems with stringent real-time requirements.
AoI is also becoming popular in various applications includ-
ing scheduling design [9], [10], updating policy design for
energy harvesting devices [11], [12], and trade-off between
sensing and communication [13]. Hence, we select AoI as the
performance metric to evaluate the timeliness of the system.
Moreover, since AoI is time-variant, the average AoI can better
reflect the system performance during a long time period.
Consequently, this paper aims at analyzing the average AoI
for cooperative lossy communications in UAV networks.

Definitely, AoI decreases as the surveillance center refresh
the state information of the object. As stated above, in IoT-
oriented cooperative lossy communications, the system de-
cision is reliable if the information recoveries in all links
satisfy the distortion requirements. Conversely, an outage event
occurs once the distortion requirements cannot be all satisfied.
In this case, the surveillance center fails to refresh the state
information of the object, resulting in AoI keeping increasing.
Thus, to analyze AoI for cooperative lossy communications in
UAV networks, we need to investigate the robustness of the
UAV communications by evaluating the outage probability for
the first step.

In the literature, we can find a lot of work related to the
calculation of the outage probability for cooperative com-
munication systems. Laneman et al. [14] derived the outage
probability for Rayleigh fading in a relaying system applying
diverse forwarding strategies. For lossy-forward (LF) relaying
systems [15], the outage probabilities over Rayleigh fading and
Nakagami-m fading were characterized by Zhou et al. [16] and
Qian et al. [17], respectively. Then, Lin et al. [18] extended
the results to the LF relaying systems with lossy information
reconstructed at the destination. Besides, Qian et al. compared
the LF strategy with the decode-and-forward (DF) and the
adaptive DF strategies for block Rayleigh fading in [19]. With
more than one source in the system, Lu et al. [20] analyzed the
outage probability of the orthogonal multiple-access relaying
systems suffering from block Rayleigh fading, provided that
intra-link errors occurred in the source-relay transmissions. Lin
et al. [21] conducted the outage probability analysis for lossy
communications with two sources and one helper over block
Rayleigh fading channels.

It is noticed that the results in the literature are based
on conventional fading models, e.g., original Rayleigh fad-
ing and Nakagami-m fading. However, the original Rayleigh
and Nakagami-m fading models are too simple for UAV
communications, and hence neither of the original fading
models is sufficiently accurate to describe the UAV channel
conditions. To analyze the performance of the cooperative
lossy communications in UAV networks, we need to conduct
derivations over UAV channels. As reported in [22], there are
large quantities of measurement campaigns for UAV channel

modeling. Consequently, we will select the appropriate UAV
channel model to calculate the outage probability in UAV
cooperative lossy communication systems, and further analyze
the AoI performance.

In the UAV cooperative surveillance system considered in
this paper, the update of the object state starts from the object
changing its state to the surveillance center recovering the
object information. Certainly, the start of the update is at
one time point, and so is the end of the update due to the
joint decoding scheme in the surveillance center. Even though
there are two links for information transmission in the system,
there is only one update. Hence, from the view of the whole
system, the update process can be equivalently regarded as a
queueing process with only one queue and one server. If a
new update arrives when the whole system is busy, it has to
wait until the system finishes processing the previous update.
We further assume that the change of the object state follows
a Poisson process, while the service time of the whole system
follows the exponential distribution. Consequently, this system
is equivalent to an M/M/1 system with the first-come-first-
served (FCFS) scheme, i.e., a typical queueing model. Here,
M/M/· indicates Poison arrival and exponential service time
distributions.

Generally, the queueing model described by “A/S/NS /NB”
is interpreted as follows. “A” and “S” represent the arrival and
service processes. The symbol “M” specifies the process with
Poisson arrivals or exponential service times, and the symbol
“D” denotes the process with a deterministic distribution. NS
stands for the number of servers. NB is the buffer size of the
queue. If not specified, NB is assumed to be infinite.

To date, there are already numerous research achievements
with respect to AoI. Early in 2011, Kaul et al. [23] intro-
duced the concept of AoI to optimize the freshness of state
information in a vehicular network adopting the IEEE 802.11
protocol. Then, Kaul et al. presented the fundamental charac-
terizations with regard to AoI in [24], [25]. They determined
the average AoI for M/M/1, M/D/1, and D/M/1 systems with
the FCFS scheme in [24]. Subsequently, in [25], the average
AoI of M/M/1 systems using the last-come-first-served (LCFS)
scheme was investigated for the cases that a new arrived packet
can or cannot pre-empt the currently served packet. For the
AoI analysis in UAV networks, Han et al. [26] calculated
the average AoI for successfully transmitted packets in UAV-
aided IoT networks, which was modeled as the M/M/1 system
with the FCFS scheme. Ahani et al. [27] designed a route
scheduling algorithm for a UAV with limited battery capacity
to minimize the average overall AoI. In [28], Abd-Elmagid and
Dhillon minimized the average peak AoI in an IoT network
with a UAV relay.

Note that the work shown above implicitly assumes that
the communication channels are all reliable in the system.
Indubitably, vehicular communications are not always reli-
able, and the occurrence of an outage event will affect the
AoI because a renewal of information is missed. Hence, the
above work is not suitable for the performance analysis of
cooperative lossy communications in UAV networks. In the
literature, there is some research work taking packet errors into
consideration for AoI analysis as exemplified below. Chen and
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Huang [29] derived the peak AoI for the M/M/1 system with
the FCFS or LCFS scheme. Zhang et al. [30] considered AoI
with a successful sensing probability for optimizing sensing
and transmission time in a cellular Internet of UAVs. Gu et al.
[31] characterized both the average AoI and the average peak
AoI for the IoT monitoring system with truncated automatic
repeat request scheme. Gu et al. [32] also analyzed the average
peak AoI of both the primary IoT system and the secondary
IoT system in an overlay or underlay scheme. Nevertheless,
identifying the average AoI for the M/M/1 system with the
FCFS scheme under the constraint of certain packet errors
has not been finished yet.

In brief, the analytical framework of cooperative lossy com-
munications in UAV networks consists of the following two
steps: 1) calculating the outage probability for the system, and
2) determining the average AoI for a given outage probability.
The contributions of this paper are summarized as follows:

• We establish the analytical framework for the outage
probability and the average AoI of cooperative lossy
communications in UAV networks. When calculating the
outage probability, it is difficult to directly determine
the signal-to-noise ratio (SNR) thresholds for satisfying
distortion requirements in cooperative communications.
We solve this problem by formulating an equivalent mul-
titerminal source coding problem based on the Shannon’s
lossy source-channel separation theorem [33], [34].

• We derive a lower bound on the average AoI for the
M/M/1 system with the FCFS scheme and accepting
outage events. Specifically, we start from two extreme
cases, i.e., the idle and busy cases, and then combine the
results from the two cases together to obtain a relatively
tight lower bound on the average AoI.

• We conduct a series of simulations to compare the lower
bound with the exact AoI. The curves of the lower bound
and the simulation results have very small differences
when the system is either relatively busy or idle.

• To refine the AoI performance, we propose an intermittent
transmission scheme to reduce the average AoI when
the outage probability is relatively large. The principle
is to allocate more energy to reduce the outage proba-
bility rather than increase the updating frequency, if the
relatively large outage probability becomes the dominant
factor of AoI. Both the simulation results and the lower
bound verify that intermittent transmission can reduce the
average AoI without additional energy consumption.

• We evaluate the impact on AoI due to different UAV
locations based on a practical scenario. The results show
that the average AoI keeps at a low level if the UAVs are
located within a specific range, while it rapidly increases
if the UAVs move outside of the specific range.

The rest of this paper is organized as follows. Section II
describes the system model and the channel model of the UAV
cooperative surveillance system in detail. Section III analyzes
the outage probability, and Section IV further derives a lower
bound of the average AoI. The lower bound is compared with
simulation results in Section V. Finally, we conclude this work
in Section VI.

Throughout this paper, we use the standard notation rules
as follows. The random variables and their realizations are
denoted by uppercase and lowercase letters, respectively. Cal-
ligraphic letters X and R denote the corresponding finite sets.
The base of logarithm function log(·) is assumed to be 2 unless
specified.

II. PROBLEM STATEMENT

We present first the details of the communication model
for the UAV cooperative surveillance system in Section II-A.
Then, Section II-B and Section II-C introduce the correspond-
ing multiterminal source coding problem and the channel
model, respectively, for deriving the outage probability.

A. System Model

As depicted in Fig. 1, the simplest scenario of the UAV
cooperative surveillance system consists of one object, two
UAVs and one surveillance center. The UAVs are deployed
in different locations to monitor the same object, whose state
changes randomly. Once the UAVs detect the change of the
object state, they separately collect the object information and
upload it to the surveillance center. Since the UAVs monitor
the same object, correlation exists in the object information
collected by the UAVs. Therefore, the surveillance center
is able to minimize the distortion of the object information
by jointly decoding after receiving the signals from multiple
UAVs.

However, when suffering from the channel fading, the
transmissions in UAV communication systems are not always
reliable. Therefore, the recoveries of the object information
may contain distortions if the channel condition is not suf-
ficiently good. Notice that the goal of the IoT system is
not only to recover the object information, but also to make
some decisions and consequent operations. It means that the
distortions are acceptable as long as the surveillance center
can still make correct inference. The maximum acceptable
distortions are given by the distortion requirements (D1, D2)
for two links. Once either of the distortion requirements cannot
be satisfied, the recoveries are discarded and an outage event
occurs. In this case, the surveillance center has to utilize the
previous acceptable recoveries for making further decisions.
Certainly, the decision may be not sufficiently appropriate due
to the reduction of the information freshness for the object
state.

For the purpose of dynamically evaluating the information
freshness in the system, AoI is introduced and defined as the
elapsed time of the latest served update from the generation
of the update. In the UAV cooperative lossy communication
system, AoI fails in updating and keeps increasing if an outage
event occurs. In order to analyze AoI of the system illustrated
in Fig. 1, we need to evaluate the outage probability for the
first step, and then derive the AoI for a specified value of the
outage probability.

The conventional way to calculate the outage probability is
to determine the instantaneous SNR of the received signals
for given channel gains. Subsequently, the outage probability
is calculated by the integral with respect to the instantaneous
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Fig. 2. The multiterminal source coding problem for outage probability
analysis.

SNR distribution that cannot achieve the threshold for success-
ful decoding. However, in cooperative communication systems
with correlated sources, it is not easy to directly determine the
SNR thresholds according to specified distortion requirements.

To solve the problem of determining the SNR thresholds, we
utilize a two-step method to equivalently derive the relation-
ship between the instantaneous SNR and the final distortions.
Initially, given an instantaneous SNR, we can calculate the cor-
responding achievable rate. Then, the transmitter compresses
the information at the code rate satisfying the instantaneous
achievable rate. The distortions can be evaluated by solving
a multiterminal source coding problem. Based on the Shan-
non’s lossy source-channel separation theorem, we will finally
establish the relationship between the instantaneous SNRs and
the distortions. Conversely, given the distortion requirements,
we will determine the achievable link rates and further obtain
the SNR thresholds.

B. Multiterminal Source Coding Problem

Fig. 2 illustrates the multiterminal source coding problem
corresponding to the UAV cooperative surveillance system.
There is a common source Xn separately observed by two
encoders while suffering from random noise processes Zn1
and Zn2 , where n denotes the sequence length. In practi-
cal systems, it is reasonable to assume that the source is
Gaussian. Consequently, the observations Xn

1 and Xn
2 can

be regarded as two correlated Gaussian sources1. Then, two
distributed encoders compress the observations Xn

1 and Xn
2

into two codewords M1 and M2 at the code rates R1 and
R2, respectively. Since the source is Gaussian, the encoder
quantizes the observation and then maps it into a codeword
taking values in a finite alphabet. Therefore, the code rates can
be larger than 1. After receiving two codewords M1 and M2,
the joint decoder recovers the estimates of two observations
as X̂n

1 and X̂n
2 by exploiting the correlations between the

observations. Constrained by the link rates, the recovered
signals X̂n

1 and X̂n
2 may not be lossless, and hence, the

distortion measure di : Xi × X̂i 7→ [0,∞) for i ∈ {1, 2} is
defined to describe the distortion degree between two symbols
xi and x̂i. Furthermore, the average distortion of the whole

1In essence, the system is a special case of communications with correlated
sources, and hence we can design the encoder and the joint decoder for
practical implemetations according to [35].

sequence is defined as

di(x
n
i , x̂

n
i ) =

1

n

n∑
t=1

di(xi(t), x̂i(t)). (1)

In general, the distortion is evaluated by quadratic (squared
error) distortion measure dQ,i(xi, x̂i) = (xi − x̂i)2 for Gaus-
sian sources. Given the distortion requirements (D1, D2), the
achievable rate-distortion region R(D1, D2), which consists
of all achievable rate pairs (R1, R2), is defined as

R(D1, D2)

=
{

(R1, R2) : (R1, R2) is admissible such that
lim
n→∞

E(di(x
n
i , x̂

n
i )) ≤ Di + ε,

for i = 1, 2, and any ε > 0
}
. (2)

The achievable rate-distortion region establishes the connec-
tion between the link rates and the distortions.

C. Channel Model

In order to characterize the channel conditions and further
determine the constraints on link rates, we have to select
the appropriate channel models. Since the distortions are
defined between Xn

i and X̂n
i , we only need to consider the

channels from the UAV to the surveillance center, i.e., typical
air–to–ground (A2G) channels. We further assume that the
A2G channel conditions depend on the elevation angle of the
UAV and the impact of environment including line-of-sight
(LoS) and non-LoS (NLoS) conditions. According to [36, Eq.
(2)], given the transmission power PUAV,i of the i-th UAV, the
power of the i-th signal received in the surveillance center can
be expressed as

PSC,i =
PUAV,i|g|2

PLi
, (3)

where |g|2 is the fading gain, and PLi stands for the A2G
propagation path-loss. The path-loss in dB is given by [37]

PLi(dB) = 10 log10 PLi =
ηLoS − ηNLoS

1 + ae−b(θi−a)
+ ξi, (4)

where ηLoS, ηNLoS, a and b are the environmental parameters.
θi = arctan

(
hi

si

)
is the elevation angle, with hi being

the altitude of the i-th UAV, and si being the horizontal
distance between the i-th UAV and the surveillance center.
Furthermore,

ξi = 20 log10

(
4πfidSC,i

c

)
+ ηNLoS, (5)

where dSC,i =
√
s2
i + h2

i is the distance between the i-th UAV
and the surveillance center. fi is the carrier frequency for i-th
UAV, and c is the speed of light.

We assume that two UAVs utilize different carrier frequency
for communications. Let N0 be the noise power spectral
density of the thermal additive Gaussian noise in the receiver.
Then, the instantaneous SNR in each link can be calculated
by

γi =
PSC,i

N0
=
PUAV,i|g|2

N0 · PLi
. (6)



5

Hereafter, we consider the average fading power normalized
to unity or E(|g|2) = 1. Thereby, the average SNR in each
link is

γi =
PUAV,i

N0 · PLi
, (7)

and we have |g|2 = γi
γi

for the instantaneous channel
power gain. As summarized in [22], many measurement cam-
paigns demonstrate that the Nakagami-m model characterizes
the UAV fading channel well. Consequently, we apply the
Nakagami-m model to |g|2, and, hence, the probability density
function (PDF) of |g|2 follows the Gamma distribution. Then,
it is easy to derive the PDF of γi as

p(γi) =
mmγm−1

i

γmi Γ(m)
exp

(
−mγi

γi

)
, (8)

where Γ(·) represents the Gamma function [38, Eq. (4-35)].

III. OUTAGE PROBABILITY ANALYSIS

To begin with, Section III-A analyzes the condition for the
occurrence of an outage event, and then presents the derivation
results of the outage probability. The numerical results of the
outage probability are further discussed in Section III-B.

A. Outage Probability Derivation

Consider two correlated Gaussian sources with covariance
matrix

Λ =

(
σ2

1 qσ1σ2

qσ1σ2 σ2
2

)
, (9)

where σ2
i is the variance of the i-th Gaussian source, and q

represents the correlation degree of two sources. The achiev-
able rate-distortion region is the set of rate pairs (R1, R2) such
that [39]

R1 ≥ ϕ1(R2), (10)
R2 ≥ ϕ2(R1), (11)

R1 +R2 ≥ ψ, (12)

where

ϕi(Rj) =
1

2
log+

[
σ2
i

Di

(
1− q2 + q22−2Rj

)]
, (13)

ψ =
1

2
log+

[(
1− q2

) βσ2
1σ

2
2

2D1D2

]
, (14)

for i ∈ {1, 2}, j = {1, 2}\i, with log+(·) = max{log(·), 0}
and

β = 1 +

√
1 +

4q2D1D2

(1− q2)2σ2
1σ

2
2

. (15)

According to the Shannon’s lossy source-channel separa-
tion theorem, the distortions remain below the given values
(D1, D2) if [40, Theorem 3.7]

Ri ≤ Θi(γi) =
C(γi)

ri
, for i = 1, 2, (16)
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Fig. 3. Achievable rate-distortion region and outage region.

where C(γi) is the Shannon capacity using the Gaussian
codebook, and ri represents the end-to-end rates of joint
source-channel coding.

Fig. 3 illustrates the achievable rate-distortion region for
two Gaussian sources. In order to clearly display the shape
of the achievable rate-distortion region, we set q = 0.6,
σ1 = σ2 = 0.8 and D1 = D2 = 0.2 as an example. Obviously,
an outage event occurs once the rate pair (R1, R2) falls outside
of the achievable rate-distortion region, and hence the outage
region is the area outside of the achievable rate-distortion
region. Since the instantaneous channel capacities are random
variables, the outage probability is the expected value with
respect to the link rates supported by the instantaneous channel
capacities. To facilitate the integral calculation of outage
probability, the outage region is divided into four sub-regions
as:

A1 = {0 ≤ R1 < ϕ1(R2), R∗2 ≤ R2}, (17)
A2 = {0 ≤ R1 < ψ −R2, ψ −R∗1 ≤ R2 < R∗2}, (18)
A3 = {0 ≤ R1 < R∗1, 0 ≤ R2 < ψ −R∗1}, (19)
A4 = {R∗1 ≤ R1, 0 ≤ R2 < ϕ2(R1)}, (20)

where (R∗1, ψ − R∗1) and (ψ − R∗2, R∗2) are the corner points
to the achievable rate-distortion region, and hence R∗i is the
solution of ψ − ϕj(Ri) − Ri = 0. Therefore, the outage
probability for the UAV cooperative surveillance system can
be calculated by

Pout =

4∑
k=1

Pk, (21)

where Pk represents the outage probability for sub-region Ak.
The derivation results of Pk are

P1 =
Γ
(
m, mγ2

Θ−1
2 (R∗2)

)
Γ(m)

− mm

γm2 [Γ(m)]
2

∫ ∞
Θ−1

2 (R∗2)

γm−1
2

· exp

(
−mγ2

γ2

)
Γ

(
m,

m

γ1

Θ−1
1 (ϕ1)

)
dγ2, (22)



6

P2 =
Γ
(
m, mγ2

Θ−1
2 (ψ −R∗1)

)
− Γ

(
m, mγ2

Θ−1
2 (R∗2)

)
Γ(m)

− mm

γm2 [Γ(m)]
2

∫ Θ−1
2 (R∗2)

Θ−1
2 (ψ−R∗1)

γm−1
2 exp

(
−mγ2

γ2

)
· Γ
(
m,

m

γ1

Θ−1
1 [ψ −Θ2(γ2)]

)
dγ2, (23)

P3 =

1−
Γ
(
m, mγ1

Θ−1
1 (R∗1)

)
Γ(m)


·

1−
Γ
(
m, mγ2

Θ−1
2 (ψ −R∗1)

)
Γ(m)

 , (24)

P4 =
Γ
(
m, mγ1

Θ−1
1 (R∗1)

)
Γ(m)

− mm

γm1 [Γ(m)]
2

∫ ∞
Θ−1

1 (R∗1)

γm−1
1

· exp

(
−mγ1

γ1

)
Γ

(
m,

m

γ2

Θ−1
2 (ϕ2)

)
dγ1, (25)

where Γ(·, ·) stands for the upper incomplete gamma function.
The detailed derivations of Pk are presented in Appendix A.
Notice that ϕ1(R2) defined in (13) is a function of R2 and
hence also a function of γ2. Therefore, it is difficult to further
derive a closed-form solution from (22). Instead, we will show
the numerical results later to discuss the impact on the outage
probability due to different parameter settings.

B. Numerical Results

For the comparison of performance gain between joint
decoding and separate decoding, the outage probability of
separate decoding is derived as follows.

The rate-distortion function for a Gaussian source Xi ∼
N(0, σ2

i ) is [41, Theorem 10.3.2]

Ri(Di) =
1

2
log+(

σ2
i

Di
). (26)

Thus, the outage event does not occur only when the instan-
taneous channel capacities are no less than Ri(Di) in both
links. Based on the Shannon’s lossy source-channel separation
theorem, the outage probability of separate decoding can be
calculated as

P S
out = 1−

∫ ∞
Θ−1

1 [R1(D1)]

p(γ1)dγ1 ·
∫ ∞

Θ−1
2 [R2(D2)]

p(γ2)dγ2

= 1−
Γ
(
m, mγ1

Θ−1
1

[
1
2 log+

(
σ2
1

D1

)])
Γ(m)

·
Γ
(
m, mγ2

Θ−1
2

[
1
2 log+

(
σ2
2

D2

)])
Γ(m)

. (27)

Fig. 4 presents the numerical results of the outage prob-
ability for cooperative communications with two correlated
Gaussian sources. Clearly, the outage probability is reduced by
joint decoding for correlated sources with arbitrary correlation
degree. There is no doubt that the outage event occurs less
frequently if the distortion requirements become less strict, i.e.,
Di increases. By comparing Fig. 4(a) and Fig. 4(b), we can
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(a) q = 0.4.

0 5 10 15 20
10

-8

10
-6

10
-4

10
-2

10
0

(6.3, 0.8046)

(9.3, 0.3699)

(b) q = 0.8.

Fig. 4. Outage probability for cooperative communications, where m = 2,
σ1 = σ2 = 1 and r1 = r2 = 1.

find that the more correlated the sources are, i.e., q is larger,
the lower the outage probability can be. Interestingly, joint
decoding also increases the diversity order, which is influenced
by both the correlation degree and the distortion requirements.
As shown in Fig. 4(a), the slopes of curves obviously change
from Di = 0.7 to 0.9, and hence, the system with less
strict distortion requirements can obtain more diversity gains.
However, it is found that the obvious diversity gains appear
from Di = 0.1 to 0.3 and also 0.3 to 0.5 in Fig. 4(b). This
observation demonstrates that it is easier to obtain diversity
gains with more correlated sources. In addition, we can
observe that the performance gains from Di = 0.1 to 0.3 and
from Di = 0.7 to 0.9 are larger than that from Di = 0.3 to
0.5 and from Di = 0.5 to 0.7. The reason for this observation
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Fig. 5. The AoI when outage events occur.

is explained as follows. The distortion requirement determines
the SNR threshold for successful transmissions, and the SNR
threshold further determines the outage probability. Since the
rate-distortion function is convex, the required rate decreases
fast as the distortion requirement becomes less stringent for a
small range of Di, resulting in a7 significant reduction of the
SNR threshold. Hence, the outage probability also decreases
fast as a relatively small Di increases. When Di is relatively
large, although the SNR threshold becomes very small and
does not significantly change, the outage probability reduces
fast as the small SNR threshold decreases. Consequently,
the performance gain is more obvious when the distortion
requirement is relatively small or relatively large.

IV. AOI ANALYSIS

Section IV-A first presents the general analytical framework
of the average AoI for a given value of outage probability.
Then, in Section IV-B, we consider the average AoI analysis
for two extreme cases as follows:
• Busy case: The queue is never empty and the system

continuously serves the updates without break.
• Idle case: The queue is always empty and the system

must have a break after serving an update.
We find that the results of these two cases provide the lower
bounds on the average AoI. Therefore, we finally obtain a
relatively tight lower bound by combining the lower bounds
for busy and idle cases together.

A. General Analytical Framework

As stated above, this system can be regarded as an M/M/1
System with the FCFS scheme. Fig. 5 illustrates the AoI in
the general case that outage events occur k times continuously.
Assume that the i-th update is generated at the time ti and the
service completed at t′i. Then, Yi is the interarrival between the
(i− 1)-th and the i-th updates, i.e., Yi = ti− ti−1. Moreover,
Ti is the time for the i-th update staying at the system, i.e., the

system time corresponding to the sum of the queue waiting
time Wi and service time Si. Therefore, we have Ti = t′i−ti =
Wi + Si, and Wi = (Ti−1 − Yi)+. The update is generated
and served at mean rate λ and µ, respectively, and hence, the
server utilization ratio is ρ = λ

µ . The AoI ∆(t) is the time
elapsed from the generation of the last served update, and the
average AoI for an interval (0, T ) is defined as

∆ =
1

T

∫ T
0

∆(t)dt, (28)

where the integral can be calculated by the area under ∆(t).
In Fig. 5, the outage events occur from the i-th update at t′i

to the (i+k−1)-th update at t′i+k−1, and the (i+k)-th update
is successful at t′i+k. Obviously, the AoI keeps increasing if
an outage event occurs. Given the outage probability Pout,
the probability of outage events occurring exactly k times
continuously is P kout(1−Pout), where P kout means that the outage
events occur at the previous k transmissions and (1 − Pout)
means no outage event at the (k + 1)-th transmission. Let
∆(k) represent the average AoI for outage events occurring
k times continuously. For a sufficiently large number NT of
transmissions, the total area under ∆(t) is

∞∑
k=0

NTP
k
out(1− Pout) · (k + 1)E[Y ]∆(k), (29)

and the total time is
∞∑
k=0

NTP
k
out(1− Pout) · (k + 1)E[Y ]. (30)

Hence, the average AoI can be calculated by the total area
under ∆(t) averaged by the total time, i.e.,

∆ =

∑∞
k=0 P

k
out(1− Pout)(k + 1)∆(k)∑∞

k=0 P
k
out(1− Pout)(k + 1)

. (31)

It is clear that ∆(0) is the same as the original AoI for
completely reliable communications without outage, i.e., [8,
Eq. (2.11)-(2.12)]

∆(0) =
E[(Y + T )2]− E[T 2]

2E[Y ]

=
1

µ

(
1 +

1

ρ
+

ρ2

1− ρ

)
. (32)

For ∆(k) with general value of k, since the i-th to the (i +

k− 1)-th updates are lost, we can set two new variables Ỹi =∑i+k
j=i Yj and T̃i = Ti+k. Then, the calculation of AoI follows

the same form as ∆(0), i.e., we have

∆(k) =
E[(Ỹi + T̃i)

2]− E[T̃ 2
i ]

2E[Ỹi]
. (33)

B. Lower Bounds on AoI

Since the queue gradually changes from busy to idle as the
server utilization ratio ρ decreases from 1 to 0, the busy and
idle cases are two extreme cases for ρ = 1 and 0, respectively.
Based on the systems in busy and idle cases, we can derive
two lower bounds of ∆(k) as follows.
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Proposition 1 (busy case): ∆(k) is lower bounded by

∆(k) ≥ ∆B
(k)

=
1− ρ

2µρk(k + 1)

 2

(1− ρ)3
−

k∑
j=0

ρj(j + 2)(j + 1)


− ρ

µ(1− ρ)2(k + 1)
, (34)

which asymptotically approaches ∆(k) as ρ→ 1.
Proposition 2 (idle case): ∆(k) is lower bounded by

∆(k) ≥ ∆I
(k) =

1

λ
+

k

2λ
+

1

µ
, (35)

which asymptotically approaches ∆(k) as ρ→ 0.
The proofs of Proposition 1 and Proposition 2 are presented

in Appendix B and Appendix C, respectively. Now, we verify
the lower bounds by numerical results. Consider the simplest
case that k = 0, i.e., no outage event occurs, and then the
lower bounds of ∆(0) can be obtained as

∆B
(0) =

ρ(2− ρ)

µ(1− ρ)
, for busy case, (36)

∆I
(0) =

1

λ
+

1

µ
, for idle case. (37)

Fig. 6(a) compares the lower bound for busy case with the
exact AoI ∆(0) presented in (32). Clearly, the lower bound is
always below the exact AoI for arbitrary ρ and µ. Moreover,
the lower bound and the exact value of AoI asymptotically
converge together as ρ tends to 1. This observation matches
our intuition that the system becomes busier with larger ρ, and
hence the total service time in (43) becomes closer to (ỹi+ t̃i).
Consequently, we can use the lower bound for busy case to
approximate AoI when ρ is relatively large.

On the other hand, the lower bound for idle case is compared
with the exact AoI in Fig. 6(b). It is found that the lower
bound and the exact AoI start from the same point when
ρ is extremely small. This observation is understood in the
following way: the queue will be almost empty if ρ decreases
to a relatively small value, and hence the zero waiting time
exactly matches the condition for deriving ∆I

(k). Opposite to
Fig. 6(a), the gap between the lower bound and the exact AoI
extends as ρ goes larger. Inspired by the different tendency
between Fig. 6(a) and Fig. 6(b), we combine the lower bounds
for two cases together and obtain a more accurate lower bound,
i.e.,

Proposition 3: ∆(k) is lower bounded by

∆(k) ≥ ∆LB
(k) = max

(
∆B

(k),∆
I
(k)

)
. (38)

Finally, we can substitute (38) into (31) to calculate the lower
bound of the average AoI in the communication system where
outage events occur.

V. SIMULATIONS

In order to evaluate how precise the lower bound is, we have
conducted a series of simulations to measure the exact AoI.
Fig. 7 illustrates the simulation results and the corresponding
lower bound. Although there is a gap between the lower bound
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(a) Busy case.
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(b) Idle case.

Fig. 6. The exact value versus the lower bound of ∆(0).

and the simulation result, they have imperceptible differences
when ρ ≤ 0.4 or ρ ≥ 0.9. From the comparison between
Fig. 7(a) and Fig. 7(b), we can make a conclusion that the
stronger the service ability, i.e., larger µ, the smaller the gap. In
addition, the gap between the lower bound and the simulation
result increases with larger outage probability Pout. Because
the outage event occurs more frequently for larger Pout, and
more updates are contained in a greater number of continuous
outage events. Consequently, the deviation resulting from the
idle time and the waiting time also increases for continuous
updates. This implies that it may not be sufficiently accurate
to estimate the exact AoI by the lower bound for large Pout.
Nevertheless, notice that the gap for Pout = 0.5 is still
tolerable. Actually, Pout = 0.5 for practical systems is a quite
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Fig. 7. The comparison between the relatively tight lower bound and
simulation results.

large outage probability which means half of the transmis-
sions failed. Therefore, for such an unreliable communication
system with large Pout, the performance refinement should
focus more on how to reduce the outage probability. A simple
method is to skip some transmissions and accumulate more
energy to the rest of transmissions. By this means, we can
reduce the outage probability for the transmitted updates and
consume the same energy in total. In the following, we are
going to show an interesting instance that the average AoI
can be reduced with the same total energy consumption by
the intermittent transmission scheme.

We consider the case with the correlation degree q = 0.8
and the distortion requirements D1 = D2 = 0.1. From
Fig. 4(b), we can find that the outage probabilities are approx-
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Fig. 8. Refinement of AoI performance.

imately 0.8046 and 0.3699 for γi equal to 6.3 dB and 9.3 dB,
respectively. For two continuous updates, the UAV can use two
times the power (+3 dB) for transmitting only one update and
ignoring the next update. By this means, the outage probability
can be reduced from 0.8046 to 0.3699, while keeping the total
energy consumption unchanged. Then, the equivalent arrival
rate for Pout = 0.3699 reduces to half, and the equivalent
server utilization ratio becomes ρ′ = ρ/2. Fig. 8 depicts the
average AoI curves with respect to ρ and ρ′ for Pout equal
to 0.8046 and 0.3699, respectively. Clearly, the curve with ρ′

for Pout = 0.3699 is below that with ρ for Pout = 0.8046.
Thus, both the simulation result and the lower bound verify
that the AoI can be refined to a lower level without extra
energy consumption by intermittently transmitting the updates
for a relatively large outage probability. Moreover, the actual
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Fig. 9. The average AoI for different UAV locations with µ = 5.

performance gain will be more if we perform refinement based
on the lower bound, due to the extension of the gap between
the lower bound and the exact AoI as Pout increases.

Based on practical parameter settings, we evaluate the effect
on the average AoI due to different UAV locations. Assume
that the surveillance system is deployed at suburban areas,
where the channel conditions are dominated by the impact of
environment. Therefore, the average SNR is calculated by (7),
and the parameters for calculating path-loss at suburban are
(ηLoS, ηNLoS, a, b) = (0.1, 21, 4.88, 0.43) [22, Table V]. The
altitudes hi of UAVs keep at 500 m while their distances si
from the surveillance center change from 100 m to 2000 m.
In order to compare the tendencies of the average AoI and the
outage probability, we plot the curves in a two-dimensional
plane by setting si at the same value. If the distances from
the surveillance center to the UAVs are different, we can also
obtain similar conclusions. Although the UAV locations may
affect the correlation degree between the information collected
by different UAVs, we assume that the correlation degree stays
the same at q = 0.8 for simplicity. We set the distortion
requirements Di = 0.1 and the UAV transmission power
PUAV,i = 0.5 W. From [42, Eq. (4.2.4)], the thermal noise
power is −174 dBm/Hz at the room temperature. The carrier
frequencies for two UAVs are set at f1 = 2 GHz and f2 = 1.99
GHz, respectively. Let the bandwidth be 10 MHz, and we can
obtain N0 = 3.9811 × 10−14 W. As shown in Fig. 9, the
average AoI increases obviously when si > 800 m where
Pout > 0.1, due to the rapid increase of outage probability. On
the contrary, below the 800 m distance range, the system can
keep low level of the average AoI. Moreover, the gap between
the lower bound and the exact AoI enlarges only when ρ = 0.8
and Pout > 0.1.

VI. CONCLUSION

We have established an analytical framework for the outage
probability and the average AoI of cooperative lossy com-

munications in UAV networks. The analytical framework was
applied to a UAV cooperative surveillance system for instance.
To begin with, we formulated the UAV cooperative surveil-
lance system as a multiterminal source coding problem, and
then calculated the outage probability based on the Shannon’s
lossy source-channel separation theorem. The numerical re-
sults verify that the outage probability decreases in cooperative
communication systems by joint decoding, and we can observe
the diversity gain for relatively large distortion requirements.
Subsequently, given a specific value of outage probability, we
further derived two lower bounds on the average AoI for the
system dominated by the busy and idle states. By combining
the lower bounds for the busy and idle cases together, we
obtained a more accurate lower bound on the average AoI.
Finally, we compared the lower bound with the exact value of
AoI by simulations. The simulation results showed that the gap
between the lower bound and the exact AoI is imperceptible
for relatively busy or idle systems. Moreover, the gap still
seems tolerable even for quite large outage probability values
in practical systems, i.e., up to Pout = 0.5, which is well suffi-
cient for practical system performance evaluations. Therefore,
we proposed an intermittent transmission scheme to reduce
the outage probability while keeping the same total energy
consumption. Interestingly, the system can thereby achieve a
lower level of both the outage probability and the average
AoI without consuming extra energy. We also implemented
the analytical framework with practical parameter settings to
evaluate the impact on the average AoI due to the change of the
UAV locations. Besides UAV cooperative surveillance systems,
the framework for the AoI analysis can be also implemented in
other multiterminal communication systems accepting outage
events. In the future, we are going to apply the analytical
framework of the outage probability and the average AoI for
correlated fading channels.

APPENDIX A
DERIVATIONS OF Pk

The calculations of Pk are presented as follows.

P1 = Pr{A1}
= Pr{0 ≤ R1 < ϕ1, R

∗
2 ≤ R2}

= Pr{0 ≤ Θ1(γ1) < ϕ1, R
∗
2 ≤ Θ2(γ2)}

= Pr{Θ−1
1 (0) ≤ γ1 < Θ−1

1 (ϕ1),Θ−1
2 (R∗2) ≤ γ2}

= Pr{0 ≤ γ1 < Θ−1
1 (ϕ1),Θ−1

2 (R∗2) ≤ γ2}

=

∫ ∞
Θ−1

2 (R∗2)

dγ2

∫ Θ−1
1 (ϕ1)

0

p(γ2)p(γ1)dγ1

=

∫ ∞
Θ−1

2 (R∗2)

dγ2

∫ Θ−1
1 (ϕ1)

0

p(γ2)
mmγm−1

1

γm1 Γ(m)

· exp

(
−mγ1

γ1

)
dγ1

=

∫ ∞
Θ−1

2 (R∗2)

p(γ2)

1−
Γ
(
m, mγ1

Θ−1
1 (ϕ1)

)
Γ(m)

 dγ2 (39)

=
Γ
(
m, mγ2

Θ−1
2 (R∗2)

)
Γ(m)

− mm

γm2 [Γ(m)]
2

∫ ∞
Θ−1

2 (R∗2)

γm−1
2
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· exp

(
−mγ2

γ2

)
Γ

(
m,

m

γ1

Θ−1
1 (ϕ1)

)
dγ2, (40)

where (39) follows according to [43, Eq. (3.381.3)].

P2 = Pr{A2}
= Pr{0 ≤ R1 < ψ −R2, ψ −R∗1 ≤ R2 < R∗2}
= Pr{0 ≤ Θ1(γ1) < ψ −Θ2(γ2),

ψ −R∗1 ≤ Θ2(γ2) < R∗2}
= Pr{Θ−1

1 (0) ≤ γ1 < Θ−1
1 [ψ −Θ2(γ2)],

Θ−1
2 (ψ −R∗1) ≤ γ2 < Θ−1

2 (R∗2)}
= Pr{0 ≤ γ1 < Θ−1

1 [ψ −Θ2(γ2)],

Θ−1
2 (ψ −R∗1) ≤ γ2 < Θ−1

2 (R∗2)}

=

∫ Θ−1
2 (R∗2)

Θ−1
2 (ψ−R∗1)

dγ2

∫ Θ−1
1 [ψ−Θ2(γ2)]

0

p(γ2)p(γ1)dγ1

=

∫ Θ−1
2 (R∗2)

Θ−1
2 (ψ−R∗1)

dγ2

∫ Θ−1
1 [ψ−Θ2(γ2)]

0

p(γ2)
mmγm−1

1

γm1 Γ(m)

· exp

(
−mγ1

γ1

)
dγ1

=

∫ Θ−1
2 (R∗2)

Θ−1
2 (ψ−R∗1)

p(γ2)

·

1−
Γ
(
m, mγ1

Θ−1
1 [ψ −Θ2(γ2)]

)
Γ(m)

 dγ2

=
Γ
(
m, mγ2

Θ−1
2 (ψ −R∗1)

)
− Γ

(
m, mγ2

Θ−1
2 (R∗2)

)
Γ(m)

− mm

γm2 [Γ(m)]
2

∫ Θ−1
2 (R∗2)

Θ−1
2 (ψ−R∗1)

γm−1
2 exp

(
−mγ2

γ2

)
· Γ
(
m,

m

γ1

Θ−1
1 [ψ −Θ2(γ2)]

)
dγ2. (41)

P3 = Pr{A3}
= Pr{0 ≤ R1 < R∗1, 0 ≤ R2 < ψ −R∗1}
= Pr{0 ≤ Θ1(γ1) < R∗1, 0 ≤ Θ2(γ2) < ψ −R∗1}
= Pr{Θ−1

1 (0) ≤ γ1 < Θ−1
1 (R∗1),

Θ−1
2 (0) ≤ γ2 < Θ−1

2 (ψ −R∗1)}
= Pr{0 ≤ γ1 < Θ−1

1 (R∗1), 0 ≤ γ2 < Θ−1
2 (ψ −R∗1)}

=

∫ Θ−1
2 (ψ−R∗1)

0

dγ2

∫ Θ−1
1 (R∗1)

0

p(γ2)p(γ1)dγ1

=

∫ Θ−1
2 (ψ−R∗1)

0

dγ2

∫ Θ−1
1 (R∗1)

0

p(γ2)
mmγm−1

1

γm1 Γ(m)

· exp

(
−mγ1

γ1

)
dγ1

=

1−
Γ
(
m, mγ1

Θ−1
1 (R∗1)

)
Γ(m)

 · ∫ Θ−1
2 (ψ−R∗1)

0

p(γ2)dγ2

=

1−
Γ
(
m, mγ1

Θ−1
1 (R∗1)

)
Γ(m)



t
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·

1−
Γ
(
m, mγ2

Θ−1
2 (ψ −R∗1)

)
Γ(m)

 . (42)

The calculation of P4 is symmetric to the calculation of P1.

APPENDIX B
PROOF OF PROPOSITION 1

We calculate (33) term by term. For E[(Ỹi+ T̃i)
2], we have

to find the distribution of (Ỹi+T̃i). As shown in Fig. 10, a new
update arrives at tj and its service is finished at t′j . Assuming
that there are n updates in the queue just before ti−1, there
(n+ k+ 2) updates have been served from ti−1 to t′i+k. The
total service time of (n+ k + 2) updates is

u = u′1 +

n+k+2∑
j=2

uj , (43)

where u′1 is the residual service time of an update being served
and uj is the service time of the updates waiting in the queue.

If the system is always busy, it means that all updates are
continuously served without break from ti−1 to t′i+k, i.e., u =
ỹi + t̃i in this case. However, the system may be idle during
[ti−1, ti+k], and therefore, u ≤ ỹi + t̃i in general. Obviously,
U is the lower bound of (Ỹi + T̃i). According to [38, Eq.
(16-96)], given n, u follows the gamma distribution as

pU |n(u) =
µn+k+2un+k+1

(n+ k + 1)!
e−µu. (44)

The probability for n updates in the queue is pn = (1− ρ)ρn

[38, Eq. (16-88)]. Hence, the distribution of u is

pU (u) =

∞∑
n=0

pn · pU |n(u)

=

∞∑
n=0

(1− ρ)ρn
µn+k+2un+k+1

(n+ k + 1)!
e−µu

=

∞∑
n=−k−1

(1− ρ)ρn
µn+k+2un+k+1

(n+ k + 1)!
e−µu

−
−1∑

n=−k−1

(1− ρ)ρn
µn+k+2un+k+1

(n+ k + 1)!
e−µu. (45)
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Consider the first term of (45) as

∞∑
n=−k−1

(1− ρ)ρn
µn+k+2un+k+1

(n+ k + 1)!
e−µu

=

∞∑
n′=0

(1− ρ)

ρk+1
ρn
′ µn

′+1un
′

n′!
e−µu

=
(1− ρ)µ

ρk+1
e−µu

∞∑
n′=0

ρn
′
µn
′
un
′

n′!

=
(1− ρ)µ

ρk+1
e−µ(1−ρ)u. (46)

For the second term of (45), we have

−1∑
n=−k−1

(1− ρ)ρn
µn+k+2un+k+1

(n+ k + 1)!
e−µu

=

k∑
n′=0

(1− ρ)

ρk+1
ρn
′ µn

′+1un
′

(n′)!
e−µu

=
(1− ρ)µ

ρk+1
e−µu

k∑
n′=0

(ρµu)n
′

n′!
. (47)

Consequently, the PDF of U is given by

pU (u) =
(1− ρ)µ

ρk+1

(
e−µ(1−ρ)u − e−µu

k∑
n′=0

(ρµu)n
′

n′!

)
.

(48)

Now, we can calculate E[U2] as follows

E[U2] =

∫ ∞
0

u2pU (u)du

=

∫ ∞
0

u2 (1− ρ)µ

ρk+1

·

(
e−µ(1−ρ)u − e−µu

k∑
n′=0

(ρµu)n
′

n′!

)
du

=
(1− ρ)µ

ρk+1

·
∫ ∞

0

(
u2e−µ(1−ρ)u −

k∑
n′=0

(ρµ)n
′

n′!
un
′+2e−µu

)
du.

(49)

According to [43, Eq. (2.321.2)], we have∫ ∞
0

u2e−µ(1−ρ)udu

= e−µ(1−ρ)u

 2∑
j=0

−j!
(

2
j

)
[µ(1− ρ)]j+1

u2−j

∣∣∣∣∣∣
∞

u=0

=
2

µ3(1− ρ)3
. (50)

Similarly, we have∫ ∞
0

k∑
n′=0

(ρµ)n
′

n′!
un
′+2e−µudu

=

k∑
n′=0

(ρµ)n
′

n′!

∫ ∞
0

un
′+2e−µudu

=

k∑
n′=0

(ρµ)n
′

n′!
e−µu

n′+2∑
j=0

−j!
(
n′+2
j

)
µj+1

un
′+2−j

∣∣∣∣∣∣
∞

u=0

=

k∑
n′=0

(ρµ)n
′

n′!
· (n′ + 2)!

µn′+3

=

k∑
n′=0

ρn
′
(n′ + 2)(n′ + 1)

µ3
. (51)

Hence, we can finally obtain the closed-form expression of
E[U2] as

E[U2] =
(1− ρ)µ

ρk+1

·

(
2

µ3(1− ρ)3
−

k∑
n′=0

ρn
′
(n′ + 2)(n′ + 1)

µ3

)

=
1− ρ
µ2ρk+1

 2

(1− ρ)3
−

k∑
j=0

ρj(j + 2)(j + 1)

 .

(52)

For E[T̃ 2
i ], the PDF of the system time T is given by [38,

Eq. (16-97)]

pT (t) = µ(1− ρ)e−µ(1−ρ)t. (53)

Then, we have

E[T̃ 2
i ] = E[T 2

i+k]

= E[T 2]

=

∫ ∞
0

t2pT (t)dt

=

∫ ∞
0

t2µ(1− ρ)e−µ(1−ρ)tdt

= µ(1− ρ)

∫ ∞
0

t2e−µ(1−ρ)tdt

= µ(1− ρ)e−µ(1−ρ)t ·

 2∑
j=0

−j!
(

2
j

)
[µ(1− ρ)]j+1

t2−j

∣∣∣∣∣∣
∞

t=0
(54)

= µ(1− ρ) · 2

µ3(1− ρ)3

=
2

µ2(1− ρ)2
, (55)

where (54) follows according to [43, Eq. (2.321.2)].
Regarding E[Ỹi], since the arrival of update follows a

Poisson process with mean arrival rate λ, the arrival time Yi
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follows independent and identically distributed (i.i.d.) expo-
nential distribution with parameter λ. Therefore, E[Yi] = 1

λ ,
and

E[Ỹi] = E

i+k∑
j=i

Yj

 =

i+k∑
j=i

E [Yj ] =
k + 1

λ
. (56)

Now, we substitute the results of each term into (33) as

∆(k) =
E[(Ỹi + T̃i)

2]− E[T̃ 2
i ]

2E[Ỹi]

≥ E[U2]− E[T̃ 2
i ]

2E[Ỹi]

=
1− ρ
µ2ρk+1

 2

(1− ρ)3
−

k∑
j=0

ρj(j + 2)(j + 1)


· λ

2(k + 1)
− 2

µ2(1− ρ)2
· λ

2(k + 1)

=
1− ρ

2µρk(k + 1)

 2

(1− ρ)3
−

k∑
j=0

ρj(j + 2)(j + 1)


− ρ

µ(1− ρ)2(k + 1)
. (57)

Consequently, (57) is the lower bound of ∆(k) for busy case,
and this finishes the proof of Proposition 1.

APPENDIX C
PROOF OF PROPOSITION 2

Proof : Converse to the busy case, we consider the opposite
extreme case, i.e., the system is completely idle and hence the
queue is empty. In this case, the waiting time of each update
is 0. Consider

∆(k) =
E[(Ỹi + T̃i)

2]− E[T̃ 2
i ]

2E[Ỹi]

=
E[Ỹ 2

i ] + 2E[ỸiT̃i]

2E[Ỹi]

=
E[Ỹ 2

i ] + 2E
[∑i+k

j=i Yj · Ti+k
]

2E[Ỹi]

=
E[Ỹ 2

i ] + 2
∑i+k
j=i E[YjTi+k]

2E[Ỹi]

=
E[Ỹ 2

i ] + 2
∑i+k
j=i E[Yj(Wi+k + Si+k)]

2E[Ỹi]

≥
E[Ỹ 2

i ] + 2
∑i+k
j=i E[YjSi+k]

2E[Ỹi]
(58)

=
E[Ỹ 2

i ]

2E[Ỹi]
+

2
∑i+k
j=i E[Yj ]E[Si+k]

2
∑i+k
j=i E[Yj ]

=
E[Ỹ 2

i ]

2E[Ỹi]
+ E[Si+k], (59)

where the equality of (58) holds when the system is completely
idle. Therefore, the lower bound for idle case can be further
derived from (59). We can calculate the first term of (59) as

E[Ỹ 2
i ]

2E[Ỹi]
=

E

[(∑i+k
j=i Yj

)2
]

2E
[∑i+k

j=i Yj

]
=

E
[∑i+k

j=i Y
2
j + 2

∑i+k−1
j=i

∑i+k
j′=j+1 YjYj′

]
2
∑i+k
j=i E [Yj ]

=
(k + 1)E[Y 2] + 2

∑i+k−1
j=i

∑i+k
j′=j+1 E[Yj ]E[Yj′ ]

2(k + 1)E [Y ]

=
(k + 1)E[Y 2] + k(k + 1)(E[Y ])2

2(k + 1)E [Y ]

=
E[Y 2] + k(E[Y ])2

2E [Y ]
. (60)

It is easy to obtain E[Y 2] = 2
λ2 for exponential distribution.

Hence, we have

E[Ỹ 2
i ]

2E[Ỹi]
=

1

λ
+

k

2λ
. (61)

By substituting (61) and E[S] = 1
µ into (59), we can obtain

the lower bound of ∆(k) for idle case as

∆(k) ≥
1

λ
+

k

2λ
+

1

µ
. (62)

This finishes the proof of Proposition 2.
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