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Brain connectivity
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Types of Brain Connectivity
Structural, functional, effective

Small-world
Neighborhood clustering
Characteristic path length

Spatial
preference for short

connections but more long-
distance connections than
expected

Structure->Function
Network changes lead to
cognitive deficits
(Alzheimer’s disease, 1Q)




Motifs



Motifs

|dea: determine building blocks of
networks.

id12 id14 id36

Hope: structural building blocks
correspond to functional units.

Pattern: possible connection
configuration for a k-node subgraph

(see list of all 3-node configurations)

List of all 3-node

Motif: pattern that occurs significantly patterns

more often than for rewired
benchmark networks

(same number of nodes and edges
and same degree distribution)

* Milo et al. (2002) Science;
http://www.weizmann.ac.il/mcb/UriAlon/groupNetworkMotifSW.html



Motif detection — algorithm

Network name: network exmp.txt

Network type: Directed

Num of Nodes: 16 Num of Edges: 19

Num of Nodes with edges: 16

Maximal out degree (out-hub) : 3

Maximal in degree (in-hub) : 3

Roots num: 4 Leaves num: 4

Single Edges num: 19 Mutual Edges num: 0

Motif size searched 3
Total number of 3-node subgraphs : 21
Number of random networks generated : 100
Random networks generation method: Switches
Num of Switches range: 100.0-200.0,

Success switches Ratio:0.652+0.01

The following motifs were found:

Criteria taken : Nreal Zscore > 2.00
Pval ignored (due to =mall number of random

networks)
Mfactor = 1.10
Appearances Random . _ -
in the real networks: GHigueness >w 4 Uniqueness Concentration
network mean+- SD X103
Full likt includes 1 motifs
MOT NREAL N D NREAL NREAL UNIQ \CREAL
ID STATS ZSCORE PVAL VAL [MILI]
38 5 0.6+0.6 6.93 0.000 4 238.10
011 Motif
001 < Adjacency
000 Matrix




Motif detection — results

transcription neuron synaptic ecological
network connection network food web

x‘»Y represents X Y
Presen r>/®\r>/® CC=

gene x geney

Network Nodes  Edges | Mreal Mand=SD  Zscore | Meal MNrand=SD  Zscore | Nreal MNrand=SD  Zscore
Gene regulation X Feed- X Y Bi-fan
(transcription) \ forward
Y loop
\ Z W
Z
E. coli 424 519 40 7£3 10 203 4712 13
S. cerevisiae® 685 1,052 70 114 14 1812 30040 41
Neurons X Feed- X Y Bi-fan X Bi-
V forward v\ parallel
Y loo Y Z
\/ P Z W Ny
7 W
C. eleganst 252 509 125 9010 3.7 127 55+13 5.3 227 3510 20

Milo et al. Science, 2002



Motif detection — problems

Advantages:
- ldentify special network patterns which might represent functional modules

Disadvantages:

- Slow for large networks and

unfeasible for large (e.g. 5-node) motifs

(#patterns: 3-node — 13; 4-node — 199; 5-node: 9364; 6-node - 1,530,843)
- Rewired benchmark networks do not retain clusters;

most patterns become insignificant for clustered benchmark networks*

* Kaiser (2011) Neuroimage



Clusters (or Modules or Communities)



Clusters

Clusters: nodes within a cluster tend to connect
to nodes in the same cluster but are less likely
to connect to nodes in other clusters

Quantitative measure: modularity Q
(Newman & Girvan, Physical Review E, 2004)

important terms:
hierarchical (cluster, sub-cluster, ...)

overlapping or non-overlapping
(one node can only be member of one cluster)

predefined number of clusters
(e.g. k-means algorithm)

Potential time problem for large networks, O(kN)
Hundreds of algorithms for cluster detection!



Cluster detection — example

Non-hierarchical, overlapping

Genetic algorithm Procedure

« Random starting configurations
« Evolution:

* Mutation : Area relocation
. Have as few as possible « Evaluation . Cost function
connections between them * Selection  Threshold
Validation

« Have as few as possible absent
connections within them

Hilgetag et al. (2000) Phil. Trans. Roy. Soc. Lond. B.



Cluster detection

SENSORY-
MOTOR

FRONTO-
LIMBIC

JDITORY

VISUAL

|

Example:

Cat cortical network

Black:
same cluster

Graylevel:
Ambiguous cases

Hilgetag et al. (2000) Phil Trans R Soc 355: 91



Random graphs



Preliminary: Degree distributions

Degree distributions

Theoretical (known properties):
P(k) is the probability that a
node with k edges exists in the
network (probability distribution)

Numerical (real-world network):
use the number of occurrences
of a node (histogram)
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Random graphs

 often called Erd6s—Rényi* random graphs

* (Generation:
For each potential edge
(adjacency matrix element outside the diagonal),

establish an edge /0

(set that element of the adjacency matrix to 1) |
with probability p A=

1

\0

*Erdés, P.; Rényi, A. (1959). Publicationes Mathematicae 6: 290-297.

S =

p-aOp_ap_a




Properties of random graphs
 Edge density =p (

« Binomial degree distribution P(k) =
(histogram of node degrees)

n—1

k 1 — '-17—1—!."
L )p (1—p)

Can be approximated as 1y € %
Poisson distribution | -

-> exponential fail 006 | .

(networks are therefore
sometimes called . g .
exponential networks) o "

k)
o




Scale-free networks



Power-law function:

\ ¥ f(x) = x2a = 1/xa

N
~

Scale-free = no characteristic scale

Hub =

highly-connected node

(potentially important
for the network)

Airline network



Is your network scale-free”?
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Examples for biological scale-free networks

2}
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Protein-protein
interaction network

Jeong et al., Nature, 2001
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Eguiluzet al., Phys Rev Lett, 2005 Kaiser et al., Eur J Neurosci, 2007
Sporns et al., Trends Cogn Sci, 2004



Robustness



Neural robustness against network damage (lesions)

Rats: Spinal chord injury Human: Compensation for loss
of one hemisphere at age 11

large recovery possible with as
few as 5% of remaining intact
fibers

You et al., 2003



Cellular robustness against damage (gene knockouts)

Mutations can be
compensated by gene copies
or alternative pathways™*:
~70% of single-gene
knockouts are non-lethal

The metabolism can adjust to
changes in the environment
(e.g. switch between aerob
and anaerob metabolism)
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* A. Wagner. Robustness against mutations in genetic networks of yeast.

Nature Genetics, 24, 355-361 (2000).



Measures of structural integrity

How is the global topology of the network affected?

|dea: Changes in structural properties might indicate functional
changes (like lower performance of the system)

Structural measure Potential functional impact
1 All-pairs shortest path longer transmission time

Alzheimer

§ Reachability IFragmentation occurrence of isolated parts (components)

[ ] Clustering coefficient less interaction within modules
Schizophrenia
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Example: simulated brain lesions

Is the brain similar to a scale-free network?

O Macaque
B Random

Additional hubs

5 1 |_L —i |—| " |1 network of the cat
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degree




Sequential removal of brain areas

Small-world Network, Node elimination n=73

Macaque Network, Area eimination Scale-free Network, Area elimination
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00 02 04 08 08 1 00 02 04 06 08 1: F%andomfrl‘fill(e::ttIv(\)/?)rfg],t ?\l%ggeglirgr?%%?ion n=73
fraction of deleted nodes fraction of deleted nodes Al
3}
randomly = irrespective of degree %
< ~ \
targeted = highly-connected nodes first A
0 . e
0 0.5 1

fraction of deleted nodes

Kaiser et al. (2007) European Journal of Neuroscience 25:3185-3192
26



Where do ‘hubs’ come from?

Not from preferential attachment...
During individual development, early-established nodes have more time to

0.05¢ o) Frontal, 4__..—--——-—-"""" Parietal,

Temporal, _____.—-—-——_" Occipital
Sensorimotor
[
0.025 f
Y J/ _--//’ | .\""\'\__ ‘\
Archicortex,

0
0.5 T
Paleocortex

relative time

establish connections:

Ptemp

C. elegans network development: Varier & Kaiser (2011) PLoS Comput Biol

Nisbach & Kaiser (2007) Eur Phys J B
Kaiser et al. (2007) European Journal of Neuroscience 25:3185-3192



Hub neurons start early
(old-gets-richer model)
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What is special about the modular
organization of adult networks?

Human (DSI)

regions

C. elegans S
neurons

.
Mo
X
N
‘ -

o T R
Yow
Jv

Increase or decrease of modularity Q

Kim & Kaiser (2014) Phil. Trans. R. Soc. B



Higher characteristic path length and
higher clustering coefficient
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Kim & Kaiser (2014) Phil. Trans. R. Soc. B



. . Foronenodei: D;=R:/R
Lower dispersion D o

Ri the number of modules to which node i links to

R is the total number of modules (66 regions or 10 ganglia)

Low dispersionD=2/5=0.4 High dispersionD =5/5 = 1

5 &) g
T

Kim & Kaiser (2014) Phil. Trans. R. Soc. B




For one node i :

_ _ D:=R;/R
Lower dispersion D -

Ri the number of modules to which node i links to

R is the total number of modules (66 regions or 10 ganglia)
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LeSS |nf0 'm at|0n need ed Algorithmic entropy: how much information
t() grOW the network is needed to encode for the network?

Compressed adjacency matrix = genetic information
Decompression algorithm = gene expression, Turing morphogenetic fields etc.

Decompressed = adult brain connectivity

Kim & Kaiser (2014) Phil. Trans. R. Soc. B



Less information needed  aigorithmic entropy: how much information
tO grOW the network is needed to encode for the network?

More information Human 0.05 - 0.065 C. elegans
needed o I
E 0.045 i : {1 0.06
S 0.04 .
@ o 1 0.055
® 0.035 l I
o I I
§ 0.03 L 1 009
o : |
0.025 R S ' 0.045

Less information

O 02 04 06 08
0

needed

Compression ratio = size of compressed data / size of raw data

Kim & Kaiser (2014) Phil. Trans. R. Soc. B



Example growth rule: developmental time course -
Axon growth time windows influence topology

A Non-overlapping (Serial) B Overlapping (Parallel)

s N

1 1
A 3 A 1 »
o
) 1
Early starting neurons More bidirectional connections
- tend to become hubs fewer long-distance connections

- have higherlocal efficiency
- have more long-distance connections

Model predictions are in agreementwith C. elegans connectivity

Lim & Kaiser (2015) Biological Cybernetics



Summary

7. Macroscale: 8. Robustness:

- Degree distribution - Change of network properties
Random networks after edge or node removal
Scale-free networks - simulated brain lesions

- Small-world networks
- Hierarchical networks

6. Mesoscale:
- Motifs
- Clusters/Modules

9. Modular organisation

Preferential modularity: increased local clustering and global path length
=>» better local integration and global separation of processing

Lower algorithmic entropy: less information needed to encode connectivity
= fewer genes needed during brain development

36



Further readings

Costa et al. Characterization of Complex Networks
Advances in Physics, 2006
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Bullmore & Sporns. Complex Brain Networks
Nature Reviews Neuroscience, 2009

Ed Bullmore Olaf Sporns

Kaiser et al. Simulated Brain Lesions
(brain as scale-free network)
European Journal of Neuroscience, 2007

Malcolm Young
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PLoS Computational Biology, 2009




