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Revolution of medical imaging:

 From dissection to in-vivo in-situ medical imaging (MRI, d-MRI, CT)

 Large number of subjects: from representative individual to population

Design mathematical methods and algorithms to model and analyze the anatomy
 Statistics of organ shapes across subjects in species, populations, diseases… 

 Mean shape, Shape variability (Covariance), contrast diseases

 Model organ development across time (heart-beat, growth, ageing, ages…)

 Predictive (vs descriptive) models of evolution, Correlation with clinical variables

Computational Anatomy



Cross-sectional Deformation-based Morphometry
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]

 Observation = random deformation of a reference template 

 Deterministic template = anatomical invariants [Atlas ~ mean]

 Random deformations = geometrical variability [Covariance matrix]
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Longitudinal structural damage 

in Alzheimer’s Disease

baseline 2 years follow-up

Ventricle’s expansionHippocampal atrophyWidespread cortical thinning
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Longitudinal deformation analysis

5

time

Deformation trajectories in different reference spaces 

Mean longitudinal deformation across subjects?

Convenient mathematical settings for transformations?  
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Patient A

Patient B

? ?Template



Geometric features in Computational Anatomy

Noisy geometric features

 Tensors, covariance matrices

 Curves, fiber tracts, surfaces

 Shapes & quotient spaces

 Transformations

 Rigid, affine, locally affine, diffeomorphisms

Goal: statistical modeling at the population level

 Deal with noise consistently on these non-Euclidean manifolds

 A consistent computing framework for simple statistics 
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Simple statistics… but of geometric quantities

8

Mean unit vector on the sphere? On a double torus?

Means of 3D rotations?               

• Rotation matrix or unit quaternion: mean is not a rotation

• Euler angles: mean depend on the order
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Outline

Statistical computing on Riemannian manifolds

 Computing on Riemannian manifolds

 Simple statistics on manifolds

 Dimension reduction

An affine setting for Lie groups

Conclusions



Differentiable manifolds

Définition:

 Locally Euclidean Topological space 

which can be globally curved

 Same dimension + differential regularity

Simple Examples

 Sphere

 Saddle (hyperbolic space)

 Surface in 3D space 

And less simple ones

 Projective spaces

 3D Rotations: SO3 ~ P3

 Rigid, affine Transformation

 Diffeomorphisms
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Differentiable manifolds

Computing in a a manifold

 Extrinsic
 Embedding in ℝ𝑛

 Intrinsic
 Coordinates : charts

 Atlas = consistent set 

of charts
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 Measuring?
 Volumes (surfaces)

 Lengths

 Straight lines



g(t)

dttL  ||)(||)( gg &

• Length of a curve

Measuring extrinsic distances

Basic tool: the scalar product

X. Pennec - CobCoM - 2017/11/23 12

wvwv t ,

w

wvwv   )cos(, 

• Angle between vectors

• Norm of a vector

 vvv ,

p

v



Bernhard Riemann 

1826-1866

Measuring extrinsic distances

Basic tool: the scalar product
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Bernhard Riemann 

1826-1866

Riemannian manifolds

Basic tool: the scalar product
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dttL t  ||)(||)( )( ggg &

• Length of a curve

Bernhard Riemann 

1826-1866

• Geodesic between 2 points

• Shortest path

• Calculus of variations (E.L.) :

2nd order differential equation

(specifies acceleration)

• Free parameters: initial speed 

and starting point 
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Bases of Algorithms in Riemannian Manifolds

Operation Euclidean space Riemannian

Subtraction

Addition

Distance

Gradient descent )( ttt xCxx  

)(log yxy x

xyxy 

xyyx ),(dist
x

xyyx ),(dist

)(exp xyy x

))( (exp txt xCx
t

 

xyxy 

Reformulate algorithms with expx and logx

Vector -> Bi-point (no more equivalence classes)
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Exponential map (Normal coordinate system):

 Expx(v) = geodesic shooting at x parameterized by the initial tangent vector v

 Logx(y) = development of the manifold in the tangent space along geodesics 

 Geodesics = straight lines with Euclidean distance 

 Local  global domain: star-shaped, limited by the cut-locus 

 Covers all the manifold if geodesically complete
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Outline

Statistical computing on Riemannian manifolds

 Computing on Riemannian manifolds

 Simple statistics on manifolds

 Dimension reduction

An affine setting for Lie groups

Conclusions



Random variable in a Riemannian Manifold

Intrinsic pdf of x

 For every set H 

𝑃 𝐱 ∈ 𝐻 = න
𝐻

𝑝 𝑦 𝑑𝑀(𝑦)

 Lebesgue’s measure 

 Uniform Riemannian Mesure 𝑑𝑀 𝑦 = det 𝐺 𝑦 𝑑𝑦

Expectation of a real/vector function on M

 𝑬𝐱 𝜙 = 𝑀𝜙׬ 𝑦 𝑝 𝑦 𝑑𝑀 𝑦

 𝜙 = 𝑑𝑖𝑠𝑡2 (variance) :  𝑬𝐱 𝑑𝑖𝑠𝑡 . , 𝑦
2 = 𝑀׬ 𝑑𝑖𝑠𝑡 𝑦, 𝑧

2𝑝 𝑧 𝑑𝑀(𝑧)

 𝜙 = log 𝑝 (information) :  𝑬𝐱 log 𝑝 = 𝑀׬ 𝑝 𝑦 log(𝑝 𝑦 )𝑑𝑀 𝑦

 𝜙 = 𝑥 (mean) :  𝑬𝐱 𝐱 = 𝑀׬ 𝑦 𝑝 𝑦 𝑑𝑀 𝑦
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First Statistical Tools: Moments

Frechet / Karcher mean minimize the variance

 Variational characterization: Exponential barycenters

 Existence and uniqueness (convexity radius)

[Karcher 77 / Kendall 90 / Le / Afsari]

Support in a regular geodesic ball with 

𝑟 < 𝑟∗ =
1

2
min 𝑖𝑛𝑗 𝑀 , 𝜋/ 𝜅

 Empirical Fréchet mean: a.s. uniqueness

[Arnaudon & Miclo 2013]

Gauss-Newton Geodesic marching
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First Statistical Tools: Moments

Covariance (PCA) [higher moments]

Principal component analysis

 Tangent-PCA: principal modes of the covariance

 Principal Geodesic Analysis (PGA) [Fletcher 2004]

 Barycentric subspace analysis (BSA) [Pennec 2015] 
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[Oller & Corcuera 95, Battacharya & Patrangenaru 2002, Pennec, NSIP’99 , JMIV06 ]
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Statistical Analysis of the Scoliotic Spine

Database

 307 Scoliotic patients from the Montreal’s 

Sainte-Justine Hospital.

 3D Geometry from multi-planar X-rays

Mean

 Main translation variability is axial (growth?)

 Main rot. var. around anterior-posterior axis 

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]
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Statistical Analysis of the Scoliotic Spine

• Mode 1: King’s class I or III

• Mode 2: King’s class I, II, III 

• Mode 3: King’s class IV + V

• Mode 4: King’s class V (+II)

PCA of the Covariance: 
4 first variation modes 

have clinical meaning

[ J. Boisvert et al.  ISBI’06, AMDO’06 and IEEE TMI 27(4), 2008 ]

AMDO’06 best paper award, Best French-Quebec joint PhD 2009
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Diffusion Tensor Imaging

Covariance of the Brownian motion of water

 Filtering, regularization 

 Interpolation / extrapolation

 Architecture of axonal fibers

Symmetric positive definite matrices

 Cone in Euclidean space (not complete)

 Convex operations are stable 

 mean, interpolation

 More complex operations are not

 PDEs, gradient descent…

All invariant metrics under GL(n)

 Exponential map

 Log map

 Distance
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Manifold data on a manifold

 Anatomical MRI and DTI

 Diffusion tensor on a 3D shape

Freely available at http://www-sop.inria.fr/asclepios/data/heart

A Statistical Atlas of the Cardiac Fiber Structure
[ J.M. Peyrat, et al., MICCAI’06, TMI 26(11), 2007]
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• Average cardiac structure

• Variability of fibers, sheets



A Statistical Atlas of the Cardiac Fiber Structure
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[ R. Mollero, M.M Rohé, et al,  FIMH 2015]

10 human ex vivo hearts (CREATIS-LRMN, France)

 Classified as healthy (controlling weight, septal 

thickness, pathology examination)

 Acquired on 1.5T MR Avento Siemens

 bipolar echo planar imaging, 4 repetitions, 12 

gradients

 Volume size: 128×128×52, 2 mm resolution
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Manifold-valued image algorithms

Integral or sum in M: weighted Fréchet mean

 Interpolation

 Linear between 2 elements: interpolation geodesic

 Bi- or tri-linear or spline in images: weighted means

 Gaussian filtering: convolution = weighted mean

PDEs for regularization and extrapolation: 

the exponential map (partially) accounts for curvature

 Gradient of Harmonic energy = Laplace-Beltrami

 Anisotropic regularization using robust functions

 Simple intrinsic numerical schemes thanks the exponential maps!
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[ Pennec, Fillard, Arsigny, IJCV 66(1), 2005, ISBI 2006]
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Filtering and anisotropic regularization of DTI
Raw Euclidean Gaussian smoothing

Riemann Gaussian smoothing Riemann anisotropic smoothing
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Rician MAP estimation with Riemannian spatial prior

ML Rician MAP RicianStandard

Estimated 
tensors

FA

[ Fillard, Arsigny, Pennec, Ayache ISBI’06, TMI 26(11) 2007 ]
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Outline

Statistical computing on Riemannian manifolds

 Computing on Riemannian manifolds

 Simple statistics on manifolds

 Dimension reduction

An affine setting for Lie groups

Conclusions



 Manifold dimension reduction

 When embedding structure is already manifold (e.g. Riemannian):  

Not manifold learning (LLE, Isomap,…) but submanifold learning 

Low dimensional subspace approximation? 
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Manifold of cerebral ventricles

Etyngier, Keriven, Segonne 2007.

Manifold of brain images

S. Gerber et al, Medical Image analysis, 2009.



Dimension reduction: PCA in manifolds

Tangent PCA: 

 Maximize the explained variance in tangent space

PGA [Fletcher 2004, Sommer 2014], GPCA [Huckeman 2010]

 Find the geodesic subspace generated by rays from a point

that minimizes the unexplained variance 

 Analysis still done around a « central point »:

Problem for multimodal distributions
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Affine span in Euclidean spaces

Affine span of (k+1) points: 

weighted barycentric equation

Aff x0, x1, … xk = {x = σ𝑖 𝜆𝑖 𝑥𝑖 𝑤𝑖𝑡ℎ σ𝑖 𝜆𝑖 = 1} 

= x ∈ 𝑅𝑛 𝑠. 𝑡 σ𝑖 𝜆𝑖 (𝑥𝑖−𝑥 = 0, 𝜆 ∈ 𝑃𝑘
∗} 

Key ideas: 

 tPCA, PGA: Look at data points 

from the mean

 Triangulate position in submanifold from

several references: locus of weighted

mean
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A. Manesson-Mallet. La géométrie Pratique, 1702



Barycentric subspaces and Affine spans

Non-linear subspaces in manifolds

 Fréchet / Karcher Barycentric subspaces 
Locus of weighted Fréchet / Karcher means

 Exponential barycentric subspace (EBS)
critical points of weighted variance

 Affine span: completion of EBS 

Properties

 K-dim submanifold around reference points

 Generalize geodesic subspaces [Fletcher et al.]

 EBS partitioned in cell complex by index of critical point
brown = -2 (min) = KBS / green = -1 (saddle) / blue = 0 (max) 
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[ X.P. Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2017 ] 



The natural object for PCA:

Flags of subspaces in manifolds

Subspace approximations with variable dimension

 Optimal unexplained variance  non nested subspaces

 Nested forward / backward procedures  not optimal

 Optimize first, decide dimension later  Nestedness required

[Principal nested relations: Damon, Marron, JMIV 2014]

Barycentric subspace analysis (BSA):

 Flags of affine spans in manifolds: sequence of (nested) 𝐴𝑓𝑓 𝑥0, … 𝑥𝑖
 Energy on flags: Accumulated Unexplained Variance

 produce the right ordered flags of subspaces in Euclidean spaces 
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[ X.P. Barycentric Subspace Analysis on Manifolds, Annals of Statistics 2017 ] 



Application in Cardiac motion analysis
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Choose reference

images

Find weights li and 

SVFs vi such that:

• 𝒗𝒊 registers image

to reference i

• σ𝒊𝝀𝒊 𝒗𝒊 = 𝟎 𝒗𝟎

𝒗𝟏

𝒗𝟐

Optimize reference 

images to achieve 

best registration 

over the sequence

[ Marc-Michel Rohé et al., MICCAI 2016]



Cardiac Motion Signature

Efficient low-dimensional representation of cardiac motion

 3 references frame + 2 barycentric coeff * 30 frames
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Healthy

Tetralogy 

Of Fallots

[ Marc-Michel Rohé et al., MICCAI 2016]



Application in Cardiac motion analysis
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Barycentric Reconstruction 

(3 images)

Original sequence PCA Reconstruction 

(2 modes)

3 images + 2 coeff.

Reconstr. error: 18.75

Compression ratio: 1/10

30 images 1 image + 2 SVF + 2 coeff.

Reconstr. error: 26.32 (+40%) 

Compression ratio: 1/4

[ Marc-Michel Rohé et al., MICCAI 2016 ]



Take home messages

Natural subspaces in manifolds

 PGA & Godesic subspaces: 

look at data points from the (unique) mean

 Barycentric subspaces: 

« triangulate » several reference points

 Justification of multi-atlases?

Natural flag structure for PCA

 Hierarchically embedded approximation 

subspaces to summarize / describe data

Critical points (affine span) rather than 

minima (FBS/KBS)

 Barycentric coordinates need not be 

positive (convexity is a problem)

 Affine notion (more general than metric)
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A. Manesson-Mallet. La géométrie Pratique, 1702
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Outline

Statistical computing on Riemannian manifolds

An affine setting for Lie groups

 The bi-invariant Cartan connection structure

 Extending statistics without a metric

 The SVF framework for diffeomorphisms

Conclusions



Cross-sectional Deformation-based Morphometry
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Measure of deformation [D’Arcy Thompson 1917, Grenander & Miller]

 Observation = random deformation of a reference template 

 Deterministic template = anatomical invariants [Atlas ~ mean]

 Random deformations = geometrical variability [Covariance matrix]

Patient 3

Template

Patient 1

Patient 2

Patient 4

Patient 5


1


2


3


4


5



Limits of the Riemannian Framework

Lie group: Smooth manifold with group structure
 Composition g o h and inversion g-1 are smooth

 Left and Right translation Lg(f) = g o f    Rg (f) = f o g

 Natural Riemannian metric choices
 Chose a metric at Id: <x,y>Id

 Propagate at each point g using left (or right) translation <x,y>g = < DLg
(-1) .x , DLg

(-1) .y >Id

No bi-invariant metric in general 

 Incompatibility of the Fréchet mean with the group structure

 Left of right metric: different Fréchet means

 The inverse of the mean is not the mean of the inverse 

 Examples with simple 2D rigid transformations

 Can we design a mean compatible with the group operations?

 Is there a more convenient structure for statistics on Lie groups?
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Properties of Lie groups

Flow of a left invariant vector field ෨𝑋 = 𝐷𝐿. 𝑥 from identity

 𝛾𝑥 𝑡 exists for all time

 One parameter subgroup: 𝛾𝑥 𝑠 + 𝑡 = 𝛾𝑥 𝑠 . 𝛾𝑥 𝑡

Lie group exponential

 𝐸𝑥𝑝 𝑥 ∈ 𝔤 = 𝛾𝑥 1 𝜖 𝐺

 Diffeomorphism from a neighborhood of 0 in g to a 

neighborhood of e in G (not true in general for inf. dim)

3 curves parameterized by the same tangent vector

 Left / Right-invariant geodesics, one-parameter subgroups

Question: Can one-parameter subgroups be geodesics?
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Affine connection spaces

Affine Connection (infinitesimal parallel transport)

 Acceleration = derivative of the tangent vector along a curve

 Projection of a tangent space on 

a neighboring tangent space 

Geodesics = straight lines

 Null acceleration: 𝛻 ሶ𝛾 ሶ𝛾 = 0

 2nd order differential equation:

Normal coordinate system

 Local exp and log maps
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Adapted from Lê Nguyên Hoang, science4all.org



Canonical Connections on Lie Groups

A unique Cartan-Schouten connection

 Symmetric (no torsion) and bi-invariant

 For which geodesics through Id are one-parameter 

subgroups (group exponential)
 Matrices : M(t) = A.exp(t.V)

 Diffeos : translations of Stationary Velocity Fields (SVFs)  

Levi-Civita connection of a bi-invariant metric (if it exists)

 Continues to exists in the absence of such a metric

(e.g. for rigid or affine transformations)

Two flat connections (left and right)

 Absolute parallelism: no curvature but torsion (Cartan / Einstein)
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Outline

Statistical computing on Riemannian manifolds

Computing on Lie groups

 The bi-invariant affine Cartan connection structure

 Extending statistics without a metric

 The SVF framework for diffeomorphisms

Towards more complex geometries



Statistics on an affine connection space

Fréchet mean: exponential barycenters

 σ𝑖 𝐿𝑜𝑔𝑥 𝑦𝑖 = 0 [Emery, Mokobodzki 91, Corcuera, Kendall 99]

 Existence & local uniqueness if local convexity [Arnaudon & Li, 2005]

For Cartan-Schouten connections  [Pennec & Arsigny, 2012]

 Locus of points x such that σ𝐿𝑜𝑔 𝑥−1. 𝑦𝑖 = 0

 Algorithm: fixed point iteration (local convergence)

𝑥𝑡+1 = 𝑥𝑡 ∘ 𝐸𝑥𝑝
1

𝑛
෍𝐿𝑜𝑔 𝑥𝑡

−1. 𝑦𝑖

 Mean stable by left / right composition and inversion 

 If 𝑚 is a mean of 𝑔𝑖 and ℎ is any group element, then 

ℎ ∘ 𝑚 is a mean of ℎ ∘ 𝑔𝑖 , 𝑚 ∘ ℎ is a mean of the points 𝑔𝑖 ∘ ℎ

and 𝑚(−1) is a mean of 𝑔
𝑖
(−1)
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Special matrix groups

Heisenberg Group (resp. Scaled Upper Unitriangular Matrix Group)

 No bi-invariant metric 

 Group geodesics defined globally, all points are reachable

 Existence and uniqueness of bi-invariant mean (closed form resp. 

solvable) 

Rigid-body transformations 

 Logarithm well defined iff log of rotation part is well defined, 

i.e. if the Givens rotation have angles 𝜃𝑖 < 𝜋

 Existence and uniqueness with same criterion as for rotation 

parts (same as Riemannian)

SU(n) and GL(n)

 Logarithm does not always exists (need 2 exp to cover the group)

 If it exists, it is unique if no complex eigenvalue on the negative real line 

 Generalization of geometric mean
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Generalization of the Statistical Framework

Covariance matrix & higher order moments

 Defined as tensors in tangent space

Σ = 𝐿𝑜𝑔𝑥׬ 𝑦 ⊗ 𝐿𝑜𝑔𝑥 𝑦 𝜇(𝑑𝑦)

 Matrix expression changes

according to the basis

Other statistical tools

 Mahalanobis distance well defined and bi-invariant

 Tangent Principal Component Analysis (t-PCA)

 PGA & BSA, provided a data likelihood

 Independent Component Analysis (ICA)?
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Cartan Connections vs Riemannian

What is similar
 Standard differentiable geometric structure [curved space without torsion] 

 Normal coordinate system with Expx et Logx [finite dimension]

Limitations of the affine framework

 No metric (but no choice of metric to justify)

 The exponential does always not cover the full group

 Pathological examples close to identity in finite dimension

 In practice, similar limitations for the discrete Riemannian framework 

What we gain

 A globally invariant structure invariant by composition & inversion 

 Simple geodesics, efficient computations (stationarity, group exponential)

 The simplest linearization of transformations for statistics? 
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Outline

Statistical computing on Riemannian manifolds

Computing on Lie groups

 The bi-invariant affine Cartan connection structure

 Extending statistics without a metric

 The SVF framework for diffeomorphisms

Conclusion
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Idea: [Arsigny MICCAI 2006, Bossa MICCAI 2007, Ashburner Neuroimage 2007]

 Exponential of a smooth vector field is a diffeomorphism

 Parameterize deformation by time-varying Stationary Velocity Fields

Direct generalization of numerical matrix algorithms
 Computing the deformation: Scaling and squaring [Arsigny MICCAI 2006]

recursive use of exp(v)=exp(v/2) o exp(v/2)

 Updating the deformation parameters:  BCH formula [Bossa MICCAI 2007]

exp(v) ○ exp(εu) = exp( v + εu + [v,εu]/2 + [v,[v,εu]]/12 + … )

 Lie bracket       [v,u](p) = Jac(v)(p).u(p) - Jac(u)(p).v(p)

The SVF framework for  Diffeomorphisms

X. Pennec - CobCoM - 2017/11/23

•exp

Stationary velocity field Diffeomorphism
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Temporal Evolution with Deformation-based Morphometry
Alzheimer’s atrophy trajectory

Baseline MRI Follow-up MRI

=exp(v)

Atrophy flow encoded by the dense stationary velocity field  

[Lorenzi et al, MICCAI 2012]X. Pennec - CobCoM - 2017/11/23 53

[ Lorenzi, Ayache, Frisoni, Pennec, Neuroimage 81, 1 (2013) 470-483 ]

https://team.inria.fr/asclepios/software/lcclogdemons/



Longitudinal deformation analysis in AD
From patient specific evolution to population trend

(parallel transport of SVS parameterizing deformation trajectories) 

 Inter-subject and longitudinal deformations are of different nature

and might require different deformation spaces/metrics

 Consistency of the numerical scheme with geodesics?
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Patient A

Patient B

? ?Template

[Lorenzi, Pennec: Efficient Parallel Transport of Deformations in Time Series

of Images: from Schild's to pole Ladder, JMIV 50(1-2):5-17, 2013 ]



Longitudinal model for AD

58

Estimated from 1 year changes – Extrapolation to 15 years

70 AD subjects (ADNI data)

ObservedExtrapolated Extrapolated
year
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Mean deformation / atrophy per group 
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M Lorenzi, N Ayache, X Pennec G B. Frisoni, for ADNI. Disentangling the normal aging from the pathological Alzheimer's disease 

progression on structural MR images. 5th Clinical Trials in Alzheimer's Disease (CTAD'12), Monte Carlo, October 2012. (see also 

MICCAI 2012)



Study of prodromal Alzheimer’s disease 

Linear regression of the SVF over time: interpolation + prediction
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0*))(~()( TtvExptT 

Multivariate group-wise comparison 

of the transported SVFs shows 

statistically significant differences 

(nothing significant on log(det) )

[Lorenzi, Ayache, Frisoni, Pennec, in Proc. of MICCAI 2011]
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Outline

Statistical computing on Riemannian manifolds

An affine setting for Lie groups

Beyond Riemannian and affine geometries?



Geometric Statistics: 

Riemannian, affine structures and beyond

Riemannian / affine manifolds

 Impact of curvature on non-asymptotic Fréchet mean estimations? 

 Sharp theorems for existance and uniqueness? For Karcher mean? 

 A CLT for multiple Karcher p-means / exponential barycenters?

Flag manifolds for hierarchical subspace approximations

 Metrics on flag-manifolds and limit towards multi-jets?

 Generalization of ICA or iterative least-squares methods (PLS)?

 Algorithms for manifold dimension reduction?

Quotient spaces

 Kendall shape spaces; curves, surfaces, images / parameterization

 Inconsistency of Fréchet mean in q-space (extrinsic curvature of orbit)

 Orbifolds and stratified spaces: Continuous and discrete geometry?
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Non quadratic metric: Statistics on Finsler spaces?

Finsler manifold-valued image processing?
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Towards more complex geometries?

[ Image from Sepasian, Thije Boonkkamp, Florack, Ter Haar Romeny, Vilanova

Riemann-Finsler Multi-valued Geodesic Tractography for HARDI ]

[ Image shamelessly stolen 

from Luc Florac’s talk]



Laminar sheets in the myocardium:

 Torsion: Non-integrable geometry!
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Towards more complex geometries?



Towards more complex geometries?

Fibre bundles 

 Multiscale LDDMM [Sommer et al, JMIV 2013]

 Locally affine atoms of transformation: 

 Jetlets diffeomorphisms [Sommer SIIMS 2013, Jacobs / Cotter 2014]

 Parametric Polyaffine deformations [Arsigny et al., MICCAI 06, JMIV 09] 

Log demons projected but with 204 parameters instead of a few millions
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expp

Stationary velocity fields Diffeomorphism with 204 parameters 

[McLeod, Miccai 2013]

AHA regions



Geometric Statistics for anatomical shapes

Study geometric structures

 Riemannian, Finsler, affine, bundles, Lie groups

Generalize statistics

 Real data have noise

 Approximate invariance, factor analysis…

Design algorithm 

 Dimension reduction, Image processing…

With important medical applications

 Heart, brain diseases
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Publications: https://team.inria.fr/asclepios/publications/

Software: https://team.inria.fr/asclepios/software/

Thank You!
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