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Signal models

• The	signal (and	the	EAP) shape	depend	on	the	underlying	
microstructural features

• Numerical indices expressing the	microstructure can	be	derived

• Tensor-based (DTI,	multi-tensor),	MAPMRI1…

EAP ODF

Orientation	Distribution	
Function

1Ozarslan	et	al,	Mean	Apparent	Propagator	(MAP)	MRI:	A	novel	Diffusion	Imaging	Method	for	Mapping	
Tissue	Microstructure.	NeuroImage 2013



Compartmental	models

• Compartmental	models	represents	the	signal	as	a	weighted	sum	of	
signal components relying on	pre-defined	biophysical	models:
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Compartimental	models	for	Diffusion	MRI

• Recent	years	have	seen	a	proliferation	of	Multi-Compartment	(MC)	
models	developed	to	estimate	the	brain	tissue	microstructure	from	
DW-MRI	signal

• Each	of	these	models	represent	the	diffusion	signal	as	a	weighted	
sum	of	some	contributions	that	can	be	represented	by	parametric	
functions	(e.g.		a	3D	Gaussian)

• In	order	to	reduce	the	number	parameters,	these	models	make	
several	assumptions on	the	physical	properties	of	the	diffusion	in	the	
brain	tissues



The	StandardModel

• Global	model:	multi-compartment	model2,	here	called	Standard	
Model (SM)

2Novikov et	al (2016). Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation.
arXiv preprint arXiv:1612.02059.

Axially symmetric
tensorstick Isotropic tensor



The	Standard	Model:		intra-axonal	compartment

• The	intra-axonal	model	is	a	simple	stick

• A	stick		is	a	cylinder	with	radius=0
• The	only	parameter	of	the	stick	is	
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The	Standard	Model:		extra-axonal	compartment

In	the	SM	the	extra-axonal	contribution	of	the	signal	Fea is	modeled	
using	an	axially	symmetric	Gaussian
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The	Standard	Model:		Fcsf

• In	the	SM	the	Cerebrospinal	Fluid	(CSF)	compartment	Fcsf is	modeled	
using	an	isotropic	Gaussian

• λcsf is	the	free	diffusivity
• In-vivo		λcsf =	3	·	10−3 mm2/s
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The	Spherical	Harmonics	representation	of	the	fODF

• This	MC	representation	of	the	diffusion	signal	is	appropriate	only	for	a	
single	principal	diffusion	direction

• The	general	case	can	be	recovered	by	convolving	the	single	fiber	signal	
to	the	fiber	Orientation	Distribution	Function	(fODF)



The	MC	signal	model

• Solving	the	integral	of	Eq.		(2)	lead	us	to	the	complete	SM	signal	
approximation
• are	functions	as	in5 l

5Jespersen	et	al,	Modeling	dendrite	density	from	magnetic	resonance	diffusion	measurements,	Neuroimage 2007



Model	fitting

• The	SM	response	function	has	5	parameters:

• Method:	split	the	estimation	of	the	microstructural	parameters	from	
that	of	the	SH	coefficients	exploiting	the	Spherical	Mean	Technique	
(SMT)2

• Given	such	parameters	the	SH	coefficients	clm can	be	obtained	using	
the	Constrained	Spherical	Deconvolution	(CSD)	algorithm

2Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., and Alexander, D. C. (2016). Multi-compartment
microscopic diffusion imaging. NeuroImage, 139, 346-359.
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The	Spherical	Mean	Technique

• Mean	signal	as	a	function	of	b

• Using	a	sufficient	number	of	b-values	the	model	parameters	can	be	
estimated	from E(b)



The	Spherical	Mean	Technique:	issues

• Constraint:		in	order	to	fit	5	parameters	using	the	SMT	we	need	a	
dataset	with	at	least	5	different	b-values (shell)

• For	each	shell	a	sufficient number	of	directions	is	needed	to	estimate	
the	signal	mean	accurately

• Most	of	the	DW-MRI	data	do	not	possess	enough	samples	to	use	the	
SMT	to	estimate	the	SM	parameters

Implies	prior	assumptions

Simplify	the	model	by	reducing	the	number	of	
parameters



Two-parameters	models

• SM	for	single	dominant	direction
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Two-parameters	models

• SM	for	single	dominant	direction
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BS-SH

• Ball&Stick (BS)3

• We	call	the	SH-based	formulation	of	this	model	BS-SH

3Behrens et	al (2003). Characterization and propagation of uncertainty in diffusionweighted MR imaging.
Magnetic resonance in medicine, 50(5), 1077-1088.
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FORECAST

• Fiber ORientation Estimated using Continuous Axially Symmetric
Tensors (FORECAST)4 model

• Single compartment: axially symmetric tensor

• Two	parameters	

4Anderson, A. W. (2005). Measurement of fiber orientation distributions using high angular resolution	
diffusion imaging. Magnetic Resonance in Medicine, 54(5), 1194-1206.
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NODDI-SH

• Neurite	Orientation	Dispersion	and	Density	Imaging	(NODDI)5 model

• Three	compartments

• We	call	the	SH-based	formulation	of	this	model	NODDI-SH

5Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., and Alexander, D. C. (2012). NODDI: practical in vivo
neurite orientation dispersion and density imaging of the human brain.	 Neuroimage, 61(4), 1000-1016.
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MC-MDI

• Multi-Compartment	Microscopic	Diffusion	Imaging	(MC-MDI)6 model

• Two	compartments

6Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., and Alexander, D. C. (2016). Multi-compartment
microscopic diffusion imaging. NeuroImage, 139, 346-359.
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Synthetic	dataset

• Parameters space sampling

• The total number of combinations for the SM parameters is 405

• These parameters were also used to generate a ground-truth
microstructural representation (GT-SH) to be used for benchmarking
excluding the contribution of the error in the estimation of the
microstructural parameters
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Synthetic	dataset

Two	populations

1000	different	crossing	angles

Kent	distribution	to	model	dispersion

Rician noise	with	SNR=20

Human	Connectome	Project	sampling	scheme:

b=[1000,2000,3000]	s/mm2

18	b0 +	90	directions	per	shell



Mean	Square	Error	(MSE)

• GT-SH	is	the	MSE	theoretical	lower	
bound,	where	the	GT	parameters	are	
used	for	the	SH	fitting

• MC-MDI	is	the	best	model,	
followed	by	the	FORECAST

• The	models	for	which						is	a	free	
parameter	show	better	performance

�||



Intra-axonal	volume	fraction

• NODDI-SH	and	BS-SH	tend	to	
underestimate the	intra-axonal	
volume	fraction

• MC-MDI	tends	to	overestimate
νia
• In	general	MC-MDI	trend	is	
more	proportional	to	the	
Ground	Truth	(GT)	

• MC-MDI	is	the	only	model	
among	the	considered	with					as	
a	free	parameter
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Dependency	on	the	crossing	angle



Angular	Error	(AE)

• MC-MDI and FORECAST are
the models with an higher
angular resolution

• The minimum crossing angle
is less than 30 degrees

• For BS-SH and NODDI-SH
minimum crossing resolution
is ∼37 degrees



Success	Rate	(SR)

• The	SR	indicates	the	
percentage	of	correctly	
estimated	number	of	“fibers”

• MC-MDI and FORECAST are
the best models at low
crossing angles

• But not at 100%

• BS-SH and NODDI-SH appear
to be more robust for larger
crossing angles



Over	Estimation	(n+)	and	Under	Estimation	(n−)



Reminder
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Parallel	diffusivity



Parallel	diffusivity



In-vivo:	MSE

• 10	WU-MINN	HCP	subjects



In-vivo:	MSE



In-vivo:	intra-axonal	volume	fraction



In-vivo:	intra-axonal	volume	fraction



Parallel	diffusivity



In-vivo:	Parallel	diffusivity



In-vivo:	fODF
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Conclusions

• SMT	allowed	us	to	unify	several	microstructural	models	under	the	
same	mathematical	framework

• In-vivo	results	are	coherent	with	predictions	from	synthetic	data

• Models	are	consistent	across	subjects

• Angular	features	are	well	represented	by	all	models	

• Results	highlight	that	the	estimated	parameters	mirror	the	
microstructural	feature,	though	care	must	be	taken	in	the	interpretation	
of	the	results



Thank	you!


