
Functional connectomics:
Extracting and quantifying connectivity in fMRI

Gaël Varoquaux



Functional connectivity

Captures functional interactions
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Probing rest

Activation mapping is paradigm-driven: not ecologic
Resting-state probes intrinsic structure

Activation mapping requires demanding tasks
∆ inapplicable to diminished subjects

Resting-state is easily applicable everywhere

Population imaging

Scanning many subjects to study variability
Links with neuropsychological profiling, genomics...
A window to imaging epidemiology

Rest fMRI on dozens of thousands of subjects
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The brain at rest?
Metabolism (measured via PET)

The brain represents 2% of body weight, but 20% of
energy consumed
Di�cult cognitive tasks modulate consumption by
less than 10%

[Raichle and Mintun 2006]

Neural firing never stop (EEG/MEG evidence)

Study of brain activity in the absence of task
“Resting state”
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Resting-state activity to study cognition?
Shared structured between on-going and evoked

[Biswal... 1995]

Task activation Rest correlation

Seed

[Kenet... 2003]

Spont. Evoked

[Biswal... 1995]: fMRI
Finger-tapping task to map the motor finger cortex
During rest: which voxels correlate to the activity of
this region?

The physical brain architecture (connections,
cortical columns) is present in the absence of stimuli

“Intrinsic” brain functional architecture

G Varoquaux 5



Resting-state activity to study cognition?
Shared structured between on-going and evoked
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Task activation Rest correlation

Seed

[Kenet... 2003]

Spont. Evoked

[Kenet... 2003]: Voltage sensitive dye imaging
Visual cortex: cortical columns related to stimuli
orientation
Without stimuli, similar activity maps sometimes
appear
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Brain structures not directly task-related
The “default mode network”

Brain regions that
deactivate during task

[Raichle... 2001]

Appear as an integrated
network during rest

[Greicius... 2003]

G Varoquaux 6



Notion of resting-state network

Resting-state activity can be decomposed into
networks

How to do it systematically is a di�cult question...
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Capturing behavior or phenotype
[Lewis... 2009] Learning sculpts the spontaneous activity of the

resting human brain

Strong perceptual training changed resting-state correlations

Cognition-less intrinsic activity

[Doria... 2010] Emergence

of resting state networks in

the preterm human brain

Awake Low Moderate

[Stamatakis... 2010]
Changes in resting neural

connectivity during

propofol sedation
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Functional connectivity and resting-state

Notion of distributed functional networks

“Functional connectivity” links and reveals them

They correspond to an “intrinsic” brain architecture

They can capture phenotype with simple
experiments applicable disabled patient
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Data analysis: conceptual models

Functional regions

Functional connections

Variations in connections
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Data analysis: conceptual models

Functional regions

Functional connections

Variations in connections

RS-fMRI

Functional
connectivity

Time series

2
4

3

1

Diagnosis

ROIs
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Outline

1 Spatial analysis

2 Connectome: graph structure of brain
activity

3 Comparing connectomes
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1 Spatial analysis

Defining brain territories:
Functional networks

Functional regions
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Defining functional regions

Dividing the brain in regions
anatomical atlases, functional atlases, region extraction methods

Some examples
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1 Anatomical regions and atlases
Anatomical atlases do not resolve functional
structures
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1 Clustering approaches

[Thirion... 2014]

Group together voxels with similar time courses

... ... ...

... ...

Give a parcellation:
each and every voxel is a�ected to one cluster

G Varoquaux 15



1 Clustering approaches: K-Means

[Thirion... 2014]

Finds cluster centers (prototype
time-series) and assignements to
minimize squared residuals

Pros
There exists fast variants
Good for few clusters

Cons
No spatial constraint

∆ (smooth the data)
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1 Clustering approaches: Normalized cuts

[Craddock... 2012, Thirion... 2014]

A variant of spectral clustering
Adds a “surface energy” term: cost
of cutting the graph of neighbors

Pros
Spatial constraints
Good for few clusters

Cons
Slow
Very geometrical

G Varoquaux 17



1 Clustering approaches: Ward clustering

[Thirion... 2014]

... ... ...

... ...

An algomerative clustering
approach that minimizes
variance

Pros
Fast spatial constraints

(even with many clusters)
Good for many clusters

Cons
Capture noise in big clusters

G Varoquaux 18



1 Clustering: Which approach?

[Thirion... 2014]

Validation is hard
Signal fit

101 102 103 104

nb of parcels

Lo
g-

lik
el

ih
oo

d

ncuts
ward
kmeans

K-means for small # of clusters
Ward for large # of clusters
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1 Network extraction: linear decompositions models

Working hypothesis:
Observing linear mixtures of networks at rest

Time courses
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1 Network extraction: linear decompositions models

Working hypothesis:
Observing linear mixtures of networks at rest

Time courses

Dorsal Att.
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1 Network extraction: linear decompositions models
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1 Network extraction: linear decompositions models

Working hypothesis:
Observing linear mixtures of networks at rest

Time courses

Salience

G Varoquaux 20



1 Network extraction: linear decompositions models

Working hypothesis:
Observing linear mixtures of networks at rest

Time courses

Ventral Att.
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1 Network extraction: linear decompositions models

Working hypothesis:
Observing linear mixtures of networks at rest

Time courses

Parietal
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1 Network extraction: linear decompositions models

Working hypothesis:
Observing linear mixtures of networks at rest

Time courses

Observe a mixture

How to unmix networks?
G Varoquaux 20



1 Spatial modes: ICA decomposition
tim

e
voxels

tim
e

voxels

tim
e voxels

Y +E · S=

25

N

Decomposing time series into:
covarying spatial maps, S
uncorrelated residuals, N

p ICA: minimize mutual information across S
[Kiviniemi... 2003, Beckmann and Smith 2004, Varoquaux... 2010c]

G Varoquaux 21



1 Spatial modes: ICA decomposition
tim

e
voxels

tim
e

voxels

tim
e voxels

Y +E · S=

25

N

Decomposing time series into:
covarying spatial maps, S
uncorrelated residuals, N

p ICA: minimize mutual information across S

Histogram of interesting maps are non-Gaussian

G Varoquaux 21



1 Spatial modes: ICA decomposition
tim

e
voxels

tim
e

voxels

tim
e voxels

Y +E · S=

25

N

Decomposing time series into:
covarying spatial maps, S
uncorrelated residuals, N

p ICA: minimize mutual information across S
G Varoquaux 21



1 Spatial modes: Sparse decomposition
tim

e
voxels

tim
e

voxels

tim
e voxels

Y +E · S=

25

N

Decomposing time series into:
covarying spatial maps, S
uncorrelated residuals, N

Sparse decompositions: sparse penalty on maps

Estimation via minimization:
loss (error term) + penalty

E, S = argmin
E,S

ÎY ≠ EST Î2
+ ⁄ÎSÎ1

¸1 norm on S creates sparsity

G Varoquaux 21



1 Spatial modes: Sparse decomposition

[Varoquaux in prep]

Sparse decomposition

ICA

G Varoquaux 22



1 Multi-subject dictionary learning MSDL

[Varoquaux... 2011]

25 x
Subject

maps
Group

mapsTime series

Subject level spatial patterns:
Ys = UsVs

T + Es , Es ≥ N (0, ‡I)

Group level spatial patterns:
Vs = V + Fs , Fs ≥ N (0, ’I)

Sparsity and spatial-smoothness prior:
V ≥ exp (≠› �(V)), �(v) = ÎvÎ1+

1
2vTLv
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1 Multi-subject dictionary learning MSDL

[Varoquaux... 2011]

Estimation: maximum a posteriori
argmin
Us ,Vs ,V

ÿ

sujets

A

ÎYs ≠ UsVsT Î2

Fro

+ µÎVs ≠ VÎ2

Fro

B

+ ⁄ �(V)
Data fit Subject

variability
Penalization: sparse
and smooth maps
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1 Multi-subject dictionary learning MSDL

[Varoquaux... 2011]

Estimation: maximum a posteriori
argmin
Us ,Vs ,V

ÿ

sujets

A

ÎYs ≠ UsVsT Î2

Fro

+ µÎVs ≠ VÎ2

Fro

B

+ ⁄ �(V)
Data fit Subject

variability
Penalization: sparse
and smooth maps

Alternate optimization on Us , Vs , V:
Update Us: standard dictionary learning procedure

[Mairal... 2010]

Update Vs: ridge regression on (Vs ≠ V)T

Update V: proximal operator for ⁄ �:
argmin

v

Sÿ

s=1

1
2Îvs ≠ vÎ2

2 + “ �(v) = prox
“/S �

v̄, V̄ = means Vs
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1 From group to subject networks MSDL

[Varoquaux... 2011]

Multi-Subject Dictionary Learning

G Varoquaux 25



1 From group to subject networks MSDL

[Varoquaux... 2011]

Individual maps + Population-level atlas
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1 Defining regions: linear decompositions
[Kiviniemi... 2009] Extracting many networks with
ICA almost forms a brain parcellation

G Varoquaux 27



1 In dictionary learning: Total-variation MSDL
Create a region-forming penalty:

Total-variation penalization
Impose sparsity on the gradient
of the image:

p(w) = ¸1(Òw)

Original Clustering Total-variationg

G Varoquaux 28



1 In dictionary learning: Total-variation MSDL

[Abraham... 2013]

Ventricular system Visual Cortex
L R

y=-47 x=51

L R

z=11

L R

y=-17 x=-47

L R

z=8

TPJ Auditory Network
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[Abraham... 2013]

Data-driven brain parcellations

MSDL Group ICA

Ward K-Means
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[Abraham... 2013]

Data-driven brain parcellations
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Functional regions

AAL Smith 2009
ICAs

Craddock
2011 Ncuts

Abraham 2013
TV-MSDL

Ward

Harvard-
Oxford

High model
order ICA

K-Means Varoquaux
2011 Smooth-

MSDL

Yeo 2011
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1 In connectome prediction settings

RS-fMRI

Functional
connectivity

Time series

2
4

3

1

Diagnosis

ROIs

Choice of regions for best prediction?

[Reddy in prep]
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2 Connectome: graph structure
of brain activity

Functional connectome
Graph of interactions between regions

[Varoquaux and Craddock 2013]
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2 Graphical model in cognitive neuroscience

Whish list
Causal links
Directed model:
IPS = V 2 + MT
FEF = IPS + ACC

Unreliable delays (HRF)
Few samples

◊ many signals
Heteroscedastic noise
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2 Graphical model in cognitive neuroscience

Whish list
Causal links
Directed model:
IPS = V 2 + MT
FEF = IPS + ACC

Unreliable delays (HRF)
Few samples

◊ many signals
Heteroscedastic noise

Independence structure
Knowing IPS, FEF is independent of V2 and MT

G Varoquaux 34



2 From correlations to connectomes

Conditional independence structure?

G Varoquaux 35



2 Probabilistic model for interactions
Simplest data generating process

= multivariate normal:

P(X) Ã
Ú

|�≠1|e≠1
2XT �≠1X

Model parametrized by inverse covariance matrix,
K = �≠1: conditional covariances

Goodness of fit:
likelihood of observed covariance �̂ in model �

L(

ˆ�|K) = log |K| ≠ trace(

ˆ�K)

G Varoquaux 36



2 Graphical structure from correlations

Observations
Covariance

0

1
2

3
4

Diagonal:
signal variance

Direct connections
Inverse covariance

0

1
2

3
4

Diagonal:
node innovation
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2 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence

Reflects the large-scale
brain interaction structure

Ill-posed problem:
multi-collinearity
∆ noisy partial correlations

Independence between nodes makes estimation
of partial correlations well-conditionned.
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2 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence
Ill-posed problem:
multi-collinearity
∆ noisy partial correlations

Independence between nodes makes estimation
of partial correlations well-conditionned.

Chicken and egg problem
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2 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence
Ill-posed problem:
multi-collinearity
∆ noisy partial correlations

Independence between nodes makes estimation
of partial correlations well-conditionned.

0

1
2

3
4

0

1
2

3
4

+
Joint estimation:

Sparse inverse covariance
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2 Sparse inverse covariance: penalization

[Friedman... 2008, Varoquaux... 2010b, Smith... 2011]

Maximum a posteriori:
Fit models with a penalty
Sparsity ∆ Lasso-like problem: ¸1 penalization

K = argmin

Kº0
L(

ˆ�|K) + ⁄ ¸1(K)

Data fit,
Likelihood

Penalization,

G Varoquaux 39



2 Sparse inverse covariance: penalization

[Varoquaux... 2010b]

�̂≠1 Sparse
inverse

Likelihood of new data (cross-validation)
Subject data, �≠1 -57.1

Subject data, sparse inverse 43.0

G Varoquaux 40



2 Limitations of sparsity Skeptical neuroimager

Theoretical limitation to sparse recovery
Number of samples for s edges, p nodes:
n = O1

(s + p) log p
2

[Lam and Fan 2009]

High-degree nodes fail [Ravikumar... 2011]

Empirically
Optimal graph
almost dense

2.5 3.0 3.5 4.0
−log10λ

Te
st-

da
ta

 li
ke

lih
oo

d

Sparsity

[Varoquaux... 2012] Very sparse graphs
don’t fit the data
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2 Multi-subject to overcome subject data scarsity

[Varoquaux... 2010b]

�̂≠1 Sparse
inverse

Sparse group
concat

Likelihood of new data (cross-validation)
Subject data, �≠1 -57.1

Subject data, sparse inverse 43.0
Group concat data, �≠1 40.6

Group concat data, sparse inverse 41.8

Inter-subject variability

G Varoquaux 42



2 Multi-subject sparsity

[Varoquaux... 2010b]

Common independence structure but di�erent
connection values

{Ks} = argmin

{Ksº0}
ÿ

s
L(

ˆ�s |Ks
) + ⁄ ¸21({Ks})

Multi-subject data fit,
Likelihood

Group-lasso penalization

G Varoquaux 43



2 Multi-subject sparsity

[Varoquaux... 2010b]

Common independence structure but di�erent
connection values

{Ks} = argmin

{Ksº0}
ÿ

s
L(

ˆ�s |Ks
) + ⁄ ¸21({Ks})

Multi-subject data fit,
Likelihood

¸1 on the connections of
the ¸2 on the subjects

G Varoquaux 43



2 Multi-subject sparse graphs perform better

[Varoquaux... 2010b]

�̂≠1 Sparse
inverse

Population
prior

Likelihood of new data (cross-validation) sparsity
Subject data, �≠1 -57.1

Subject data, sparse inverse 43.0 60% full
Group concat data, �≠1 40.6

Group concat data, sparse inverse 41.8 80% full
Group sparse model 45.6 20% full
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2 Independence structure of brain activity

Subject-sparse
estimate
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2 Independence structure of brain activity

Population-
sparse estimate
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2 Large scale organization: communities
Graph communities

[Eguiluz... 2005]

Non-sparse

Neural communities
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2 Large scale organization: communities
Graph communities

[Eguiluz... 2005]

Group-sparse

Neural communities
= large known functional networks [Varoquaux... 2010b]
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2 Giving up on sparsity?

Sparsity is finicky
Sensitive hyper-parameter
Slow and unreliable convergence
Unstable set of selected edges

Shrinkage
Softly push partial correlations to zero

�Shrunk = (1 ≠ ⁄)�MLE + ⁄Id

Ledoit-Wolf oracle to set ⁄
[Ledoit and Wolf 2004]
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3 Comparing connectomes
from connectomes
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Detecting di�erences in connectivity
Functional markers on diminished patients?

Stroke outcome prognosis in ongoing activity

?
?

?
…

[Varoquaux... 2010a]
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3 Failure of univariate approach on correlations

Subject variability spread across correlation matrices

Control Control Control Large lesion

d� = �2 ≠ �1 is not definite positive
∆ contradictory with Gaussian models

� does not live in a vector space
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3 Inverse covariance very noisy

Partial correlations are hard to estimate

Control Control Control Large lesion
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3 Simulation on a toy problem
Simulate two processes with di�erent inverse covariance
K1: K1 ≠ K2: �1: �1 ≠ �2:

Add jitter in observed covariance... sample
MSE(K1 ≠ K2): MSE(�1 ≠ �2):

Non-local e�ects and non homogeneous noise
G Varoquaux 52



3 Theoretical settings: comparison of estimates

θ¹
θ²

(  )θ¹I -1
(  )θ²I -1

Observations in 2 populations: X1 and X2

Goal: comparing estimates: ◊̂(X1) and ◊̂(X1)

Asymptotic normality: ◊̂(X1) ≥ N 1
◊1, I(◊1)≠12
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3 Theoretical settings: comparison of estimates

Mani
fold

[Rao 1945] Fisher information I defines a metric on
the manifold of models.

We use it to choose a global parametrization for
comparisons
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3 Covariance manifold – Sym+
n

Metric tensor (Fisher information) [Lenglet... 2006]
Èd�1, d�2Í� = 1

2trace(�≠1 d�1 �≠1 d�2)

Nice properties of the Sym+
n

manifold (Lie group):
metric can be fully integrated, gives rise to global
mapping to a vector space (Logarithmic map).
...�1, �2

...
2
�1

=
...log

1
�1

≠ 1
2�2�1

≠ 1
2
2...

2
,

Locally:
...�1, �2

...�1
Ã

---trace(�1
≠ 1

2�2�1
≠ 1

2 ) ≠ p
---

= Îd�ÎFro

where d� = �≠1/2
1 �2 �≠1/2

1
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3 Reparametrization for uniform error geometry
Logarithmic map:

�1 œ Sym+
n

�2 œ Sym+
n

æ ≠≠≠æ�1�2 œ R 1
2 p (p≠1)

Controls
Patient

Controls
Patient
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3 Reparametrization for uniform error geometry
Logarithmic map:

�1 œ Sym+
n

�2 œ Sym+
n

æ ≠≠≠æ�1�2 œ R 1
2 p (p≠1)

d(�1, �2) = Î≠≠≠æ�1�2Î2

Controls

Patient

d⇥

Mani
fold

Tangent 
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3 Statistics...

Do intrinsic statistics on the parameterization:
PDF
Mean
Parameter-level hypothesis testing
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3 Random e�ects on the covariance manifold
Population covariance distribution: generalized normal

p(�) Ã exp
Q

a≠ 1
2‡2Î�ı�Î2

�ı

R

b (1)

Population mean: (Frechet mean)
�ı = argmin

�

ÿ

i

Î��
i

Î2
� (2)

[Pennec 2006]
Edge-level statistics

H0: subject œ group model (1)
≠æd� ≥ N (0, ‡I) : Independant coe�cients

∆ Univariate statistics on d�
i ,j

[Varoquaux... 2010a]G Varoquaux 57



3 Residuals
Correlation matrices: � -1.0 0.0 1.0

Residuals: d� -1.0 0.0 1.0

Control Control Control Large lesion
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3 Number of edge-level di�erences detected

1 2 3 4 5 6 7 8 9 10
Patient number

0
1
2
3
4
5
6
7
8
9
10

N
um

be
ro

fd
et

ec
tio

ns
Detections in tangent space
Detections in Rn×n

p-value: 5·10≠2

Bonferroni-correctedG Varoquaux 59



3 Post-stroke covariance modifications

p-value: 5·10≠2

Bonferroni-corrected
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3 Post-stroke covariance modifications

p-value: 5·10≠2

Bonferroni-corrected
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3 In connectome prediction settings

RS-fMRI

Functional
connectivity

Time series

2
4

3

1

Diagnosis

ROIs

Connectivity matrix
Correlation
Partial correlations
Tangent space

Prediction accuracy

Autism
[Abraham2016]

[Reddy in prep]
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Time series
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3 In population estimation settings
Dispersion of covariances in tangent space
James-Stein shrinkage using this population model

∆ Gives better biomarkers

Covariance space

Tangent space

mean of covariances
empirical covariance

covariance embedding
reference (mean)

population dispersion 
(covariance)

Shrinkage

shrinkage of a
new estimate

[Rahim... 2017]
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Statistics on covariance matrices

Do not live in vector space:
∆ coe�cients are not independent

Are a multivariate model
∆ can be reparametrized with Cramer-Rao metric
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Population imaging and biomarkers
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Brain aging: a biomarker and its covariates

[Liem... 2016]

Predicting brain aging ”= chronological age
Combines brain connectivity and morphology
Predicts age with a mean absolute error of 4.3 years

Discrepency with chronological age
correlates with cognitive impairment

0 2 4
Brain aging discrepancy

(years)

-0.38

0.74

1.72

Objective Cognitive
Impairment group

Normal
Mild
Major Biomarker

surrogate,
but useful
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Heterogeneity: predicting autism across sites

Ac
cu

ra
cy

Fraction of subjects used

More data is better (up to 1000 subjects)
[Abraham... 2016]
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@GaelVaroquaux

Software

Nilearn: neuroimaging

http://nilearn.github.io

ni

Extracting signal in brain images
Simple visualizations
Extracting connectomes
Learning networks and regions

Very easy to install and to script

http://nilearn.github.io


@GaelVaroquaux

Software

Scikit-learn: machine learning

http://scikit-learn.org

Supervised & unsupervised learning
> 160 models
Sparse models, random forests, clustering...
Model selection, parallel computing

Excellent documentation

http://scikit-learn.org


@GaelVaroquaux

Connectomics: from mapping intrinsic activity
to predicting phenotype

RS-fMRI

Functional
connectivity

Time series

2
4

3

1

Diagnosis

ROIs

Region extractions
∆ Dictionary learning

Comparing connectomes
∆ Tangent space
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