Functional connectomics: Extracting and quantifying connectivity in fMRI

Gaël Varoquaux

Functional connectivity

Captures functional interactions

Probing rest

 Activation mapping is paradigm-driven: not ecologic Resting-state probes *intrinsic* structure

■ Activation mapping requires demanding tasks ⇒ inapplicable to diminished subjects Resting-state is easily applicable everywhere G Varoquaux

Probing rest

Population imaging

 Scanning many subjects to study variability
 Links with neuropsychological profiling, genomics...
 A window to imaging epidemiology Rest fMRI on dozens of thousands of subjects

■ Activation mapping requires demanding tasks ⇒ inapplicable to diminished subjects Resting-state is easily applicable everywhere G Varoquaux

The brain at rest?

Metabolism (measured via PET)

- The brain represents 2% of body weight, but 20% of energy consumed
- Difficult cognitive tasks modulate consumption by less than 10%

[Raichle and Mintun 2006]

Neural firing never stop (EEG/MEG evidence)

Study of brain activity in the absence of task "Resting state"

Resting-state activity to study cognition?

Shared structured between on-going and evoked

[Biswal... 1995]

[Biswal... 1995]: fMRI
Finger-tapping task to map the motor finger cortex
During rest: which voxels correlate to the activity of this region?

Resting-state activity to study cognition?

Shared structured between on-going and evoked

[Biswal... 1995]

- [Kenet... 2003]: Voltage sensitive dye imaging
 Visual cortex: cortical columns related to stimuli orientation
- Without stimuli, similar activity maps sometimes appear

Resting-state activity to study cognition?

Shared structured between on-going and evoked

The physical brain architecture (connections, cortical columns) is present in the absence of stimuli

Brain structures not directly task-related

The "default mode network"

Minimum Decrease

Maximum

Decrease

 Brain regions that deactivate during task [Raichle... 2001]

 Appear as an integrated network during rest [Greicius... 2003]

Notion of resting-state network

Resting-state activity can be decomposed into networks

How to do it systematically is a difficult question...

Capturing behavior or phenotype

[Lewis... 2009] Learning sculpts the spontaneous activity of the resting human brain

Strong perceptual training changed resting-state correlations

Cognition-less intrinsic activity

[Doria... 2010] Emergence of resting state networks in the preterm human brain

Low

Moderate

[Stamatakis... 2010] Changes in resting neural connectivity during propofol sedation

Awake G Varoquaux

Functional connectivity and resting-state

Notion of distributed functional networks

- "Functional connectivity" links and reveals them
- They correspond to an "intrinsic" brain architecture
- They can capture phenotype with simple experiments applicable disabled patient

Functional regions

Functional connections

Variations in connections

Outline

1 Spatial analysis

2 Connectome: graph structure of brain activity

3 Comparing connectomes

1 Spatial analysis

Defining brain territories: Functional networks Functional regions

Defining functional regions

Dividing the brain in regions

anatomical atlases, functional atlases, region extraction methods

Some examples

1 Anatomical regions and atlases

Anatomical atlases do not resolve functional structures

Harvard Oxford

1 Clustering approaches

Group together voxels with similar time courses

Give a *parcellation*: each and every voxel is affected to one cluster

[Thirion... 2014]

1 Clustering approaches: K-Means

Finds cluster centers (prototype time-series) and assignements to minimize squared residuals

Pros

There exists fast variantsGood for few clusters

Cons

■ No spatial constraint ⇒ (smooth the data)

KMeans

[Thirion... 2014]

1 Clustering approaches: Normalized cuts

A variant of *spectral clustering* Adds a "surface energy" term: cost of cutting the graph of neighbors

Pros

Spatial constraints
 Good for few clusters

Cons Slow Very geometrical

[Craddock... 2012, Thirion... 2014]

1 Clustering approaches: Ward clustering

An algomerative clustering approach that minimizes variance

Pros

 Fast spatial constraints (even with many clusters)
 Good for many clusters

Cons

Capture noise in big clusters

[Thirion... 2014]

1 Clustering: Which approach?

Validation is hard

[Thirion... 2014]

1 Clustering: Which approach?

Validation is hard

K-means for small # of clusters
Ward for large # of clusters

G Varoquaux

[Thirion... 2014]

Observing linear mixtures of networks at rest

Observing linear mixtures of networks at rest

Working hypothesis:

Observing linear mixtures of networks at rest

ime courses my when when the many mm M Observe a mixture Min May and March Mr. mmmmmmmmmm

How to unmix networks?

1 Spatial modes: ICA decomposition

Decomposing time series into: covarying spatial maps, S uncorrelated residuals, N

ICA: minimize mutual information across S

[Kiviniemi... 2003, Beckmann and Smith 2004, Varoquaux... 2010c] G Varoquaux

21

1 Spatial modes: ICA decomposition

voxels

Histogram of interesting maps are non-Gaussian

ICA: minimize mutual information across S

1 Spatial modes: ICA decomposition

voxels

ICA: minimize mutual information across S

1 Spatial modes: Sparse decomposition

Estimation via minimization:

loss (error term) + penalty

$$\mathsf{E}, \mathsf{S} = \operatorname*{argmin}_{\mathsf{E},\mathsf{S}} \| \mathsf{Y} - \mathsf{E} \, \mathsf{S}^{\mathcal{T}} \|^2 + \lambda \| \mathsf{S} \|_1$$

ℓ_1 norm on S creates sparsity

Sparse decompositions: sparse penalty on maps

1 Spatial modes: Sparse decomposition

[Varoquaux in prep]

1 Multi-subject dictionary learning

Subject level spatial patterns: $\mathbf{Y}^{s} = \mathbf{U}^{s} \mathbf{V}^{s^{T}} + \mathbf{E}^{s}, \qquad \mathbf{E}^{s} \sim \mathcal{N}(\mathbf{0}, \sigma \mathbf{I})$

Group level spatial patterns: $\mathbf{V}^{s} = \mathbf{V} + \mathbf{F}^{s}, \qquad \mathbf{F}^{s} \sim \mathcal{N}(\mathbf{0}, \zeta \mathbf{I})$

Sparsity and spatial-smoothness prior:

$$\mathbf{V} \sim \exp{(-\xi \, \Omega(\mathbf{V}))}, \qquad \quad \Omega(\mathbf{v}) = \|\mathbf{v}\|_1 + \frac{1}{2} \mathbf{v}^T \mathbf{L} \mathbf{v}$$

G Varoquaux

MSDL

1 Multi-subject dictionary learning

Estimation: maximum a posteriori $\underset{\mathbf{U}^{s},\mathbf{V}^{s},\mathbf{V}}{\operatorname{sujets}} \underbrace{ \left(\| \mathbf{Y}^{s} - \mathbf{U}^{s} \mathbf{V}^{sT} \|_{\operatorname{Fro}}^{2} + \mu \| \mathbf{V}^{s} - \mathbf{V} \|_{\operatorname{Fro}}^{2} \right)}_{\operatorname{Data fit}} + \lambda \Omega(\mathbf{V})$ $\underset{\operatorname{variability}}{\operatorname{Subject}} \underbrace{ \left(\| \mathbf{V}^{s} - \mathbf{U}^{s} \mathbf{V} \|_{\operatorname{Fro}}^{2} + \mu \| \mathbf{V}^{s} - \mathbf{V} \|_{\operatorname{Fro}}^{2} \right)}_{\operatorname{and smooth maps}} + \lambda \Omega(\mathbf{V})$

1 Multi-subject dictionary learning

Estimation: maximum a posteriori $\underset{\mathbf{U}^{s},\mathbf{V}^{s},\mathbf{V}}{\operatorname{sujets}} \underbrace{ \left(\| \mathbf{Y}^{s} - \mathbf{U}^{s} \mathbf{V}^{sT} \|_{\operatorname{Fro}}^{2} + \mu \| \mathbf{V}^{s} - \mathbf{V} \|_{\operatorname{Fro}}^{2} \right)}_{\operatorname{Data fit}} + \lambda \Omega(\mathbf{V})$ $\underset{\operatorname{Variability}}{\operatorname{Subject}} \xrightarrow{\operatorname{Penalization: sparse}}_{\operatorname{and smooth maps}}$

Alternate optimization on U^s, V^s, V:

Update U^s: standard dictionary learning procedure [Mairal... 2010]

Update V^s: ridge regression on $(\mathbf{V}^s - \mathbf{V})^T$

Update V: proximal operator for $\lambda \Omega$: $\underset{\mathbf{v}}{\operatorname{argmin}} \sum_{s=1}^{s} \frac{1}{2} \|\mathbf{v}^{s} - \mathbf{v}\|_{2}^{2} + \gamma \Omega(\mathbf{v}) = \underset{\gamma/s \Omega}{\operatorname{prox}} \mathbf{\bar{v}}, \qquad \mathbf{\bar{V}} = \underset{s}{\operatorname{mean}} \mathbf{V}^{s}$

G Varoquaux

[Varoquaux... 2011] 24

1 From group to subject networks

MSDL

Multi-Subject Dictionary Learning

1 From group to subject networks

Individual maps + Population-level atlas

MSDL

1 Defining regions: linear decompositions

[Kiviniemi... 2009] Extracting many networks with ICA almost forms a brain parcellation

1 In dictionary learning: Total-variation MSDL

Create a region-forming penalty:

Total-variation penalization Impose sparsity on the gradient of the image:

$$ho({f w})=\ell_1(
abla{f w})$$

Clustering

Total-variation

1 In dictionary learning: Total-variation MSDL

Visual Cortex

Auditory Network

[Abraham... 2013]

трј

Data-driven brain parcellations

Group ICA

K-Means

[Abraham... 2013]

Data-driven brain parcellations

Group ICA

K-Means

[Abraham... 2013]

Data-driven brain parcellations

Group ICA

K-Means

[Abraham... 2013]

Functional regions

AAL

Smith 2009 ICAs

Craddock 2011 Ncuts

Abraham 2013 TV-MSDL

Ward

Harvard-Oxford G Varoquaux

High model order ICA

K-Means

Varoquaux 2011 Smooth-MSDL

Yeo 2011

1 In connectome prediction settings

1 In connectome prediction settings

Choice of regions for best prediction?

1 In connectome prediction settings

2 Connectome: graph structure of brain activity

Functional connectome Graph of interactions between regions

[Varoquaux and Craddock 2013]

2 Graphical model in cognitive neuroscience

2 Graphical model in cognitive neuroscience

2 Graphical model in cognitive neuroscience

Independence structure Knowing *IPS*, *FEF* is independent of *V2* and *MT*

2 From correlations to connectomes

Conditional independence structure?

2 Probabilistic model for interactions

Simplest data generating process = multivariate normal:

$$\mathcal{P}(\mathbf{X}) \propto \sqrt{|\mathbf{\Sigma}^{-1}|} e^{-rac{1}{2}\mathbf{X}^{\mathcal{T}}\mathbf{\Sigma}^{-1}\mathbf{X}}$$

• Model parametrized by inverse covariance matrix, $\mathbf{K} = \mathbf{\Sigma}^{-1}$: *conditional* covariances

Goodness of fit: likelihood of observed covariance $\hat{\Sigma}$ in model Σ $\mathcal{L}(\hat{\Sigma}|\mathbf{K}) = \log |\mathbf{K}| - \text{trace}(\hat{\Sigma} \mathbf{K})$

2 Graphical structure from correlations

Diagonal: signal variance Diagonal: node innovation 2 Independence structure (Markov graph)

Zeros in partial correlations give **conditional independence**

Reflects the large-scale brain interaction structure

2 Independence structure (Markov graph)

Zeros in partial correlations give **conditional independence**

Ill-posed problem: multi-collinearity ⇒ noisy partial correlations

Independence between nodes makes estimation of partial correlations well-conditionned.

Chicken and egg problem

2 Independence structure (Markov graph)

Zeros in partial correlations give **conditional independence**

Ill-posed problem: multi-collinearity ⇒ noisy partial correlations

Independence between nodes makes estimation of partial correlations well-conditionned.

2 Sparse inverse covariance: penalization

Maximum a posteriori:

G Varoquaux

Fit models with a penalty

Sparsity \Rightarrow Lasso-like problem: ℓ_1 penalization

[Friedman... 2008, Varoquaux... 2010b, Smith... 2011] 39

2 Sparse inverse covariance: penalization

Likelihood of new data (cross-validation) Subject data, Σ^{-1} -57.1 Subject data, sparse inverse 43.0

2 Limitations of sparsity

Skeptical neuroimager

Theoretical limitation to sparse recovery

<u>Number of samples for s edges, p nodes:</u> $n = \mathcal{O}((s + p) \log p)$ [Lam and Fan 2009]

High-degree nodes fail [Ravikumar... 2011]

2 Multi-subject to overcome subject data scarsity

Likelihood of new data (cross-validation)

- Subject data, Σ^{-1} -57.1
- Subject data, sparse inverse 43.0
 - Group concat data, Σ^{-1} 40.6
- Group concat data, sparse inverse 41.8

Inter-subject variability

2 Multi-subject sparsity

Common independence structure but different connection values

Multi-subject data fit, Group-lasso penalization Likelihood

G Varoquaux

Varoquaux... 2010b]
2 Multi-subject sparsity

Common independence structure but different connection values

$$\{ \mathbf{K}^{s} \} = \underset{\{ \mathbf{K}^{s} \succ 0 \}}{\operatorname{argmin}} \underbrace{\sum \mathcal{L}(\hat{\mathbf{\Sigma}}^{s} | \mathbf{K}^{s})}_{s} + \lambda \ell_{21}(\{ \mathbf{K}^{s} \})$$
Multi-subject data fit, ℓ_{1} on the connections of

Multi-subject data fit, ℓ_1 Likelihood the

 ℓ_1 on the connections of the ℓ_2 on the subjects

2 Multi-subject sparse graphs perform better

44

2 Independence structure of brain activity

Subject-sparse estimate

2 Independence structure of brain activity

2 Large scale organization: communities

Graph communities

[Eguiluz... 2005]

Neural communities

Non-sparse

2 Large scale organization: communities

Graph communities

[Eguiluz... 2005]

Neural communities

= large known functional networks

G Varoquaux

Group-sparse

Varoguaux... 2010b]

2 Giving up on sparsity?

Sparsity is finicky

Sensitive hyper-parameter
Slow and unreliable convergence
Unstable set of selected edges

Shrinkage

Softly push partial correlations to zero $\mathbf{\Sigma}_{\mathsf{Shrunk}} = (1 - \lambda) \mathbf{\Sigma}_{\mathsf{MLE}} + \lambda \mathsf{Id}$

Ledoit-Wolf oracle to set λ [Ledoit and Wolf 2004]

Comparing connectomes

from connectomes

Detecting differences in connectivity Functional markers on diminished patients? Stroke outcome prognosis in ongoing activity

[Varoquaux... 2010a]

3 Failure of univariate approach on correlations

Subject variability spread across correlation matrices

 $\label{eq:star} \begin{array}{l} \bullet \ d \pmb{\Sigma} = \pmb{\Sigma}_2 - \pmb{\Sigma}_1 \ \text{is not definite positive} \\ \Rightarrow \ \text{contradictory with Gaussian models} \end{array}$

$\boldsymbol{\Sigma}$ does not live in a vector space

3 Inverse covariance very noisy

Partial correlations are hard to estimate

3 Simulation on a toy problem

Simulate two processes with different inverse covariance

Add jitter in observed covariance... sample $MSE(\mathbf{K}_1 - \mathbf{K}_2):$ $MSE(\mathbf{\Sigma}_1 - \mathbf{\Sigma}_2)$

Non-local effects and non homogeneous noise

3 Theoretical settings: comparison of estimates

- Observations in 2 populations: X^1 and X^2
- Goal: comparing estimates: $\hat{\theta}(\mathbf{X}^1)$ and $\hat{\theta}(\mathbf{X}^1)$
- Asymptotic normality: $\hat{ heta}(X^1) \sim \mathcal{N}(heta^1, I(heta^1)^{-1})$

3 Theoretical settings: comparison of estimates

- [Rao 1945] Fisher information I defines a metric on the manifold of models.
- We use it to choose a global parametrization for comparisons

3 Covariance manifold $-Sym_n^+$

■ Metric tensor (Fisher information) [Lenglet... 2006] $\langle \mathbf{d\Sigma}_1, \mathbf{d\Sigma}_2 \rangle_{\boldsymbol{\Sigma}} = \frac{1}{2} \operatorname{trace}(\boldsymbol{\Sigma}^{-1} \mathbf{d\Sigma}_1 \, \boldsymbol{\Sigma}^{-1} \mathbf{d\Sigma}_2)$

Nice properties of the Sym_n^+ manifold (Lie group): metric can be fully integrated, gives rise to global mapping to a vector space (*Logarithmic map*).

$$\begin{split} \|\boldsymbol{\Sigma}_{1}, \boldsymbol{\Sigma}_{2}\|_{\boldsymbol{\Sigma}_{1}}^{2} &= \left\|\log\left(\boldsymbol{\Sigma}_{1}^{-\frac{1}{2}}\boldsymbol{\Sigma}_{2}\boldsymbol{\Sigma}_{1}^{-\frac{1}{2}}\right)\right\|^{2}, \\ \text{Locally:} \ \|\boldsymbol{\Sigma}_{1}, \boldsymbol{\Sigma}_{2}\|_{\boldsymbol{\Sigma}_{1}} \propto \left|\operatorname{trace}(\boldsymbol{\Sigma}_{1}^{-\frac{1}{2}}\boldsymbol{\Sigma}_{2}\boldsymbol{\Sigma}_{1}^{-\frac{1}{2}}) - p\right| \\ &= \|\mathbf{d}\boldsymbol{\Sigma}\|_{\operatorname{Fro}} \end{split}$$

where
$$\mathbf{d}\mathbf{\Sigma} = \mathbf{\Sigma}_1^{-1/2} \mathbf{\Sigma}_2 \mathbf{\Sigma}_1^{-1/2}$$

3 Reparametrization for uniform error geometry

Logarithmic map:

$$\mathbf{\Sigma}_1 \in \mathcal{S}ym_n^+ \mathbf{\Sigma}_2 \in \mathcal{S}ym_n^+ o \overrightarrow{\mathbf{\Sigma}_1\mathbf{\Sigma}_2} \in \mathbb{R}^{rac{1}{2}p(p-1)}$$

55

3 Reparametrization for uniform error geometry

Logarithmic map:

$$\begin{split} \boldsymbol{\Sigma}_1 \in \mathcal{S}ym_n^+ \; \boldsymbol{\Sigma}_2 \in \mathcal{S}ym_n^+ \to \overrightarrow{\boldsymbol{\Sigma}_1\boldsymbol{\Sigma}_2} \in \mathbb{R}^{\frac{1}{2}p\,(p-1)} \\ d(\boldsymbol{\Sigma}_1,\boldsymbol{\Sigma}_2) = \|\overrightarrow{\boldsymbol{\Sigma}_1\boldsymbol{\Sigma}_2}\|_2 \end{split}$$

3 Statistics...

Do *intrinsic* statistics on the parameterization: PDF

Mean

Parameter-level hypothesis testing

3 Random effects on the covariance manifold

Population covariance distribution: generalized normal

$$p(\mathbf{\Sigma}) \propto \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{\Sigma}^* \mathbf{\Sigma}\|_{\mathbf{\Sigma}^*}^2\right)$$
 (1)

Population mean: (Frechet mean) $\boldsymbol{\Sigma}^{\star} = \operatorname{argmin}_{\boldsymbol{\Sigma}} \|\boldsymbol{\Sigma}\boldsymbol{\Sigma}_{i}\|_{\boldsymbol{\Sigma}}^{2}$

[Pennec 2006]

[Varoquaux... 2010a]

(2)

Edge-level statistics H_0 : subject \in group model (1) $\overrightarrow{d\Sigma} \sim \mathcal{N}(0, \sigma \mathbf{I})$: Independant coefficients

 \Rightarrow Univariate statistics on d $\Sigma_{i,j}$

3 Residuals

Correlation matrices: Σ

-1.0

-1.0

0.0

0.0

1.0

1.0

Residuals: dΣ

3 Number of edge-level differences detected

p-value: 5.10^{-2} Bonferroni-corrected

3 Post-stroke covariance modifications

3 Post-stroke covariance modifications

p-value: $5 \cdot 10^{-2}$ Bonferroni-corrected

3 In connectome prediction settings

3 In connectome prediction settings

Connectivity matrix

Correlation
 Partial correlations
 Tangent space

3 In connectome prediction settings

3 In population estimation settings

Dispersion of covariances in tangent space
 James-Stein shrinkage using this population model
 ⇒ Gives better biomarkers

Covariance space

- empirical covariance
- mean of covariances

Tangent space

- 🔺 covariance embedding
- 🔺 reference (mean)

Shrinkage

- population dispersion (covariance)
 - shrinkage of a new estimate

[Rahim... 2017]

Statistics on covariance matrices

Do not live in vector space: \Rightarrow coefficients are not independent

Are a multivariate model \Rightarrow can be reparametrized with Cramer-Rao metric

Population imaging and biomarkers

Brain aging: a biomarker and its covariates

Predicting brain aging ≠ chronological age
Combines brain connectivity and morphology
Predicts age with a mean absolute error of 4.3 years

Discrepency with chronological age

correlates with cognitive impairment

[Liem... 2016] **Biomarker** surrogate, but useful

Heterogeneity: predicting autism across sites

Software

Nilearn: neuroimaging

http://nilearn.github.io

Extracting signal in brain images

- Simple visualizations
- Extracting connectomes
- Learning networks and regions
- Very easy to install and to script

Software

Scikit-learn: machine learning

http://scikit-learn.org

Supervised & unsupervised learning
 > 160 models
 Sparse models, random forests, clustering...

Model selection, parallel computing

Excellent documentation

Connectomics: from mapping intrinsic activity to predicting phenotype

- A. Abraham, E. Dohmatob, B. Thirion, D. Samaras, and G. Varoquaux. Extracting brain regions from rest fMRI with total-variation constrained dictionary learning. In *MICCAI*, page 607. 2013.
- A. Abraham, M. Milham, A. Di Martino, R. C. Craddock, D. Samaras, B. Thirion, and G. Varoquaux. Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. *NeuroImage*, 2016.
- C. F. Beckmann and S. M. Smith. Probabilistic independent component analysis for functional magnetic resonance imaging. *Trans Med Im*, 23:137, 2004.
- B. Biswal, F. Zerrin Yetkin, V. Haughton, and J. Hyde. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. *Magn Reson Med*, 34: 53719, 1995.

References II

- R. C. Craddock, G. A. James, P. E. Holtzheimer, X. P. Hu, and H. S. Mayberg. A whole brain fMRI atlas generated via spatially constrained spectral clustering. *Human brain mapping*, 33:1914, 2012.
- V. Doria, C. F. Beckmann, T. Arichi, N. Merchant, M. Groppo, F. E. Turkheimer, S. J. Counsell, M. Murgasova, P. Aljabar, R. G. Nunes, ... Emergence of resting state networks in the preterm human brain. *Proc Ntl Acad Sci*, 107:20015, 2010.
- V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian. Scale-free brain functional networks. *Physical review letters*, 94:018102, 2005.
- J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9:432, 2008.
References III

- M. Greicius, B. Krasnow, A. Reiss, and V. Menon. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. *Proceedings of the National Academy of Sciences*, 100:253, 2003.
- T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli. Spontaneously emerging cortical representations of visual attributes. *Nature*, 425:954, 2003.
- V. Kiviniemi, J. Kantola, J. Jauhiainen, A. Hyvärinen, and O. Tervonen. Independent component analysis of nondeterministic fmri signal sources. *Neuroimage*, 19:253, 2003.
- V. Kiviniemi, T. Starck, J. Remes, X. Long, J. Nikkinen, M. Haapea, J. Veijola, ... Functional segmentation of the brain cortex using high model order group PICA. *Hum Brain Map*, 30:3865, 2009.

References IV

- C. Lam and J. Fan. Sparsistency and rates of convergence in large covariance matrix estimation. *Annals of statistics*, 37: 4254, 2009.
- O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices. *J. Multivar. Anal.*, 88:365, 2004.
- C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras. Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing. *Journal of Mathematical Imaging and Vision*, 25:423, 2006.
- C. Lewis, A. Baldassarre, G. Committeri, G. Romani, and M. Corbetta. Learning sculpts the spontaneous activity of the resting human brain. *Proceedings of the National Academy of Sciences*, 106(41):17558, 2009.

References V

- F. Liem, G. Varoquaux, J. Kynast, F. Beyer, S. K. Masouleh, J. M. Huntenburg, L. Lampe, M. Rahim, A. Abraham, R. C. Craddock, ... Predicting brain-age from multimodal imaging data captures cognitive impairment. *NeuroImage*, 2016.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. *Journal of Machine Learning Research*, 11:19, 2010.
- X. Pennec. Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. *Journal of Mathematical Imaging and Vision*, 25:127, 2006.
- M. Rahim, B. Thirion, and G. Varoquaux.
 Population-shrinkage of covariance to estimate better brain functional connectivity. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 460–468. Springer, 2017.

References VI

M. Raichle, A. MacLeod, A. Snyder, W. Powers, D. Gusnard, and G. Shulman. A default mode of brain function. *Proceedings of the National Academy of Sciences*, 98:676, 2001.

- M. E. Raichle and M. A. Mintun. Brain work and brain imaging. *Annu. Rev. Neurosci.*, 29:449–476, 2006.
- C. Rao. Information and accuracy attainable in the estimation of statistical parameters. *Bull. Calcutta Math. Soc.*, 37:81, 1945.
- P. Ravikumar, M. J. Wainwright, G. Raskutti, B. Yu, ... High-dimensional covariance estimation by minimizing ℓ_1 -penalized log-determinant divergence. *Electronic Journal* of *Statistics*, 5:935–980, 2011.

References VII

- S. Smith, K. Miller, G. Salimi-Khorshidi, M. Webster,
 C. Beckmann, T. Nichols, J. Ramsey, and M. Woolrich.
 Network modelling methods for fMRI. *Neuroimage*, 54:875, 2011.
- E. A. Stamatakis, R. M. Adapa, A. R. Absalom, and D. K. Menon. Changes in resting neural connectivity during propofol sedation. *PLoS One*, 5:e14224, 2010.
- B. Thirion, G. Varoquaux, E. Dohmatob, and J. Poline. Which fMRI clustering gives good brain parcellations? *Name: Frontiers in Neuroscience*, 8:167, 2014.
- G. Varoquaux and R. C. Craddock. Learning and comparing functional connectomes across subjects. *NeuroImage*, 80: 405, 2013.

References VIII

- G. Varoquaux, F. Baronnet, A. Kleinschmidt, P. Fillard, and B. Thirion. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In *MICCAI*. 2010a.
- G. Varoquaux, A. Gramfort, J. B. Poline, and B. Thirion. Brain covariance selection: better individual functional connectivity models using population prior. In *NIPS*. 2010b.
- G. Varoquaux, S. Sadaghiani, P. Pinel, A. Kleinschmidt, J. B. Poline, and B. Thirion. A group model for stable multi-subject ICA on fMRI datasets. *NeuroImage*, 51:288, 2010c.
- G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion. Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. In *Inf Proc Med Imag*, page 562, 2011.

References IX

G. Varoquaux, A. Gramfort, J. B. Poline, and B. Thirion. Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks? *Journal of Physiology - Paris*, 106:212, 2012.