A generalized SMT-based framework for Diffusion MRI microstructural model estimation

Gloria Menegaz¹, Mauro Zucchelli¹ Maxime Descoteaux² ¹University of Verona, Italy ²Universite de Sherbrooke, Canada

Local models of the diffusion signal

Nilsson, Winter School in Brain Connectomics, Verona, 2017

Signal models

- The signal (and the EAP) shape depend on the underlying microstructural features
- Numerical indices expressing the microstructure can be derived
- Tensor-based (DTI, multi-tensor), MAPMRI¹...

Compartmental models

• Compartmental models represents the signal as a weighted sum of signal components relying on pre-defined biophysical models:

Compartimental models for Diffusion MRI

- Recent years have seen a proliferation of Multi-Compartment (MC) models developed to estimate the brain tissue microstructure from DW-MRI signal
- Each of these models represent the diffusion signal as a weighted sum of some contributions that can be represented by parametric functions (e.g. a 3D Gaussian)
- In order to reduce the number parameters, these models make several assumptions on the physical properties of the diffusion in the brain tissues

The Standard Model

• Global model: multi-compartment model², here called *Standard Model* (SM)

²Novikov et al (2016). *Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation*. arXiv preprint arXiv:1612.02059.

The Standard Model: intra-axonal compartment

• The intra-axonal model is a simple stick

The Standard Model: extra-axonal compartment

In the SM the extra-axonal contribution of the signal F_{ea} is modeled using an axially symmetric Gaussian

- ▶ λ_{||}^{ea} is the extra-cellular parallel diffusivity
- λ^{ea}_⊥ is the *extra-cellular* perpendicular diffusivity

The Standard Model: Fcsf

- In the SM the Cerebrospinal Fluid (CSF) compartment $\rm F_{csf}~$ is modeled using an isotropic Gaussian

- λ_{csf} is the free diffusivity
- In-vivo $\lambda_{csf} = 3 \cdot 10^{-3} \text{ mm}^2/\text{s}$

The Spherical Harmonics representation of the fODF

• This MC representation of the diffusion signal is appropriate only for a single principal diffusion direction

• The general case can be recovered by convolving the single fiber signal to the fiber Orientation Distribution Function (fODF)

$$E(b, \vec{\mathbf{u}}) = \int_{\vec{\mathbf{v}} \in S^2} \rho(\vec{\mathbf{v}}) F(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) d\vec{\mathbf{v}}$$
(2)
$$\rho(\vec{\mathbf{v}}) = \sum_{l=0, even}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_l^m(\vec{\mathbf{v}})$$
(3)

With $Y_{I}^{m}(\vec{\mathbf{v}})$ are the real Spherical Harmonics (SH) functions

The MC signal model

- Solving the integral of Eq. (2) lead us to the complete SM signal approximation
- Ψ_l are functions as in⁵

$$E(b, \vec{\mathbf{u}}) = c_{00}\sqrt{4\pi\nu_{csf}}\exp\left(-b\lambda_{csf}\right) + \sum_{l=0, even}^{N}\sum_{m=-l}^{l}c_{lm}2\pi\left[\nu_{ia}\Psi_{l}(b\lambda_{\parallel}^{ia}) + \nu_{ea}\exp\left(-b\lambda_{\perp}^{ea}\right)\Psi_{l}(b(\lambda_{\parallel}^{ea}-\lambda_{\perp}^{ea}))\right]Y_{l}^{m}(\vec{\mathbf{u}})$$

⁵Jespersen et al, Modeling dendrite density from magnetic resonance diffusion measurements, Neuroimage 2007

Model fitting

- The SM response function has 5 parameters: $\lambda_{||}^{ia}, \lambda_{||}^{ea}, \lambda_{\perp}^{ea}, \nu_{ia}, \nu_{ea}$
- Method: split the estimation of the microstructural parameters from that of the SH coefficients exploiting the Spherical Mean Technique (SMT)²
- Given such parameters the SH coefficients c_{lm} can be obtained using the Constrained Spherical Deconvolution (CSD) algorithm

²Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., and Alexander, D. C. (2016). *Multi-compartment microscopic diffusion imaging*. NeuroImage, 139, 346-359.

The Spherical Mean Technique

• Mean signal as a function of b

$$\overline{E}(b) = \nu_{csf} \exp(-b\lambda_{csf}) + \frac{1}{2} \Big[\nu_{ia} \Psi_0(b\lambda_{\parallel}^{ia}) + \nu_{ea} \exp(-b\lambda_{\perp}^{ea}) \Psi_0(b(\lambda_{\parallel}^{ea} - \lambda_{\perp}^{ea})) \Big]$$

• Using a sufficient number of b-values the model parameters can be estimated from $\overline{E}(b)$

The Spherical Mean Technique: issues

• Constraint: in order to fit 5 parameters using the SMT we need a dataset with at least 5 different *b-values* (shell)

• For each shell a *sufficient* number of directions is needed to estimate the signal mean accurately

• Most of the DW-MRI data do not possess enough samples to use the SMT to estimate the SM parameters

Simplify the model by reducing the number of parameters

Implies prior assumptions

Two-parameters models

• SM for single dominant direction

 $F(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) = \nu_{ia}F_{ia}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{ea}F_{ea}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{csf}F_{csf}(b)$

Two-parameters models

• SM for single dominant direction

 $F(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) = \nu_{ia}F_{ia}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{ea}F_{ea}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{csf}F_{csf}(b)$

BS-SH

• Ball&Stick (BS)³

 $F(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) = \nu_{ia} F_{ia}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{ea} F_{ea}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{csf} F_{csf}(b)$

$$\lambda_{\parallel}^{ia} = 1.7 \cdot 10^{-3} mm^2/s$$
$$\lambda_{\parallel}^{ea} = \lambda_{\perp}^{ea}$$

• We call the SH-based formulation of this model **BS-SH**

³Behrens et al (2003). *Characterization and propagation of uncertainty in diffusionweighted MR imaging.* Magnetic resonance in medicine, 50(5), 1077-1088.

FORECAST

- Fiber ORientation Estimated using Continuous Axially Symmetric Tensors (FORECAST)⁴ model
- Single compartment: axially symmetric tensor

$$F(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) = F(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) = \nu_{ia} F_{ia}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{ea} F_{ea}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{csf} F_{csf}(b)$$

• Two parameters

$$\lambda_{\parallel}^{ea}, \lambda_{\perp}^{ea}$$

$$\lambda_{\parallel}^{ea} \ge \lambda_{\perp}^{ea}$$

$$\lambda_{\parallel}^{ea} \quad \lambda_{\perp}^{ea}$$

⁴Anderson, A. W. (2005). *Measurement of fiber orientation distributions using high angular resolution diffusion imaging.* Magnetic Resonance in Medicine, 54(5), 1194-1206.

NODDI-SH

- Neurite Orientation Dispersion and Density Imaging (NODDI)⁵ model
- Three compartments
- We call the SH-based formulation of this model NODDI-SH

$$F(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) = \nu_{ia} F_{ia}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{ea} F_{ea}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{csf} F_{csf}(b)$$

$$\begin{array}{l} \lambda_{\parallel}^{ia} = \lambda_{\parallel}^{ea} = 1.7 \cdot 10^{-3} \ \mathrm{mm}^{2}/\mathrm{s} \\ \lambda_{\perp}^{ea} = \lambda_{\parallel}^{ea} \frac{\nu_{ea}}{\nu_{ia} + \nu_{ea}} \end{array}$$

⁵Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., and Alexander, D. C. (2012). *NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain.* Neuroimage, 61(4), 1000-1016.

MC-MDI

- Multi-Compartment Microscopic Diffusion Imaging (MC-MDI)⁶ model
- Two compartments

$$F(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) = \nu_{ia} F_{ia}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{ea} F_{ea}(b, \vec{\mathbf{u}}, \vec{\mathbf{v}}) + \nu_{csf} F_{csf}(b)$$
$$\lambda_{\parallel}^{ia} = \lambda_{\parallel}^{ea}$$
$$\lambda_{\perp}^{ea} = \lambda_{\parallel}^{ea}(1 - \nu_{ia})$$

⁶Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D., and Alexander, D. C. (2016). *Multi-compartment microscopic diffusion imaging*. NeuroImage, 139, 346-359.

Synthetic dataset

• Parameters space sampling

$$\begin{split} \lambda_{\parallel}^{ia} &= [2, 2.2, 2.5] \cdot 10^{-3} mm^2 / s \\ \lambda_{\parallel}^{ea} &= [1, 1.2, 1.5] \cdot 10^{-3} mm^2 / s \\ \lambda_{\perp}^{ea} &= [0.5, 0.7, 0.9] \cdot 10^{-3} mm^2 / s \\ \nu_{csf} &= [0, 0.1, 0.2] \\ \nu_{ia} &= [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] \end{split}$$

- The total number of combinations for the SM parameters is 405
- These parameters were also used to generate a ground-truth microstructural representation (GT-SH) to be used for benchmarking excluding the contribution of the error in the estimation of the microstructural parameters

Synthetic dataset

Two populations 1000 different crossing angles

Kent distribution to model dispersion

Rician noise with SNR=20

Human Connectome Project sampling scheme:

b=[1000,2000,3000] s/mm2

 $18 b_0 + 90$ directions per shell

Mean Square Error (MSE)

- GT-SH is the MSE theoretical lower bound, where the GT parameters are used for the SH fitting
- MC-MDI is the **best model**, followed by the FORECAST
- The models for which $\lambda_{||}$ is a free parameter show better performance

Intra-axonal volume fraction

- NODDI-SH and BS-SH tend to underestimate the intra-axonal volume fraction
- MC-MDI tends to overestimate v_{ia}
- In general MC-MDI trend is more proportional to the Ground Truth (GT) ν_{ia}
- MC-MDI is the only model among the considered with $\lambda_{||} {\rm as}$ a free parameter

Dependency on the crossing angle

Angular Error (AE)

- MC-MDI and FORECAST are the models with an higher angular resolution
- The minimum crossing angle is less than 30 degrees
- For BS-SH and NODDI-SH minimum crossing resolution is ~37 degrees

Success Rate (SR)

- The SR indicates the percentage of correctly estimated number of "fibers"
- MC-MDI and FORECAST are the best models at low crossing angles
- But not at 100%
- BS-SH and NODDI-SH appear to be more robust for larger crossing angles

Over Estimation (n⁺) and Under Estimation (n⁻)

Reminder

Table 1. Table of free parameters and their relationships for the considered models. All the diffusivities λ are expressed in mm²/s. * In FORECAST $\lambda_{\parallel}^{ea} \geq \lambda_{\perp}^{ea}$.

$$\lambda_{\parallel}^{ia} = [2, 2.2, 2.5] \cdot 10^{-3} mm^2/s$$

$$\lambda_{\parallel}^{ea} = [1, 1.2, 1.5] \cdot 10^{-3} mm^2/s$$

$$\lambda_{\perp}^{ea} = [0.5, 0.7, 0.9] \cdot 10^{-3} mm^2/s$$

$$\nu_{csf} = [0, 0.1, 0.2]$$

$$\nu_{ia} = [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]$$

Parallel diffusivity

Parallel diffusivity

In-vivo: MSE

• 10 WU-MINN HCP subjects

NODDI-SH

BS-SH

0.000 0.002 0.004 0.006 0.008 0.010 0.012

In-vivo: MSE

In-vivo: intra-axonal volume fraction

NODDI-SH MC-MDI BS-SH

In-vivo: intra-axonal volume fraction

Parallel diffusivity

MC-MDI

FORECAST

0.000 0.001 0.002 0.003

In-vivo: Parallel diffusivity

In-vivo: fODF

BS-SH

FORECAST

MC-MDI

NODDI-SH

Conclusions

• SMT allowed us to unify several microstructural models under the same mathematical framework

- In-vivo results are coherent with predictions from synthetic data
- Models are consistent across subjects
- Angular features are well represented by all models

• Results highlight that the estimated parameters mirror the microstructural feature, though care must be taken in the interpretation of the results

Thank you!