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Overview

The rise of (functional) MRI

Activation mapping
Task-evoked activity

Brain activation maps using confirmatory analysis
General Linear Model (GLM)

Connectivity mapping

Dynamic connectivity mapping

Open challenges



“the quest for an understanding of the
functional organization of the [...] human brain,
using techniques to assess
changes in brain circulation,

[a search that has occupied]
mankind for more than a century”

Marcus Raichle, 1998




" Widely deployed in hospitals and research centers
" Endogenous contrast mechanism
" Non-invasive imaging tool to study human brain anatomy and function

Functional MRI

%

Series of 3D volumes
= 3x3x3 mms3
= 20-30 slices
= every 2-4 sec
® during 5-10 minutes
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Siemens 3T Prisma MRI scanner @ Campus Biotech / picture (c) EPFL/Alban Kakulya







FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity
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FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity
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* Impulse response to short period of

neural activation
* Notice the response timing: ~2 sec
delay, 4-6 sec to peak,
up to 20 sec back to baseline

[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]



fMRI of evoked activity

A\

movie accelerated 4 times GLM / statistical testing




fMRI of evoked and intrinsic activity
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Condition of resting state:
Conscious and unconscious brain activity
happen without premeditation or external

stimulus

More profound change of viewpoint:
From brain processing stimuli/performing tasks
to internal dynamics being modulated




fMRI of spontaneous activity

changes w.r.t. baseline

resting-state scan (minimally preprocessed) 0 max

YobeEs
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- BOLD signal (PCC)
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movie accelerated 4 times

minimal compliance for patient studies!




Overview

The rise of (functional) MRI
Activation mapping

Connectivity mapping
Resting-state condition reveals intrinsic functional networks

Blind source separation (independent component analysis)
Statistical interdependencies and graph analysis

Dynamic connectivity mapping

Open challenges
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Modeled activity High correlations
during finger tapping in spontaneous signal

[Biswal et al., 1995]




[Adapted from Raichle, TICS, 2010]
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Cocktail problem: blind source separation

MIXING SEPARATION
@ Agy—> —’ ——w,,-—-) —)y1‘-s
a21 1
X

=N — --Wa—-» —>Y,=S,

trammg

[Gutierrez-Osuna, Introduction to Pattern Analysis]
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Mixing of spatial brain sources

use of sources

at time 1 instance of
spatial source feature vector!
MIXING SEPARATION
S4
‘ » A —~
& 3 a1 Wi —> —>Y =S,
network 1 mixture 1

W12

dz2 :\\ )

network 2 mixture 2 &

use of sources e
at time 2 training
optimize unmixing
based on criterion of

fMRI: spatial ICA / EEG: temporal ICA statistical independence

W21
X,
L
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Unmixed spatial brain sources

" |CAreveals several large-scale brain networks
(similar to task-evoked networks!)

Default-mode
network

Dorsal attention
network

Auditory
network

Visual
network

Executive control/
Saliency network

Somatosensory
network

[Mantini et al, 2007] 17



Spatial ICA

= Unmixing of brain regions from fMRI data

voxels

-

Mixing Spatially independent

maitrix components (S)

L estimated by ICA

= Compare against the classical GLM

voxels

—_— s

Activation maps (beta)

estimated by OLS

18



Graph analysis

" Parcellation into brain regions based on atlas

" Pairwise correlations between regionally-averaged
timecourses of all brain regions

brain regions

FLAL 3 ot e o
“'}\" ARSI
e

: 5 —— ;!‘Q‘d' :

build connectivity matrix

[Richiardi et al, 2013]
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Graph analysis

" Parcellation into brain regions based on atlas

" Pairwise correlations between regionally-averaged
timecourses of all brain regions

brain regions
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apply graph/network analysis

[Richiardi et al, 2013]
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= Small-world

high clustering
~functional segregation

high efficiency
~functional integration

= Cost-efficient

high efficiency for
low connection cost

= Hubby

fat-tailed degree distributions

hierarchical,

Q. d
0.0 -
Q Q. g
o
0.y Q o\ O
0 [ - Qo N | _— t ~—
oo o e : S~
° “; 2 9 ) K < @semantic nets
*) [ Ny, —
-0 05 o ° | % Internet @ " B
N
¢ oo 00 metabolic maps @ B
%% 'E; fiwiie q,‘,m,,so o Elegtronic circuits
SF-like networks g| proteome@ @ |
o Mutualistic
2 i webs, |
() v
I -
| food WebS,Q/“’ff, rtical maps
S i B
Q. Pl e
)T P
// / R. | _—
- y anm\ | T
/ Nege ™ T \a
P S ~_— W
e s
/’/ ) ° //
", ¢ Q 0O
o | - o
Q
117 Q Oo Q-0 @ Q »
Q-9 0O
Q O Q9
mesh regular tree ER graph

but still resilient to attacks and errors

= Modular

more dense connections to nodes in

module than to nodes in
other modules

[Bullmore and Sporns, 2009; Bassett et al, 2010]
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Show me your rest, and | tell your success

= Linking resting-state functional connectomes (280!) to
life style/demographics/psychometric measures

[Smith et al.,

CCA edge strength increases, 041
summed over edges
-
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Nature Neuroscience, 2015]
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Positive

Picture vocabulary test

Fluid intelligence (number of correct responses)
Delay discounting (area under the curve for discounting of $200)
Years of education completed
Life satisfaction
List sorting working memory test
Oral reading recognition test
Sustained attention continuous performance test (true positives)
Sustained attention continuous performance test (specificity)
Delay discounting (area under the curve for discounting of $40,000)
Picture sequence memory test
Years since smoked last cigarette
Financial income (eight bands)

Peg-board dexterity test (tme taken)
Visual acuity (ratio)
No histoey of paychiatric or neurologic disorders — tathor
Patiern comparison processing speed
Two-mirete walking endurance 188!

Included in CCA

Excluded Age Tirst smoked (smokers only)
Vananoe explained: Thought problems score (self-report)

Sl smoking
Percaived strass scoce
1 7%

Regional taste intensity score
Rule broaking behavior score (solreport)
Anger-physical aggression score
Times used any tobacco today
Pittsburgh sieep quality index (higher is worsa)
Drug or alcohol problems - father
Total weekdays with any tobacco in last week

Sustained attention continuous performance test (false positives)
Positive test for THC (cannabis)
Fluid intelligence (number of skipped responses)
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Show me your rest, and | tell who you are

® Functional connectome serves as fingerprint to identify

individuals
126 individuals, across resting state & task sessions
Testing Database

Bunsay

Database

0.5 1.0

R1:rest 1, R2: rest 2, WM: working memory,
Mt: motor task, Lg: language, Em: emotion

[Finn et al., Nature Neuroscience, 2015] 24



Overview

The rise of (functional) MRI
Activation mapping

Connectivity mapping

Dynamic connectivity mapping
Moment to moment fluctuations of connectivity
Windowed and event-based approaches

Open challenges

25



Dynamic functional connectivity

= Extract network dynamics by
sliding-window pairwise correlations

regional timecourses

o o
~ ~

dynamic FC
T

& o
. a
1

] 00

[Chang and Glover, 2010] 26



Dynamic functional connectivity

= Proper preprocessing of timecourses is required

To avoid aliasing artefact: high-pass filtering of input
timecourses with reciprocal of window length w

g DynFC’s “no-free-lunch theorem”
- iz}
I e  F{cay}
1/w frequency I
- Fy} ,
I 1/w frequency
1/:W frefquency
-

[Leonardi, VDV, Neurolmage, 2015]
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Dynamic functional connectivity

= Sliding window correlation™

Window length is 30 TRs,
step of 2 TRs, TR=1.1sec

| l . »a . . . .
\.® " 0-] N 1
Q«O . Z e il 20 " ) - A..
.......... . ‘3 |. 1 :" [} .
¥ M ! . ' '
o ; :
o i . : Il
----- > T .~y § <
X0 H & PR 5 . B
\Q‘\\' 0] | S ‘d'_':‘.l ! t | . SN ! i
0 2 0 . 0 | X 2
& ¢ 3 N4 : ; : a W,
RS | ' | Ay 1 | =
A . . W .
& o -
--Q-rb-'-.o‘&.‘,. rhd o ! B By R v A 3 s
N ] 1 - :
S o | . ‘
TN T T : 28 80 - ‘
9 o‘\(b . b 1 1T wm Wye AT B R L
R SN T e A SEETENGESNE £ EITE T S Y - - SRR e O BN
&Q 0 a0 70 80

[Allen et al, 2014; Leonardi, VDV et al, 2013; Leonardi, VDV, 2014; Leonardi et al, 2014] 28



Eigenconnectivities

“Lego” of dynamic FC

Limbic
Occipital
Parietal -
Subcortical
Temporal
.
i.
[
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\ : , (i.e., driven by fluctuations
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of FC only!)

- optimized for explained
variance

- orthogonality constraint

[Leonardi, VDV, Neurolmage, 2013; Leonardi, VDV, HBM, 2014; image by M. Leonardi]
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Eigenconnectivities

Frontal >
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Occipital .; .

Parietal

global fluctuations in FC
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Altered dynamics in multiple sclerosis

" Temporal contributions of eigenconnectivities is
altered in minimally-disabled relapse-remitting
multiple sclerosis patients (F10,19)=2.6, p=0.005)

Eigenconnectvity
15 \ : —
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" Schizophrenia, autism, temporal lobe epilepsy, ...

[Leonardi, ..., VDV, Neurolmage, 2013] [Damaraju et al. 2014, Ma et al. 2014, Yu et al. 2015, Rashid et al. 2014] 31



Origin and relevance of dynamic FC

" Parts of dynFC survive rigorous statistical testlng

non-parametric randomization | . B (+)
100 T8 [

Betzel et al, 2016; Zalesky, 2014; 2 00 Ml ) g
Keilholz et al, 2013; Huang, et al, ArXiv = 300 TR 0
i: ! 4 NS
" DynFC correlates with electrical activity 400 5 | I(.)
Thompson et al, 2013; Functional connections

Tagliazucchi et al, 2013; Chang et al, 2013

" DynFC varies along demographic variables: age, gender
Hutchison, Morton, 2015; Yaesoubi et al, 2015

" DynFC is modulated by changes in arousal.: N——
anesthesia, caffeine

Rack-Gomer and Liu, 2012;
Barttfeld et al, 2015; Tagliazucchi et al, 2014

" DynFC correlates with cognition:

daydreaming, cognitive flexibility )

Kucyi, Davis, 2013; Yang et al, 2014; » 2 & B0 &
Cheng et al, 2016 DRyerseming Sequency
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Spatially resolved dynamic FC

" Voxel-wise (dynamic) connectome
10° timecourses
Connectivity matrix is huge!
Sliding-window approach... %e@U$)!

" But matrix is low-rank!
Rank is at most #timepoints << 10°

[Preti, VDV, Scientific Reports, 2017]
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Representative dominant patterns

M MeE- = |nterplay between major networks
*W RDP5: full DMN vs sensorimotor

A gy RDP4,6: segregation of DMN in
f R A dorsal/ventral parts

leading eigenvector

k-means
(10x CV)

[Preti, VDV, Scientific Reports, 2017] 34



Dynamic FC voxel-wise parcellation




Dynamic FC voxel-wise parcellation

_ : AAL proposed method
= Split into contiguous "

regions
Leads to 449
parcels

® Fluctuations of
dynamic FC are
meaningful in terms
of long-range and
short-range
interactions

win||ega41ao

©

= Extensions S

>

Higher rank g
Clustering

[Preti, VDV, Scientific Reports, 2017] available online at https:/neurovault.org/collections/3091/ 36



timecourses

Better capturing of dynamics

windowed correlation is
temporally restricted, but
suffers from low SNR and
potential aliasing

[Chang and Glover, 2010; Leonardi, VDV, 2013, 2014]

EE]

‘1” WP*

statistical

dependencies
characterize
can we extract ‘key points’ that sVﬁraQG
capture the important events? ehavior
during

resting state
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Co-activation patterns (CAPs)

= Selection of timepoints with extreme values of seed
region (point process model)

timecourses

= Averaging is proxy of seed connectivity:

average over all selected frames: seed-based correlation:

[Tagliazucchi et al., 2012; Liu and Duyn, PNAS, 2013]

38



Co-activation patterns (CAPs)

temporal
Lt clusters

= Temporal clustering of selected frames
Ll

| { | . " | . L4 N
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timecourses

= Averaging of spatial activity patterns for each temporal
cluster leads to “co-activation patterns” (CAPS)
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©8868se
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é906009§
000866060
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[Tagliazucchi et al., 2012; Liu and Duyn, PNAS, 2013] 39



Co-activation patterns (CAPs)

= Averaging of spatial activity patterns for each temporal
cluster leads to “co-activation patterns” (CAPSs)

AITTIIYH OOXIIIXIXY
XI1ILXXH (XXIXXXIX}
XITIYIY OOIILILYIY

= Temporal clustering allows CAPs to have spatial
overlap, but it does not disentangle temporal overlap:

#CAPs suffers from combinatorial explosion:

N “fundamental” networks that can temporally overlap K at a time
would lead to ~ NK CAPs

CAPs can be contaminated by non-seed related activity

[Tagliazucchi et al., 2012; Liu and Duyn, PNAS, 2013] 40



Total activation regularized deconvolution of fMRI BOLD timeseries

H
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[Khalidov, VDV et al, IEEE Transactions on SP, 2011; Karahanoglu, VDV et al, Neurolmage, 2013]



Innovation-driven co-activation patterns

= After total-activation 6eC (U

deconvolution, innovation »4‘:{ vl MT.MQ Lﬂwm Wk \h}
signals are obtained

= Transients rather than -y *M meJ vlﬁ VLLM&J\J
BOLD enter into the —

clustering .\quw" ««.1 i %:VJ.M 1qb

[Karahanoglu, VDV, Nature Communications, 2015; Current Opinion in Biomedical Engineering, 2017] 42



Innovation never comes alone

posterior cingular cortex (L)

and 10’000 voxels more..

o J il sl L

12 1331 4142 325 151 121 52153 51534 14 12 23 34 4 13511 2 1552 12 52125 2
[Karahanoglu and VDV, Nature Communications, 2015]




Brain’s repertoire of functional networks

AUD 98% FPN 8' pVIS7.8% sVIS 7.2% PRE 68%
55s 62s 59s 49s
0.56+0.07 0. 57 0 09 0.6:0.08 0.551+0.06 0.57+0.06

:
OHC mQ 8282

VISP 6.1% MOT 6% DMN 5 b°' EXEC 5.3% pDMN 5%
458 86.78 -1.7.5 4s
0.564+0.08 0.5240.06 0. 59 0 07 0.740.12 0.59+0.08

@ ; ICAPs ordered in terms of
@ occurrence
11 .

SAL 4.6% , sensory components
0.57+0.07 0,62:0:11 0.57£0.12

-15 15

. Occurrence Duration  Stability




Siemens 3T Prisma MRI scanner @ Campus Biotech / picture (c) EPFL/Alban Kakulya




Brain’s repertoire of functional networks
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Brain’s repertoire of functional networks

82078
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Default mode network de-CAP-sulated

PCC seed correlation

-2 -5 .5 2

E =

Z-score

pDMN

-4 15

-1.5
ICAPs dynamically assemble DMN \ ER 3
(and other known RSNs) , z-score




Temporal overlap of iCAPs

T ormemgessioarsaive
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Relationship between iCAPs and behavior

-
. B l sensory _
- E = > default attention

— W - —— L
- E hierarchical IZT mf;jco ey S 00 &
- clusterin o 5 NENEEZ 9 S L2
9 S22 58 8T 57X
/\V\INE(’D YOl Wi N1 o~

2098 iCAPs combinations

4 N

 Highest level of hierarchy:
sensory / DMN / attention

» Behavioral profiles can be
determined (BrainMap)

.. and form consistent
groupings as driven by
ICAPs’ combinations

: ) =

Gustatlon
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ision (Color)
I vision (Motion)
Vision (Other)

E

Other)
Pain)

2
-

. : Vision (Shape)
BrainMap: behavibral -2
[Lancaster et al, Frontiers Neuroinformatics, 2012] © avnrra scores [ .
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Time to rethink our models?

/

Default mode
network

2%

J

Salience network

\@
@

A

Fronto-parietal /
executive networks

@ @
@A)

[Menon, Uddin, Brain Struct Func, 2010; Menon, TICS, 2011; Nekovarova et al, Frontiers, 2014]




Time to rethink our models?

|3

Salience network




Time to rethink our models?

Default mode
network

]
- ~~

Salience network

same signs

o =--9 mixed signs

executive networks

2

@ @
@)
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Unraveling crosstalk of ongoing spontaneous activity

[Karahanoglu and VDV, Nature Communications, 2015]




Summary

2 activation functional dynamic
& mapping connectivity functional
O . . .
O experimental mapping connecfuwty
paradigm mapping
&
Q\\O baseline is 1': baseline is
%9\‘}0 constant fluctuating
¥
co-fluctuations are — co-fluctuations are
stable (“stationary”) unstable
(“non-stationary”)
6%
,@0 GLM BSS (ICA,...), sliding-window FC,
@Q’ seed connecitivity, point process analysis,
graph analysis CAPs, iCAPs,...
Q
\00@
>

o dynamical -
activation maps networks networks



Take home message

= Seeing the brain in action, at any moment, and systems level

Multidisciplinary endeavor where
computational approaches are essential

Understand how it all fits together

= Perspectives

Tracking of brain states
Naturalistic stimuli and tasks
Neurofeedback
Graph signal processing: connect function (signal) with structure (graph)

Towards new models and markers of brain (dys)function
Benefit from “big MRI data” in health and disease

56



Two recent review papers

Contents lists available at SclenceDireet

Neurolmage
journal homepage: www. elsovier.com/locata/nouroimage
The dynamic functional connectome: State-of-the-art and perspectives @Cmm
Maria Giulia Preti™"', Thomas AW Bolton™"', Dimitri Van De Ville""

" Incritnte of Wowsg sevrieg, Conter for Newrogwosthetios, Eoode Polytocksigae ¥ rale de Lowsaswe (FFFL) Lowsonne, Suttaeriond
® Department of Roliology end Mool Mnfoemancs, Unlversity of Gosova (UNTGE)L, Geneon, Sacdtnerfomd

v a8
)

Avaidable online at www . scioncedirect com :
Current Oginion n
Sdenceoired Blomedical Engineering
ELSEVIER

Dynamics of large-scale fMRI networks: Deconstruct
brain activity to build better models of brain function
Fikret Isik Karahanoglu™" and Dimitri Van De Ville®

57



MIP:lab @ Campus Biotech gp unveraire  ICPAE

http://miplab.epfl.ch EEDERALE F TAURKANE

"Waleria

| jall Danlel ISIK
. Djalel = Thomas ,*
Dimitri Kirsten - Zafer

NG NF| N fondation Aﬁ%ﬁﬁzi{‘m

I8 bertarelli  oocnne STIFTUNG ' I* Fondation Leenaards

Swiss NATIONAL SCIENCE FOUNDATION



