IMAGE QUALITY

AUROBRATA GHOSH RYUTARO TANNO & DANIEL C ALEXANDER

CENTRE FOR MEDICAL IMAGE COMPUTING, UNIVERSITY COLLEGE LONDON

COBCOM WINTER SCHOOL 2017, JUAN-LES-PINS, FRANCE

MOTIVATION

Human Connectome **Project (HCP)**

1.25mm isotropic, HCP 3T Skyra

Research Scanner

- High resolution and SNR
- Long acquisition times
- Expensive

MOTIVATION

Human Connectome **Project (HCP)**

1.25mm isotropic, HCP 3T Skyra

Hospital Scanner

2.4mm isotropic, GE

- High resolution and SNR
- Long acquisition times
- Expensive

- Clinical Scanners
- Low resolution and SNR
- Time and cost pressure
- Subsequent analysis affected

MOTIVATION

Human Connectome **Project (HCP)**

1.25mm isotropic, HCP 3T Skyra

Hospital Scanner

2.4mm isotropic, GE

- High resolution and SNR
- Long acquisition times
- Expensive

IQT: Machine Learning + Information propagation

Clinical Scanners

- Low resolution and SNR
- Time and cost pressure
- Subsequent analysis affected

ENHANCE DECISIONS IN DEVELOPING NATIONS

Developing nations (80% of world's population) rely on older low-field MRI

ENHANCE DECISIONS IN DEVELOPING NATIONS

ENHANCE DECISIONS IN DEVELOPING NATIONS

Enable clinical decisions in developing nations by augmenting low-power MRIs

ENHANCE DECISIONS IN DEVELOPING NATIONS

DATA HARMONISATION

Scanner-1

Scanner-2

Target Scanner

 Enable large scale multi-centre studies and acquisitions

 Normalise data across various scanner models, makes and acquisition parameters

 Enable re-use of old data from phased out scanners

• Facilitate longitudinal studies

PARAMETER MAPPING

• Estimate multi-shell model parameters from single-shell data

faster acquisition

 apply on historical single-shell datasets

SUPER-RESOLUTION

Enhancing diffusion MRI maps: DTI, MAP-MRI, Tractography

High-res gold standard

Low-res input

[ALEXANDER ET AL 2014, 2017]

Interpolation

Random Forest IQT

SUPER RESOLUTION

Random Forest IQT

Bayesian RF IQT: Introducing Uncertainty

Deep Learning IQT with Uncertainty

PIPELINE OVERVIEW

• Training:

Begin with HIGH-quality data (HCP dataset) Synthetically downsample to create paired low-quality / high-quality dataset Learn mapping from low-quality —> high-quality • Testing:

Apply mapping to test (low-quality) data to enhance quality

Down-sampled

Down-sampled

Down-sampled

Input

HCP data

Output

PATCH BASED REGRESSION Down-sampled Original HCP data Output Input↓ 6 x (2n+1)³ 6 x m³

Regression: •Random Forest [ALEXANDER 2017]

•Deep Learning [TANNO MICCAI 2017]

RANDOM FOREST IQT

https://github.com/ucl-mig/iqt

RANDOM FOREST IQT [ALEXANDER 2014, 2017]

Decision Tree

RANDOM FOREST IQT [ALEXANDER 2014, 2017] $egin{aligned} \mathcal{D} &= \{\mathbf{x}_i, \mathbf{y}_i\}_{|\mathcal{D}|} \ &= \mathcal{D}_T \cup \mathcal{D}_V \end{aligned}$

Decision Tree

RANDOM FOREST IQT [ALEXANDER 2014, 2017]

Decision Tree

(Global Linear)

 $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{|\mathcal{D}|} \quad MX = Y$ $= \mathcal{D}_T \cup \mathcal{D}_V$

RANDOM FOREST IQT [ALEXANDER 2014, 2017]

Decision Tree

(Global Linear) M

 \mathcal{D}_L (

 $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{|\mathcal{D}|} \quad MX = Y$ $= \mathcal{D}_T \cup \mathcal{D}_V$

4

Features: $F_1, F_2, ..., F_j \in \mathbb{R}$ Thresholds: $\tau_1, \tau_2, ..., \tau_j \in \mathbb{R}$

 \mathcal{D}_R

RANDOM FOREST IQT [ALEXANDER 2014, 2017] Decision Tree

(Global Linear)

\mathcal{D}_L Information Gain (training): $I_0 - I_L - I_{R}, \quad I_0 = 2|T| \log \det(S) \\ S = (Y - MX)^T (Y - MX)$

 $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{|\mathcal{D}|} \quad MX = Y$ $= \mathcal{D}_T \cup \mathcal{D}_V$

4

Features: $F_1, F_2, \dots, F_j \in \mathbb{R}$ Thresholds: $\tau_1, \tau_2, \dots, \tau_j \in \mathbb{R}$

 \mathcal{D}_R

RANDOM FOREST IQT [ALEXANDER 2014, 2017] Decision Tree

\mathcal{D}_L (Information Gain (training): $I_0 - I_L - I_R, \quad I_0 = 2|T|\log\det(S)$ $S = (Y - MX)^T(Y - MX)$

 $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{|\mathcal{D}|} \quad MX = Y$ $= \mathcal{D}_T \cup \mathcal{D}_V$

\mathcal{D}_R

Split test (validation):

RANDOM FOREST IQT [ALEXANDER 2014, 2017] Decision Tree

(Global Linear)

\mathcal{D}_L Information Gain (training): $\begin{bmatrix} I_0 - I_L - I_{R_{I_0}} & I_0 = 2|T| \log \det(S) \\ S = (Y - MX)^T (Y - MX) \end{bmatrix}$

 $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{|\mathcal{D}|} \quad MX = Y$ $= \mathcal{D}_T \cup \mathcal{D}_V$

4.....

Features: F_1, F_2, \ldots, F_j Thresholds: $\tau_1, \tau_2, ..., \tau_j \in \mathbb{R}$

\mathcal{D}_R

Split test (validation):

$$\mathcal{E}_{LR} < \mathcal{E}_{P}, \begin{cases} \mathcal{E}_{P} &= \sum_{1}^{|V|} ||\mathbf{y}_{i} - M\mathbf{x}_{i}|| \\ \mathcal{E}_{LR} &= \sum_{1}^{|V|} ||\mathbf{y}_{i} - \mathcal{C}(M_{L}, M)| \end{cases}$$

RANDOM FOREST IQT [ALEXANDER 2014, 2017] Decision Tree \mathcal{D}_L Information Gain (training): $I_0 - I_L - I_R$, $I_0 = 2|T|\log \det(S)$ $S = (Y - MX)^T(Y - MX)$

Random Forest: 8+ decision trees (Patch library from 8 subjects)

 $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{|\mathcal{D}|} \quad MX = Y$ $= \mathcal{D}_T \cup \mathcal{D}_V$

\mathcal{D}_R

Split test (validation):

RANDOM FOREST IQT [ALEXANDER 2014, 2017] Decision Tree (Global Linear) \mathcal{D}_L Information Gain (training): $I_0 - I_L - I_{R}, \quad I_0 = 2|T| \log \det(S) \\ S = (Y - MX)^T (Y - MX)$

Features up to 23 (DTI): Random Forest: 8+ decision trees Eigenvalues of diffusion tensor (Patch library from 8 subjects) linearity, planarity, sphericity Means of the features over patch

 $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{|\mathcal{D}|} \quad MX = Y$ $= \mathcal{D}_T \cup \mathcal{D}_V$

Split test (validation): \mathcal{D}_R $\mathcal{E}_{LR} < \mathcal{E}_{P}, \begin{cases} \mathcal{E}_{P} &= \sum_{1}^{|V|} ||\mathbf{y}_{i} - M\mathbf{x}_{i}|| \\ \mathcal{E}_{LR} &= \sum_{1}^{|V|} ||\mathbf{y}_{i} - \mathcal{C}(M_{L}, M_{R})\mathbf{x}_{i}|| \end{cases}$

TREE VISUALISED

TREE VISUALISED

TRACTOGRAPHY [ALEXANDER 2017]

- Extension from DTI to MAP-MRI
- Tracing 4 pathways: cortical hand area to:
 - thalamus
 - brainstem
 - spinal cord
 - putamen

 Tractography separates tracts
 in 1.25mm but not in low-res (2.5mm) or linear/cubic interpolation
 but again in IQT super-res

TRACTOGRAPHY [ALEXANDER 2017]

RESULTS — SUPER-RESOLUTION

[ALEXANDER 2017]

BAYESIAN RF IQT: INTRODUCING UNCERTAINTY

(LOCALLY) BAYESIAN RE IQT [TANNO 2016]

Uncertainty estimation from a (locally) Bayesian inference

• Bayesian linear model at each node:

 $\mathbf{y} = M\mathbf{x} + \eta \qquad P(M_{|}|\alpha) = \mathcal{N}(M_{|}, \alpha^{-1}I)$ $P(\eta|\beta) = \mathcal{N}(\eta, \beta^{-1}I)$

(LOCALLY) BAYESIAN RF IQT [TANNO 2016]

Uncertainty estimation from a (locally) Bayesian inference

Bayesian linear model at each node:

Predictive variance for uncertainty quantification:

 $\sigma_{\text{Pred}}^2(\mathbf{x}^*) = \mathbf{x}^{*'I'} \mathbf{A}(\mathcal{D}) \mathbf{x}^* + \beta^{-1}$

 $\mathbf{y} = M\mathbf{x} + \eta$ $P(M_{|}\alpha) = \mathcal{N}(M_{|}, \alpha^{-1}I)$ $P(\eta|\beta) = \mathcal{N}(\eta, \beta^{-1}I)$

(LOCALLY) BAYESIAN RF IQT [TANNO 2016]

Uncertainty estimation from a (locally) Bayesian inference

Bayesian linear model at each node:

Predictive variance for uncertainty quantification:

 $\sigma_{\text{Pred}}^2(\mathbf{x}^*) = \mathbf{x}^{*'I'} \mathbf{A}(\mathcal{D}) \mathbf{x}^* + \beta^{-1}$

distance from training data

$\mathbf{y} = M\mathbf{x} + \eta$ $P(M_{|}\alpha) = \mathcal{N}(M_{|}, \alpha^{-1}I)$ $P(\eta|\beta) = \mathcal{N}(\eta, \beta^{-1}I)$

Noise variability in training data 17

 $M = YX^T \left(XX^T + \frac{\alpha}{\beta}I \right)^{-1}$

 $M = YX^T \left(XX^T + \frac{\alpha}{\beta}I \right)^{-1}$

Uncertainty

Uncertainty correlates with accuracy

UNCERTAINTY

Multiple Sclerosis

T2

H

Tumour (edema)

DEEP LEARNING IQT WITH UNCERTAINTY

BASELINE NETWORK [TANNO MICCAI 2017]

ESPCN = Efficient Subpixel Convolutional Network [SHI CVPR 2016]

low-res

high-res

BASELINE NETWORK [TANNO MICCAI 2017]

ESPCN = Efficient Subpixel Convolutional Network [SHI CVPR 2016]

low-res

high-res

BASELINE NETWORK [TANNO MICCAI 2017]

ESPCN = Efficient Subpixel Convolutional Network [SHI CVPR 2016]

low-res

layers: $(3,3,3,50) \longrightarrow (1,1,1,100) \longrightarrow (3,3,3,r.r.r.c)$ (width, height, depth, channels)

high-res

3D extension of ESPCN

Intrinsic Uncertainty

low-res, x

high-res, y

Parameter Uncertainty

Intrinsic Uncertainty

Heteroscedastic noise model (no parameter sharing)

Parameter Uncertainty

$$\frac{1}{N} \sum_{i}^{N} ||\mathbf{y}_{i} - \mu_{\theta_{1}}(\mathbf{x}_{i})||_{\Sigma_{\theta}}^{2} + \frac{1}{N} \sum_{i}^{N} \log \det \Sigma_{\theta_{2}}(\mathbf{x}_{i})|_{\Sigma_{\theta}}^{2}$$

Intrinsic Uncertainty

low-res, x

high-res, y

Parameter Uncertainty

 Approximate (intractable) posterior with a factored Gaussian distribution $p(\theta | \mathcal{D}) \sim q_{\phi}(\theta)$ [KINGMA 2015] using variational dropout where dropout rates are learned

Intrinsic Uncertainty

low-res, x

high-res, y

Heteroscedastic + Variational dropout

Parameter Uncertainty

• Predictive distribution:

$$\int \mathcal{N}(\mathbf{y}; \mu_{\theta_1}, \Sigma_{\theta_2}(\mathbf{x})) \cdot q_{\phi}(\mathbf{x})$$

Mean & Uncertainty (variance) from dropout sampling

Interior

Exterior

Interior

	Unseen HCP cohort: similar demographics, protocol		Unseen Lifespan cohort: different demographics, protocol	
Models	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterio
CSpline	$10.069 \pm n/a$	$31.738\pm$ n/a	$32.483 \pm n/a$	$49.066 \pm n/a$
IQT-RF	6.974 ± 0.024	23.139 ± 0.351	10.038 ± 0.019	25.166 ± 0.32
BIQT-RF	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.29
3D-ESPCN(baseline)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.10

Exterior

Interior

	Unseen HCP cohort: similar		Unseen Lifespan cohort: different	
	demograph	ics, protocol	demographics, protocol	
Models	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterio
CSpline	$10.069 \pm n/a$	$31.738 \pm n/a$	$32.483 \pm n/a$	$49.066 \pm n/a$
IQT-RF	6.974 ± 0.024	23.139 ± 0.351	10.038 ± 0.019	25.166 ± 0.32
BIQT-RF	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.29
3D-ESPCN(baseline)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.10
Improvement	9%	43%	10%	33%
		Faster!		

Exterior

Interior

Exterior

	Unseen HCP cohort: similar		Unseen Lifespan cohort: different	
	demograph	ics, protocol	demographics, protocol	
Models	HCP (interior)	HCP (exterior)	Life (interior)	Life (exterio
CSpline	$10.069 \pm n/a$	$31.738\pm$ n/a	$32.483 \pm n/a$	$49.066 \pm n/a$
IQT-RF	6.974 ± 0.024	23.139 ± 0.351	10.038 ± 0.019	25.166 ± 0.32
BIQT-RF	6.972 ± 0.069	23.110 ± 0.362	9.926 ± 0.055	25.208 ± 0.29
3D-ESPCN(baseline)	6.378 ± 0.015	13.909 ± 0.071	8.998 ± 0.021	16.779 ± 0.10
Hetero-CNN	6.294 ± 0.029	15.569 ± 0.273	8.985 ± 0.051	17.716 ± 0.27
Var.(I)-CNN	6.354 ± 0.015	13.824 ± 0.031	8.973 ± 0.024	16.633 ± 0.08
Var.(II)-CNN	6.356 ± 0.008	13.846 ± 0.017	8.982 ± 0.024	16.738 ± 0.073
Hetero+Var.(I)	6.291 ± 0.012	13.906 ± 0.048	8.944 ± 0.044	16.761 ± 0.04
Hetero+Var.(II)	$\textbf{6.287} \pm \textbf{0.029}$	13.927 ± 0.093	8.955 ± 0.029	16.844 ± 0.10

Top models quantify uncertainty

Best

Second

UNCERTAINTY PROPAGATION

Model: Hetero + Var (I)

200 samples of predicted DTI

UNCERTAINTY IN PATHOLOGY

Clinical image

Uncertainty correlates with pathology

After Super-res

Uncertainty

high

CONCLUSION

• RF IQT:

• RF IQT:

Patch based regression

• RF IQT:

Patch based regression

Can meaningfully segregate brain patches

• RF IQT:

Patch based regression
Can meaningfully segregate brain patches
Able to successfully super-resolve and is generalisable (monkey brain results)

• RF IQT:

Patch based regression
Can meaningfully segregate brain patches
Able to successfully super-resolve and is generalisable (monkey brain results)
Improves tractography

• RF IQT:

Patch based regression
Can meaningfully segregate brain patches
Able to successfully super-resolve and is generalisable (monkey brain results)
Improves tractography

• Locally Bayesian RF IQT:

• RF IQT:

Patch based regression Can meaningfully segregate brain patches Able to successfully super-resolve and is generalisable (monkey brain results) Improves tractography

Locally Bayesian RF IQT:

Better reconstruction accuracy than regular RF IQT

30

• RF IQT:

Patch based regression
Can meaningfully segregate brain patches
Able to successfully super-resolve and is generalisable (monkey brain results)
Improves tractography

• Locally Bayesian RF IQT:

Better reconstruction accuracy than regular RF IQT

Uncertainty correlates well with reconstruction error

ular RF IQT ruction error

• RF IQT:

Patch based regression
Can meaningfully segregate brain patches
Able to successfully super-resolve and is generalisable (monkey brain results)
Improves tractography

Locally Bayesian RF IQT:

Better reconstruction accuracy than regular RF IQT

- Uncertainty correlates well with reconstruction error
- Uncertainty flags pathology (MS, tumour) consistently

ular RF IQT ruction error ır) consistently

• Deep Learning IQT:

Deep Learning IQT: Generalises 3D ESPCN (computationally efficient SR network)

• Deep Learning IQT: Generalises 3D ESPCN (computationally efficient SR network) Variational dropout using a dual-network architecture

Intrinsic and Parameter Uncertainty modelled using Heteroscedastic noise model and

• Deep Learning IQT: Generalises 3D ESPCN (computationally efficient SR network) Variational dropout using a dual-network architecture

- Intrinsic and Parameter Uncertainty modelled using Heteroscedastic noise model and
- Even a simple baseline model (3 hidden layers) outperforms RF based regression

- Deep Learning IQT:
 - Generalises 3D ESPCN (computationally efficient SR network)
 Intrinsic and Parameter Uncertainty modelled using Heteroscedastic noise model and Variational dropout using a dual-network architecture
 Even a simple baseline model (3 hidden layers) outperforms RF based regression
 Top models quantify Intrinsic + Parameter Uncertainty

• Deep Learning IQT:

Generalises 3D ESPCN (computationally efficient SR network) Variational dropout using a dual-network architecture Even a simple baseline model (3 hidden layers) outperforms RF based regression Top models quantify Intrinsic + Parameter Uncertainty Predictive uncertainty flags pathology and can be used as a safeguard

- Intrinsic and Parameter Uncertainty modelled using Heteroscedastic noise model and

• Deep Learning IQT:

Generalises 3D ESPCN (computationally efficient SR network) Variational dropout using a dual-network architecture Even a simple baseline model (3 hidden layers) outperforms RF based regression Top models quantify Intrinsic + Parameter Uncertainty Predictive uncertainty flags pathology and can be used as a safeguard

• Perspectives and Challenges:

- Intrinsic and Parameter Uncertainty modelled using Heteroscedastic noise model and

• Deep Learning IQT:

Generalises 3D ESPCN (computationally efficient SR network) Variational dropout using a dual-network architecture Even a simple baseline model (3 hidden layers) outperforms RF based regression Top models quantify Intrinsic + Parameter Uncertainty Predictive uncertainty flags pathology and can be used as a safeguard

Perspectives and Challenges: Quantify performance in abnormal tissue (comparison with other methods requires data)

- Intrinsic and Parameter Uncertainty modelled using Heteroscedastic noise model and

• Deep Learning IQT:

Generalises 3D ESPCN (computationally efficient SR network) Variational dropout using a dual-network architecture Even a simple baseline model (3 hidden layers) outperforms RF based regression Top models quantify Intrinsic + Parameter Uncertainty Predictive uncertainty flags pathology and can be used as a safeguard

Perspectives and Challenges:

- Explore other problems (parameter mapping, data harmonisation, etc...)

- Intrinsic and Parameter Uncertainty modelled using Heteroscedastic noise model and

Quantify performance in abnormal tissue (comparison with other methods requires data)

REFERENCES

[Alexander 2014] D. C. Alexander, D Zikic, J Zhang, H Zhang, and A Criminisi, Image Quality Transfer via Random Forest Regression: Applications in Diffusion MRI MICCAI 2014, Part III, LNCS 8675, pp. 225–232, 2014

 [Tanno 2016] R Tanno, A Ghosh, F Grussu, E Kaden, A Criminisi and D C. Alexander Bayesian Image Quality Transfer, MICCAI 2016 pp 265-273, 2016

 [Alexander 2017] D C Alexander, D Zikic, A Ghosh, R Tanno, V Wottschel, J Zhang, E Kaden, T B Dyrby, S N Sotiropoulos, H Zhang, A Criminisi, Image quality transfer and applications in diffusion MRI, NeuroImage Volume 152, 15 May 2017, Pages 283–298

[Tanno 2017] R Tanno, D. E. Worrall, A Ghosh, E Kaden, S N. Sotiropoulos, A Criminisi, D. C. Alexander. **Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution**, MICCAI 2017

THANK YOU

https://github.com/ucl-mig/iqt

