DIPY is an international project which brings together scientists across labs and countries …

… to share their state-of-the-art code and expertise in the same codebase, accelerating scientific research in medical imaging.
Who is dipy for?

Computer scientists, Engineers, Mathematicians

- Development and testing of new methods
- Sharing code and the support/maintenance of that code
- Processing diffusion MRI data with the state-of-the-art pipeline
- Learning diffusion MRI processing

You need to read and write code
Eleftherios Garyfallidis, Ph.D.
Founder and lead software engineer

elef@indiana.edu

Some of the Dipy developers
Development team grows and grows …

Currently the largest diffusion MRI development team
60+ contributors, 10+ countries
Dipy, a library for the analysis of diffusion MRI data

Eleftherios Garyfallidis1,2, Matthew Brett1, Bagrat Amirbekian1, Ariel Rokem1, Stefan van der Walt3, Maxime Descoteaux3, Ian Nimmo-Smith4 and Dipy Contributors3

1Computer Science Department, University of Sherbrooke, Sherbrooke, QC, Canada
2MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
3Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, CA, USA
4Department of Neurology and Graduate Group in Bioengineering, University of California, San Francisco, CA, USA
5Department of Psychology, Stanford University, Stanford, CA, USA
6Department of Mathematical Sciences, Division of Applied Mathematics, Stellenbosch University, Stellenbosch, South Africa
7http://dipy.org/developers.html

Industrial use

Publications

Citations: 182
Main website:
dipy.org

Interactive chat room:
gitter.im/nipy/dipy/

Source code:
github.com/nipy/dipy

Tutorials:
dipy.org/examples_index.html

Dipy Installation:
nipy.org/dipy/installation.html

Follow the instructions for your platform.

>> pip install dipy
• Local Reconstruction
 – Diffusion Tensor
 – Constrained Spherical Deconvolution

• Streamline Tractography
 – Masking strategies
 – Propagation algorithms

• Streamline Bundle Analysis
 – QuickBundles
 – Regions-based
• Loading DW-MRI data

```python
fdwi = 'HARDI150.nii.gz'
fbval = 'HARDI150.bval'
fbvec = 'HARDI150.bvec'

import nibabel as nib
img = nib.load(fdwi)
data = img.get_data()

from dipy.io import read_bvals_bvecs
bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
from dipy.core.gradients import gradient_table
gtab = gradient_table(bvals, bvecs)
```

```
from dipy.data import fetch_stanford_hardi, read_stanford_hardi
fetch_stanford_hardi()
img, gtab = read_stanford_hardi()
data = img.get_data()
```

Load data
Create the gradient table
Get the data from Dipy
Local Reconstruction - DTI

```
from dipy.segment.mask import median_otsu
maskdata, mask = median_otsu(data, 3, 1, dilate=2)
```

Compute a brain mask

```
In [50]: print(data.shape)
   : (81, 106, 76, 160)
In [51]: print(mask.shape)
   : (81, 106, 76)
In [52]: print(maskdata.shape)
   : (81, 106, 76, 160)
```

DT Model

```
import dipy.reconst.dti as dti
tenmodel = dti.TensorModel(gtab)
tenfit = tenmodel.fit(maskdata)
```

Compute the FA

```
FA = fractional_anisotropy(tenfit.evals)
FA[np.isnan(FA)] = 0
```

Save the FA (Nifti format)

```
fa_img = nib.Nifti1Image(FA.astype(np.float32), img.affine)
nib.save(fa_img, 'tensor_fa.nii.gz')
```
Local Reconstruction - DTI

Fractional Anisotropy Map
• Local Reconstruction - DTI

```python
MD = tenfit.md
md_img = nib.NiftiImage(MD.astype(np.float32), img.affine)
nib.save(md_img, 'tensor_md.nii.gz')

FA = np.clip(FA, 0, 1)
RGB = color_fa(FA, tenfit.evecs)
nib.save(nib.NiftiImage(np.array(255 * RGB, 'uint8'), img.affine), 'tensor_rgb.nii.gz')
```
• Local Reconstruction - DTI

Get the tensors `evals/evecs`

Get the color from the RGB map

Load the visualization package of Dipy

```python
evals = tenfit.evals[28:38, 72:82, 38:39]
evecs = tenfit.evecs[28:38, 72:82, 38:39]

cfa = RGB[28:38, 72:82, 38:39]

from dipy.viz import fvtk
ren = fvtk.ren()
from dipy.data import get_sphere
sphere = get_sphere('symmetric724')

fvtk.add(ren, fvtk.tensor(evals, evecs, cfa, sphere))
fvtk.record(ren, n_frames=1, out_path='tensor_ellipsoids.png', size=(1000, 1000))
```
• Local Reconstruction - DTI
• **Local Reconstruction - CSD**

```python
from dipy.reconst.csdeconv import auto_response
response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)

from dipy.viz import fvtk
ren = fvtk.ren()
evals = response[0]
evecs = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).T
from dipy.data import get_sphere
sphere = get_sphere('symmetric724')
from dipy.sims.voxel import single_tensor_odf
response_odf = single_tensor_odf(sphere.vertices, evals, evecs)
response_actor = fvtk.sphere_funcs(response_odf, sphere)
fvtk.add(ren, response_actor)
fvtk.record(ren, out_path='csd_response.png', size=(200, 200))

from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
csd_model = ConstrainedSphericalDeconvModel(gtab, response)
csd_fit = csd_model.fit(maskdata)
```

Estimate the single fiber response

CSD Model
• Local Reconstruction - CSD

```python
csd_odf = csd_fit[28:38, 72:82, 38:39].odf(sphere)

In [174]: print(csd_odf.shape)
(10, 10, 1, 724)

ren = fvtk.ren()
fodf_spheres = fvtk.sphere_funcs(csd_odf, sphere, scale=1.6, norm=False)
fvtk.add(ren, fodf_spheres)
fvtk.record(ren, out_path='csd_odfs.png', size=(1000, 1000))
```
• **Local Reconstruction - CSD**

```python
from dipy.direction import peaks_from_model
csd_pfm = peaks_from_model(model=csd_model,
data=maskdata,
sphere=sphere,
return_sh=True,
sh_order=8,
sh_basis_type='fibernav',  # 'mrtrix'
relative_peak_threshold=.5,
min_separation_angle=25,
parallel=True)

csd_peaks_dirs = csd_pfm.peak_dirs[28:38, 72:82, 38:39]
csd_peaks_values = csd_pfm.peak_values[28:38, 72:82, 38:39]

vtk.clear(ren)
fodf_peaks = vtk.peaks(csd_peaks_dirs, csd_peaks_values, scale=1.6)
fvtk.add(ren, fodf_peaks)
fvtk.record(ren, out_path='csd_peaks.png', size=(1000, 1000))

csd_sh = csd_pfm.shm_coeff
nib.save(nib.NiftiImage(csd_sh.astype(np.float32), img.affine), 'csd_sh.nii.gz')
```
• **Local Reconstruction**
 – Diffusion Tensor
 – Constrained Spherical Deconvolution

• **Streamline Tractography**
 – Masking strategies
 – Propagation algorithms

• **Streamline Bundle Analysis**
 – QuickBundles
 – Regions-based
• **Tractography Masks – TissueClassifier**

 – **Label Image**
 - *Binary Tissue Classifier*

 – **Scalar Image (e.g. FA)**
 - *Threshold Tissue Classifier*

 – **T1 Partial Volume Estimation Maps**
 - *ACT Tissue Classifier* [Smith et al., 2012]
 - *CMC Tissue Classifier* [Girard et al., 2014]
- **Tractography - Mask**

```python
from dipy.tracking.local import ThresholdTissueClassifier
treshold_classifier = ThresholdTissueClassifier(FA, .15)
```

Threshold Tissue Classifier

```python
mask_fa = FA.copy()
mask_fa[mask_fa < 0.15] = 0
mask_fa[mask_fa>0]=1
nib.NiftiImage(mask_fa.astype("uint8"),affine).to_filename("mask_fa.nii.gz")
```
Tractography – Mask from T1 Information

Load PVE maps e.g. from FSL-Fast or Dipy

ACT Tissue Classifier

[Smith et al., 2012]
Tractography - Seeding

Load a brain parcellation

```python
from dipy.data import read_stanford_labels
_, _, labels_img = read_stanford_labels()
labels = labels_img.get_data()

from dipy.tracking import utils
seed_mask = labels == 2
seeds = utils.seeds_from_mask(seed_mask, density=1, affine=affine)
```

1 seed in each voxel of the CC

Seeds is a list of 3D initial positions
Tractography Algorithms – DirectionGetters

- **ProbabilisticDirectionGetter**
 - *Samples a direction from the SF values in a maximum angle θ*

- **MaximumDirectionGetter**
 - *The direction with the maximum SF value in a maximum angle θ*

- **ClosestPeakDirectionGetter**
 - *The direction of a peak of the SF the most aligned with the previous direction in a maximum angle θ*

- **EuDx**
 - *Tri-linear interpolation of the closest peaks at the current tracking position*

- **BootDirectionGetter**
 - *Sample the direction from the estimated uncertainty in the SF*

 [Berman et al., 2008]

- **Particle Filtering Tractography**
 - *ProbabilisticDirectionGetter with prior anatomical information*

 [Girard et al., 2014]

 [Cote et al., 2013]
• Tractography – Direction Getters

Probabilistic Direction Getter from shm

Deterministic Maximum Direction Getter from FOD sampled on a sphere

Closest Peak Direction Getter from shm (Nifti)

Basis:
[Descoteaux et al., 2007]
[Tounier et al., 2012]
• Tractography - Streamlines

Generate streamlines with the selected parameters

```
from dipy.tracking.local import LocalTracking
streamlines = LocalTracking(prob dg,
act_classifier,
seeds,
affine,
step_size=0.2)
```

Save the streamlines to the disk

```
from dipy.io.trackvis import save_trk
save_trk("probabilistic_streamlines.trk",
streamlines,
affine,
seed_mask.shape)
```
• Tractography - Streamlines
• Local Reconstruction
 – Diffusion Tensor
 – Constrained Spherical Deconvolution

• Streamline Tractography
 – Masking strategies
 – Propagation algorithms

• Streamline Bundle Analysis
 – QuickBundles
 – Regions-based
Streamline Clustering with QuickBundle

QuickBundles for tractography simplification
Garyfallidis et al. Frontiers 2012
Streamline Clustering with QuickBundles

```python
from dipy.segment.clustering import QuickBundles
qb = QuickBundles(threshold=10.)
clusters = qb.cluster(streamlines)
```

Apply the QuickBundles algorithm to the streamlines

threshold : float
The maximum distance from a bundle for a streamline to be still considered as part of it.

```python
print("Nb. clusters:", len(clusters))
print("Cluster sizes:", map(len, clusters))
```

Nb. clusters: 4
Cluster sizes: [64, 191, 47, 1]

[Garyfallidis et al., 2012]
Streamline Clustering with QuickBundles

print("Streamlines indices of the first cluster: \n", clusters[0].indices)

Streamlines indices of the first cluster:
[0, 7, 8, 10, 11, 12, 13, 14, 15, 18, 26, 30, 33, 35, 41, 65, 66, 85, 100, 101, 105, 115, 116, 119, 122, 123, 124, 125, 126, 128, 129, 135, 139, 142, 143, 144, 148, 151, 159, 167, 175, 180, 181, 185, 200, 208, 210, 224, 237, 246, 249, 251, 256, 267, 270, 280, 284, 293, 296, 297, 299]

print("Centroid of the last cluster: \n", clusters[-1].centroid)

Centroid of the last cluster:
array([[84.83773804, 117.92590332, 77.32278442],
 [86.19850525, 115.84362793, 81.91885376],
 [86.40357208, 112.25676727, 85.72930145],
 [86.48336792, 107.68327911, 88.13782591],
 [86.23897552, 102.5106708 , 89.29447174],
 [85.04563904, 97.46020508, 88.54249417],
 [82.60240173, 93.14851379, 86.84208679],
 [78.99937225, 89.57682037, 85.63552039],
 [74.72344208, 86.68827637, 84.9391861],
 [70.40846252, 85.15874481, 82.4484024],
 [66.74534667, 86.00262451, 78.82582092],
 [64.02451324, 88.43942261, 75.0697403]], dtype=float32)

[Garyfallidis et al., 2012]
Streamline Clustering with QuickBundles

[Garyfallidis et al., 2012]
Label-based bundle segmentation

```python
from dipy.tracking import utils
M, grouping = utils.connectivity_matrix(streamlines,
                                        labels,
                                        affine=affine,
                                        return_mapping=True,
                                        mapping_as_streamlines=True)

In [108]: M.shape
Out[108]: (89, 89)
In [172]: M[11,54]
Out[172]: 9201
In [173]: len(grouping[(11,54)])
Out[173]: 9201

bundle = grouping[(11,54)]
streamlines_actor = fvtk.line(bundle, line_colors(bundle))
r = fvtk.ren()
fvtk.add(r, streamlines_actor)
fvtk.record(r, n_frames=1, out_path='bundle.png', size=(800, 800))
```

Superior frontal gyrus L/R
- **Label-based bundle segmentation**

```python
import matplotlib.pyplot as plt
plt.imshow(np.log1p(M), interpolation='nearest')
plt.savefig("connectivity.png")
```

of Streamlines of the CC between labels
• Bundle Density Map

```python
bundle = grouping([(11, 54)])
dm = utils.density_map(bundle, shape, affine=affine)
```

Compute streamline density map

```python
dm_img = nib.NiftiImage(dm.astype("int16"), hardi_img.affine)
dm_img.to_filename("bundle_density.nii.gz")
```
Questions?

- **Preprocessing**
 - SNR Estimation
 - Denoising with Non-Local Means
 - Volume Reslicing

- **Local Reconstructions**
 - Constrained Spherical Deconvolution (CSD)
 - Simple Harmonic Oscillator based Reconstruction and Estimation (3D-SHORE)
 - Mean Apparent Propagator (MAP)-MRI
 - Diffusion Tensor Imaging (DTI)
 - Diffusion Kurtosis Imaging (DTK)
 - Q-Ball Constant Solid Angle (CSA)
 - Diffusion Spectrum Imaging (DSI)
 - Generalized Q-Sampling Imaging (GQI)

- **Registration**
 - Image-based Registration
 - Affine Registration
 - Symmetric Diffeomorphic Registration
 - Streamline-based Registration

- **Segmentation**
 - Streamline Clustering
 - Tractography Clustering with QuickBundles
 - Brain segmentation with median_otsu
 - T1 Tissue Partial Volume Estimation

- **Fiber Tractography**
 - Deterministic / Probabilistic Tractography
 - Particle Filtering Tractography (PFT)

- **Streamline Analysis**
 - Streamline analysis and connectivity
 - Connectivity Matrices
 - ROI Intersections and Density Maps
 - Streamline length and size reduction
 - Linear fascicle evaluation
 - Fiber to bundle coherence measures

- **Visualization**
 - Local Reconstructions
 - Streamlines

See the code examples: Dipy.org Thank you for your attention!