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Abstract
Persistent homology, a branch of recently popular 
computational topology, provides a coherent mathematical 
framework for quantifying the topological structures of brain 
networks. Instead of looking at networks at a fixed scale, as 
usually done in many standard brain network analysis, 
persistent homology observes the changes of topological 
features of the network over multiple resolutions and scales. 
In doing so, it reveals the most persistent topological features 
that are robust under noise perturbations. This robustness in 
performance under different scales is needed for obtaining 
more stable quantification of the network. For the first half of 
the talk, we will review the basics of persistent homology. 
The remaining half of the talk will be focused on its 
applications in EEG and dMRI based brain network analysis. 
The talk is based on doi.org/10.1109/TMI.2012.2219590.
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Rips Filtration

Carlsson & de Silva, 2010 
Edelsbrunner & Harer, 2009 



G1 � G2 � G3 � · · ·

Monotonic feature function

Sequence of nested objects or vector spaces

�i(G1) < �i(G2) < �i(G3) < · · ·

What is 
filtration?



Simplicial complex

Simplicial complex Not a valid simplicial complex
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Cubical complex

Left central gyrus

Lung blood vessel

6-neighbor connectivity

Chung et al. 2018 arXiv:1710.078494-neighbor connectivity



Rips complex approximates the topology of 
the point cloud data by connecting two 
point cloud data, xi and xj, if d(xi, xj) < ε.

Rips complex of point cloud data  

ε



Rips Filtration of cloud point data 
Computationally expensive: 
For n-nodes,  O(n3k+3) for the k-th Betti number
The representation is not unique. 

Draw a sphere 
of radius ε 



Rips complex of point cloud data  ε = 70mm 



ε = 70mm Rips complex of point cloud data  



Morse Filtration



Chung et al., 2009 Information Processing in Medical Imaging (IPMI) 5636:386-397.
Pachauri et al., 2011 IEEE Transactions on Medical Imaging 30:1760-1770 



Morse theory in signal processing

Unknown signal       is assumed to be a Morse 
function: all critical values are unique.

µ

R(y) = µ�1(�⇥, y]

Number of connected 
components #R(y)

y

Sublevel set

Y = µ+ ✏



Morse filtration

Consider a sublevel set

R(y) = µ�1(�⇥, y]

For critical values 

b < c

R(b) ⇢ R(c)

R(y1) ⇢ R(y2) ⇢ · · ·
For all critical values y1 < y2 < · · · ,



Persistent Diagrams
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Persistence Diagram (PD)

Pair the time of death with the time of the closest earlier birth

(    (             )  )

O(n log n)
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red=group 1
black=group 2

signal

noise

How do we analyze a collection of PDs? 

Signal in persistent diagrams



Critical values capture the pattern of signal changes

f(t) = e(t) f(t) = t + e(t)



� � N(0, 0.012) � � N(0, 0.12) � � N(0, 12)

Example:

Local max

Local min

f(x) = x + 7(x � 1
2
)2 +

1
2

cos(8⇡x) + ✏



� � N(0, 0.012) � � N(0, 0.12)

Local max

Local min

Stability of persistence diagram

d(D(f), D(g))  kf � gk1



Persistent homology on cortical thickness

Deformation
Simplex 
construction

Persistent 
Diagram



degree 0
pairing of
saddle points
to minimums

degree 1
pairing of
saddle points
to maximums

blue= control (n=11)     red= autism (n=16)



Kernel density (uniform kernel) in persistent diagram 

Statistical significance ?



Degree-1 distribution 

95	percen@le	=	3.6432	
5	percen@le	=		-4.0237	

   More pairings for the control subjects
= More cortical folding

Permutation test based on 
5000 random 
permutations

Max	t	=	3.9507	
Min	t	=	-3.0961	
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Persistent�
Landscape

Bubenik, 2015 Journal of Machine Learning Research
Wang et al. 2014 Distinguished Paper Award in ENAR 
Wang et al. 2018 Annals of Applied Statistics, in press



Temporal epilepsy EEG  Seizure starts



Existing methods are too sensitive

Scaling Frequency change Translation

What method will not detect 
the deforation of signal



Barcodes & persistent landscapes

Birth of a 
component

Death of a 
component

t1 t2

t1 t2

Barcode

Persistent
landscape

(t2-t1)/2



Barcodes & persistent landscapes



Persistent landscapes

before seizure during seizure



Our method Local variance

x10-45

Corrected p-value

No signal is signal!
Topological invariance à seizure origin
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Standard �
brain network�

analysis



Zalesky et al. 2010 
NeuroImage

Standard brain 
connectivity
analysis 
framework

nodes

edges



Dense fMRI cross-correlation networks
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Khalid et al. 2014 NeuoImage 101:351-363 



Graphical modelsGraph theory
Feature based                            Comp. Bottleneck
Too many features                     Often Bayesian
No models

Persistent homology Topological invariants
Model on topology
Very robust

Solo et al. 2018 IEEE Transactions on Medical Imaging
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Graph Filtration



Lee et al. 2011 MICCAI 302-309
Lee et al. 2012 IEEE Transactions on Medical Image 31:2267-2277 



V = {1, 2, · · · , p}

Network as a metric space

Nodes:

w = (wij)Edge weights:

wi,j � 0, wii = 0, wij = wji

wij  wik + wkj

X = (V,w) is a metric space



Correlation metric

1� corr(xi,xj)
q

1 � corr(xi,xj)

is not a metric

is a metric



Graph filtration=single linkage dendrogram

⇢ ⇢



Brain network as dendrogram



Graph filtration on directed graphs

0.4

-0.7

0.9

-0.1
0.30.5

1
 2

3
4

0.1

-0.4

0.6

0.2

1

4

 2

3

G(0)    ⊃     G(0.3)    ⊃     G(0.5)

-0.2

0.4

1

4

 2

3



PET metabolic connectivity

24 attention deficit 
hyperactivity disorder 
(ADHD) children

26 autism spectrum 
disorder (ASD) children 

11 pediatric control 
subjects



90 x 90 correlation map
PET measures on 90 nodes

Pet metabolic connectivity

Rips filtration on 1- correlation



Graph filtrations

0.1                   0.2                  0.3              0.4               0.5

1-correlation

Attention deficit hyperactivity disorder (ADHD)

Autism spectrum disorder (ASD)

Pediatric controls (PedCon)



Maltreated multimodal study
31 normal controls (12 ± 2 yrs.)

23 maltreated while living in post-institutional 
settings (2.5±1.4 yrs.) before adopted (11 ± 2 yrs.)

MRI à Jacobian determinant

DTI à FA-values



548 nodes correlation

Structural covariates on Jacobian determinants

15.7mm 
internodal 
distance



Maltreated children are anatomically more homogenous

Graph filtrations on Jacobian determinant



Graph filtrations on FA-values



Tennessee twin fMRI study
11 monozygotic (MZ) twins
 
14 dizygotic (DZ) twins

  9 same-sex DZ pairs (5 male, 4 female)                          
  5 different-sex DZ pairs

b



Paired statistical contrast images

W (vi ) = Zb(vi )+ε(vi )

Contrast map

$0, $1, $5

3 runs of 40 trials 

delay for $0 trials
delay for $1 trials
delay for $5 trials

c

General Linear Model

cTb(vi )

Monetary incentive delay task



DZ-twinsMZ-twins

Networks at filtration value 0.7



DZ-twinsMZ-twins

Networks at filtration value 0.8



DZ-twinsMZ-twins

Networks at filtration value 0.9



Heritability Index (at both nodes and edges)

p-value < 0.0002
Filtration value 0.9Filtration value 0.7

HI = 2(⇢MZ � ⇢DZ)



+25000 nodes

+0.6 billion 
connections

Voxel-level 
functional network

Chung et al. 2017 IPMI

Heritability index map
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Betti Numbers



Betti numbers # of i-dimensional holes/loops

      = # of connected 
components = 3
      = # of 1D holes = 1
      = # of 2D cavities =0 

�0

�1

Euler characteristic:

�0 = 1,�1 = 2,�2 = 1

�i

�2

� = �0 � �1 = 2

Representation: (3,1,0,0,…)

Representation: (1,2,1,0,0,…)



Number of connected 
components
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0-th Betti plot on PET correlation network

�0

24 attention deficit hyperactivity 
disorder (ADHD) children
26 autism spectrum disorder 
(ASD) children 
11 pediatric control subjects



Lee et al. 2014 MICCAI 297-304
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Persistent 
homology on 
hierarchical�
connectivity

Chung et al. 2017 BioRxiv 209635 



Winsconsin Twin Project

58 Monozygontic (MZ) twin pairs
53 same-sex dizygotic (DZ) twin pairs

111 pairs = 222 subjects

6 non-DWI: b=0
63 DWI: b=500 (9 dir.), 800 (18 dir.) , 2000 (36 dir.)
Isotropic 2mm resolution



20-layer hierarchical parcellation



20-layer hierarchical parcellation



Number of voxels in each layer



Hierarchical connectivity Si
jk

Si
jk =

X

Ri+1
l ⇢Ri

j

X

Ri+1
m ⇢Ri

k

Si+1
lm



Hierarchical connectivity matrix



Twin correlations & heritability index



Twin correlations & heritability index (layer 3)

MZ DZ HI



Betti-0 plot (# of connected components)

Dq

p-value<0.00001



More complex�
graph filtrations



β0 surface plot

Lee et al. 2017 
HBM 38:1387-1402




α = argminα  1

2
x j −α jk xk

k≠ j
∑

2

j
∑ +λ |α jk |

j,k
∑

Chung et al. 2013 MICCAI 300-307
Chung et al. 2015 IEEE Transactions on Medical Imaging 34:1928-1939



	
Chung et al. 2011 SPIE 79624G
Lee et al. 2018 IEEE Biomedical Engineering



Yoo et al. 2017 Human Brain Mapping 38:165-181

Center persistency (CP)
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Persistent 
homological�

network distances

Chung et al. 2017 
Topological distances beweeen brain networks, 
Connectomics in NeuroImaging (CNI) 10511:161-170



Matrix norm based distances

X 1 = (V, w1) X 2 = (V, w2)

D1(X 1,X 2) = max
8i,j

��w1
ij � w2

ij

��

Dl(X 1, X 2) =
⇣X

i,j

��w1
ij � w2

ij

��l
⌘1/l



Matrix norm fails!

outlier

Dl(X 1,X 2) = 1 D1(X 1, X 2) = 1



Gromov-Hausdorff 
distance

Lee et al., 2011 MICCAI 6892:302-309
Lee et al. 2012 IEEE Transactions on Medical Image 31:2267-2277 



Single linkage distance (SLD)

0 0.2 0.5 0.5
0.2 0 0.5 0.5
0.5 0.5 0 0.5
0.5 0.5 0.5 0

0 0.2 0.5 0.7
0.2 0 0.5 0.7
0.5 0.5 0 0.7
0.7 0.7 0.7 0

SLDdendrogram s = (sij)



Single linkage distance (SLD)

sij  max(sik, skj)ultrametric

0 0.2 0.5 0.7
0.2 0 0.5 0.7
0.5 0.5 0 0.7
0.7 0.7 0.7 0



Gromov-Hausdorff distance between networks

Single linkage distance

DGH(D1,D2)

=
1

2
max
8i,j

|s1
ij � s2

ij |



Connectivity matrix of brain network



Clustering accuracy on PET correlation network



Limitation of GH-distance

Need to design new topological distances



Kolmogorov-Smirnov (KS) 
distance

Chung, M.K. et al. 2017 
Exact topological inference for paired brain networks via 
persistent homology. Information Processing in Medical 
Imaging (IPMI) 10265:299-310



Betti-0 plot on FA correlations 

p-value <0.0001

B1(�)

B2(�)

max
�

|B1(�) � B2(�)|KS-distance:

Maltreated



Number of connected components

BMZ (λ)

BDZ (λ)

p-value < 0.0002



BDZ (λ)

BMZ (λ)

p-value < 0.0001

Size of the largest connected component



Exact permutation test

Au,v = Au−1,v + Au,v−1

u− v < d

d

d
u

v

Dq = sup
1jq

��B(G1
�j
) � B(G2

�j
)
��

P (Dq � d) = 1� Aq,q�2q
q

�

Theorem 1.

MATLAB codes:
www.stat.wisc.edu/
~mchung/twins



q = Number of monotonic features



Theorem 2.

lim
q!1

P
⇣
Dq/

p
2q � d

⌘
= 2

1X

i=1

(�1)i�1e�2i2d2

MATLAB codes:
www.stat.wisc.edu/
~mchung/twins



Validations



parameter 0.5 parameter 0.7

Null data check: 
Network of random pairs in two group comparison



Random graph simulations
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Simulating modular structure

yi = 0.5xci+1 +N(0,�2I)

module size: 
c number of nodes

xi = N(0, I)



Simulations on modular structures



p-values on network distances

No diff.

Diff.

*  = x10-3

** = x10-4 


