

Functional connectivity models: from blobs to (dynamic) networks

Dimitri Van De Ville

Medical Image Processing Laboratory (MIP:lab) Institute of Bioengineering/Center for Neuroprosthetics Ecole Polytechnique Fédérale de Lausanne

Department of Radiology Université de Genève

http://miplab.epfl.ch/

Juan-les-Pins / November 22, 2017

Overview

- The rise of (functional) MRI
- Activation mapping
 - Task-evoked activity
 - Brain activation maps using confirmatory analysis
 - General Linear Model (GLM)

Connectivity mapping

- Resting-state condition reveals intrinsic functional networks
- Blind source separation (independent component analysis)
- Statistical interdependencies and graph analysis

Dynamic connectivity mapping

- Moment to moment fluctuations of connectivity
- Windowed and event-based approaches
- Open challenges

"the quest for an understanding of the functional organization of the [...] human brain, using techniques to assess changes in brain circulation, [a search that has occupied] mankind for more than a century"

Marcus Raichle, 1998

Magnetic resonance imaging (MRI)

- Widely deployed in hospitals and research centers
- Endogenous contrast mechanism
- Non-invasive imaging tool to study human brain anatomy and function

Functional MRI

Series of 3D volumes

- 3x3x3 mm³
- 20-30 slices
- every 2-4 sec
 - during 5-10 minutes

FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity

[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]

FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity

[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]

fMRI of evoked activity

fMRI of evoked and intrinsic activity

Condition of resting state: Conscious and unconscious brain activity happen without premeditation or external stimulus

More profound change of viewpoint: From brain processing stimuli/performing tasks to internal dynamics being modulated

fMRI of spontaneous activity

minimal compliance for patient studies!

Overview

- The rise of (functional) MRI
- Activation mapping
 - Task-evoked activity
 - Brain activation maps using confirmatory analysis
 - General Linear Model (GLM)
- Connectivity mapping
 - Resting-state condition reveals intrinsic functional networks
 - Blind source separation (independent component analysis)
 - Statistical interdependencies and graph analysis
- Dynamic connectivity mapping
 - Moment to moment fluctuations of connectivity
 - Windowed and event-based approaches
- Open challenges

Modeled activity during finger tapping

High correlations in spontaneous signal

[Biswal et al., 1995]

Seed-based connectivity maps

Default-mode network

Auditory

Visual

Somatomotor

Dorsal attention

Executive control

Cocktail problem: blind source separation

Mixing of spatial brain sources

Unmixed spatial brain sources

ICA reveals several large-scale brain networks (similar to task-evoked networks!)

Spatial ICA

Unmixing of brain regions from fMRI data

Compare against the classical GLM

Graph analysis

- Parcellation into brain regions based on atlas
- Pairwise correlations between regionally-averaged timecourses of all brain regions

build connectivity matrix

Graph analysis

- Parcellation into brain regions based on atlas
- Pairwise correlations between regionally-averaged timecourses of all brain regions

apply graph/network analysis

[Sole and Valverde, 2004]

Small-world

- high clustering
 ~functional segregation
- high efficiency
 ~functional integration
- Cost-efficient
 - high efficiency for low connection cost
- Hubby
 - fat-tailed degree distributions
 - hierarchical, but still resilient to attacks and errors
- Modular
 - more dense connections to nodes in module than to nodes in other modules

Show me your rest, and I tell your success

 Linking resting-state functional connectomes (280!) to life style/demographics/psychometric measures

Show me your rest, and I tell who you are

- Functional connectome serves as fingerprint to identify individuals
 - 126 individuals, across resting state & task sessions

R1: rest 1, R2: rest 2, WM: working memory, Mt: motor task, Lg: language, Em: emotion

Overview

- The rise of (functional) MRI
- Activation mapping
 - Task-evoked activity
 - Brain activation maps using confirmatory analysis
 - General Linear Model (GLM)

Connectivity mapping

- Resting-state condition reveals intrinsic functional networks
- Blind source separation (independent component analysis)
- Statistical interdependencies and graph analysis
- Dynamic connectivity mapping
 - Moment to moment fluctuations of connectivity
 - Windowed and event-based approaches
- Open challenges

Dynamic functional connectivity

 Extract network dynamics by sliding-window pairwise correlations

Dynamic functional connectivity

- Proper preprocessing of timecourses is required
 - To avoid aliasing artefact: high-pass filtering of input timecourses with reciprocal of window length w

Dynamic functional connectivity

[Allen et al, 2014; Leonardi, VDV et al, 2013; Leonardi, VDV, 2014; Leonardi et al, 2014]

Eigenconnectivities

Brain regional

[Leonardi, VDV, NeuroImage, 2013; Leonardi, VDV, HBM, 2014; image by M. Leonardi]

Eigenconnectivities

global fluctuations in FC

cingulate gyri, medial frontal gyri, precuneus (default-mode network) primary sensory in red

inferior and middle frontal gyri, inferior parietal (fronto-parietal)

subcortical

visual

posterior DMN temporal and inferior frontal

positive 0 negative

Altered dynamics in multiple sclerosis

 Temporal contributions of eigenconnectivities is altered in minimally-disabled relapse-remitting multiple sclerosis patients (F_(10,19)=2.6, p=0.005)

Schizophrenia, autism, temporal lobe epilepsy, ...

[Leonardi, ..., VDV, NeuroImage, 2013] [Damaraju et al. 2014, Ma et al. 2014, Yu et al. 2015, Rashid et al. 2014] 31

Origin and relevance of dynamic FC

- Parts of dynFC survive rigorous statistical testing: non-parametric randomization
 - Betzel et al, 2016; Zalesky, 2014;
 Keilholz et al, 2013; Huang, et al, ArXiv
- DynFC correlates with electrical activity
 - Thompson et al, 2013;
 Tagliazucchi et al, 2013; Chang et al, 2013

- DynFC varies along **demographic** variables: age, gender
 - Hutchison, Morton, 2015; Yaesoubi et al, 2015

- Rack-Gomer and Liu, 2012;
 Barttfeld et al, 2015; Tagliazucchi et al, 2014
- DynFC correlates with cognition: daydreaming, cognitive flexibility
 - Kucyi, Davis, 2013; Yang et al, 2014; Cheng et al, 2016

Spatially resolved dynamic FC

- Voxel-wise (dynamic) connectome
 - 10⁵ timecourses
 - Connectivity matrix is huge!
 - Sliding-window approach... %@U\$)!
- But matrix is low-rank!
 - Rank is at most #timepoints << 10⁵

Dynamic FC voxel-wise parcellation

Dynamic FC voxel-wise parcellation

- Split into contiguous regions
 - Leads to 449 parcels
- Fluctuations of dynamic FC are meaningful in terms of long-range and short-range interactions
- Extensions
 - Higher rank
 - Clustering

```
[Preti, VDV, Scientific Reports, 2017]
```


Better capturing of dynamics

Co-activation patterns (CAPs)

 Selection of timepoints with extreme values of seed region (point process model)

Averaging is proxy of seed connectivity:

average over all selected frames:

seed-based correlation:

Co-activation patterns (CAPs)

Temporal clustering of selected frames

 Averaging of spatial activity patterns for each temporal cluster leads to "co-activation patterns" (CAPs)

[Tagliazucchi et al., 2012; Liu and Duyn, PNAS, 2013]

Co-activation patterns (CAPs)

 Averaging of spatial activity patterns for each temporal cluster leads to "co-activation patterns" (CAPs)

- Temporal clustering allows CAPs to have spatial overlap, but it does not disentangle temporal overlap:
 - #CAPs suffers from combinatorial explosion:
 - N "fundamental" networks that can temporally overlap K at a time would lead to ~ N^K CAPs
 - CAPs can be contaminated by non-seed related activity

Total activation regularized deconvolution of fMRI BOLD timeseries

[Khalidov, VDV et al, IEEE Transactions on SP, 2011; Karahanoglu, VDV et al, NeuroImage, 2013]

Innovation-driven co-activation patterns

 After total-activation deconvolution, innovation signals are obtained

Negative transients

 Transients rather than BOLD enter into the clustering

ositive transients

[Karahanoglu, VDV, Nature Communications, 2015; Current Opinion in Biomedical Engineering, 2017]

Innovation never comes alone

Brain's repertoire of functional networks

Z-SCO18

Brain's repertoire of functional networks

pVIS7.8% 6.2 s 0.6±0.08

AUD 9.8% 5.5 s 0.56±0.07

sVIS 7.2% 5.9 s 0.55±0.06 PRE 6.8% 4.9 s 0.57±0.06

VISP 6.1% 4.5 s 0.56±0.08

MOT 6% 6.7 s 0.52±0.06

DMN 5.6% 7.6 s 0.59±0.07

EXEC 5.3% 4.7 s 0.7±0.12 pDMN 5% 4 s

0.59±0.08

iCAPs ordered in terms of occurrence

> iCAP-8: "full" DMN, longest duration

Brain's repertoire of functional networks

9.8%

5.5 s

0.56±0.07

AUD

8%

6.1 s

0.57±0.09

pVIS7.8% 6.2 s 0.6±0.08

sVIS 7.2% 5.9 s 0.55±0.06

PRE 6.8% 4.9 s 0.57±0.06

VISP 6.1% 4.5 s 0.56±0.08

FPN

MOT 6% 6.7 s 0.52±0.06

OMN 5.6% 7.6 s 0.59±0.07

0.7±0.12

Access to subsystems of the default-mode network

Temporal overlap of iCAPs

number of overlapping iCAPs

2 3 4 2 3 4 4 7 8 7 8 13 2 4 8

20 most frequent combinations

Relationship between iCAPs and behavior

hierarchical clustering

2098 iCAPs combinations

- Highest level of hierarchy: sensory / DMN / attention
- Behavioral profiles can be determined (BrainMap)
- ... and form consistent groupings as driven by iCAPs' combinations

BrainMap: [Lancaster et al, Frontiers Neuroinformatics, 201

Time to rethink our models?

[Menon, Uddin, Brain Struct Func, 2010; Menon, TICS, 2011; Nekovarova et al, Frontiers, 2014]

Time to rethink our models?

Default mode network

anticorrelation

Fronto-parietal / executive networks

Time to rethink our models?

Unraveling crosstalk of ongoing spontaneous activity

[Karahanoglu and VDV, Nature Communications, 2015]

Summary

Take home message

- Seeing the brain in action, at any *moment*, and *systems* level
 - Multidisciplinary endeavor where computational approaches are essential
 - Understand how it all fits together
- Perspectives
 - Tracking of brain states
 - Naturalistic stimuli and tasks
 - Neurofeedback
 - Graph signal processing: connect function (signal) with structure (graph)
 - Towards new models and markers of brain (dys)function
 - Benefit from "big MRI data" in health and disease

Two recent review papers

MIP:lab @ Campus Biotech

http://miplab.epfl.ch

