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Abstract—In the framework of goal-oriented communications,
this paper investigates the fundamental achievable rate-loss
function of a learning task performed on compressed data.
It considers the setup where the data, collected remotely, are
compressed and sent over a noiseless channel to a server that
aims at applying linear regression on compressed data and side
information. The paper contributions are threefold: i) the rate-
loss region is first derived in the asymptotic regime, i.e., when
the length of the source tends to infinity, (ii) the tradeoff between
data reconstruction and linear regression is investigated from the
asymptotic rate-loss region, and iii) the approach is extended to
the finite blocklength regime.

Index Terms—Information theory, source coding, statistical
learning, rate-distortion theory, generalization error, linear re-
gression.

I. INTRODUCTION

The problem of learning under communication constraints
arises frequently in various contexts, including distributed
learning and estimation in sensor networks. Often, the agents
that gather the data are spatially separated from the location
where the learning takes place, which requires to establish a
communication link over a rate-limited channel. Of recent and
increasing interest to the scientific community is the question
of whether the code and decoder for a learning task should be
designed in the same manner as in classical communication,
wherein the primary objective is data reconstruction.

This question was first investigated for some simple dis-
tributed learning problems that consider two correlated sources
X and Y , where X is the source to be encoded and Y
is available as side information at the decoder. In [1], it
was shown that the rate required for estimating a parameter
θ related to the joint probability distribution PXY is lower
than the Slepian-Wolf rate needed for lossless coding of the
two sources. Distributed hypothesis testing was also widely
investigated, and in [2]–[4], asymptotic bounds on the error
exponent of Type-II errors were derived for some hypothesis
tests on the joint distribution PXY . In an effort to gain a
broader understanding of the issue, [5] derived a generic
achievable bound on the generalization error, and showed that
this bound is applicable to a wide range of distributed learning
problems with two sources.
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Rather than solely establishing some achievable bounds
for the learning problem, an alternative approach consists of
investigating the trade-off between data reconstruction and
learning in terms of coding rate. In [6], this problem was
modeled using classical rate-distortion theory with an addi-
tional constraint on the visual perception, represented by a
divergence measure between two distributions. It was shown
that the achievable rate-distortion-perception region is reduced
compared to the usual Shannon rate-distortion lower bound,
thus highlighting a trade-off between the two criterion. This
trade-off was also evidenced in [2] for hypothesis testing, and
in [7], [8] for noisy data identification in a database, both
versus data reconstruction.

In this paper, we consider the simple problem of linear
regression between the source X and the side information
Y . We first address the fundamental issue of determining
the minimum achievable source coding rate at any given
blocklength n under a constraint on the generalization error.
We provide the resulting rate-generalization error region, both
in the asymptotic regime and in the non-asymptotic regime,
by relying on standard information theory tools [9], [10]
and on finite-length tools [11]–[13], i.e. information density,
dispersion matrix and excess probability, respectively. It is
worth mentioning that the finite-length tools in the works
above are dedicated to data reconstruction and had not yet
been applied to the communication for learning problems. We
further utilize the obtained regions to explore the trade-off
between linear regression and data reconstruction.

Despite its apparent simplicity, linear regression is still of
significant interest in supervised machine learning, as well
as various other fields such as economics or biology. Ad-
ditionally, previous findings suggested that there is always
a trade-off between distortion and learning constraints [2],
[7], [8], while for linear regression we show that there is no
trade-off. Moreover, for the specific case of linear regression,
we improve the achievable rate-generalization error bound
introduced in [5], which was rather loose. Finally, using
the simple problem of linear regression as a starting point
allows us to develop a framework for analyzing the asymptotic
and non-asymptotic performance of learning schemes under
communication constraints, which could be applied to more
complex learning problems in the future.

The outline of the paper is as follows. Section II defines
the problem of coding for linear regression. Section III pro-
vides the asymptotic rate-loss bounds while Section IV gives



the related results in finite blocklength. Section V presents
numerical results.

II. PROBLEM STATEMENT

Throughout this article, random variables X are denoted
by upper-case letters, and their realizations x by lower-case
letters. Vectors X = (X1, ..., Xn) of length n are denoted
by upper-case bold-face letters and their realizations x =
(x1, ..., xn) are denoted by lower-case bold-face letters. X is
a set with cardinality |X |. E[X] and V [X] are the expected
value and the variance of X , respectively, and Cov(X,Y ) is
the covariance of the random variables X and Y . Finally log(·)
denotes base-2 logarithm.

A. Source definitions

Let X and Y be jointly distributed random variables, where
Y is the side information only available at the decoder. We
assume that Y follows a Gaussian distribution Y ∼ N (0, σ2

Y ).
The source X is defined from a linear model as:

X = β0 + β1Y +N, (1)

where N ∼ N (0, σ2) is a Gaussian noise, and β0, β1 ∈ R are
constant parameters. Therefore, X ∼ N (β0, σ

2
X), where σ2

X =
β2
1σ

2
Y + σ2. We further assume that all parameters σ2

Y , σ2
X ,

σ2, β0, β1 are unknown, both by the encoder and decoder. We
define S = {σ2

x, σ
2
y, σ

2, β0, β1} as the set of source parameters
which fully defines the joint Gaussian probability distribution
PXY .

B. Linear regression

Instead of reconstructing the source X at the decoder, we
aim to realize a linear regression, that is to estimate β0 and
β1 from some source sequences X and Y of length n, as
illustrated in Figure 1. Following the notation introduced by
Raginsky in [5], we formalize the problem as follows.

Let F be the set of linear functions f : R → R of the
form f(y) = α0 + α1y, where α0, α1 ∈ R. Linear regression
outputs a sequence of functions f̂ (n) ∈ F , called predictors,
such that f̂ (n) : Zn × R → R, from a training sequence
Z = (U ,Y ) ∈ Zn, where U is a random sequence. Given
that linear regression estimates the coefficients α0 and α1 from
Z, we hence have

f̂ (n)(Z, y) = α0(Z) + α1(Z)y. (2)

Consider the quadratic loss function ℓ : R2 → R defined as
ℓ(x, x̂) = (x− x̂)2. For a certain function f ∈ F , the expected
loss is defined as1

L(f,S) = E [ℓ(X, f(Y ))] (3)

and the minimum expected loss is defined as

L⋆(F ,S) = inf
f∈F

L(f,S). (4)

1One may also define a loss over a sequence. However, since the samples
from the training and inference phases are i.i.d, it does change the analysis.
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Fig. 1. Coding scheme for linear regression

The generalization error is defined as

L(f̂ (n),S) = EX̃Ỹ

[
ℓ
(
X̃, f̂ (n)(Z, Ỹ )

)
|Z
]
. (5)

where the pair (X̃, Ỹ ) is distributed according to PXY and
it is independent from Z, the training sequence. The gener-
alization error is a random variable that depends on Z, and
we refer to as the expected generalization error the quantity
EZ

[
L
(
f̂ (n),S

)]
.

C. Coding scheme for linear regression

Definition 1. A learning scheme at rate R is defined by a
sequence {(en, dn, R,Ln)} with an encoder

en : Xn −→ {1, 2, ...,Mn}

a decoder

dn : Yn × {1, 2, ...,Mn} → Un

and the learner

Ln : Yn × Un → F

such that

lim sup
n→∞

logMn

n
≤ R

Definition 2. An (n,M, l) code for the sequence
{(en, dn, R, f̂ (n))} is a code with |en| = M such that

EZ

[
L(f̂ (n),S)

]
≤ l (6)

and
logM

n
≤ R.

Definition 3. An (n,M, l, ε) code for the sequence
{(en, dn, R, f̂ (n))} and ε ∈ (0, 1) is a code with |en| = M
such that

P
[
L(f̂ (n),S) ≥ l

]
≤ ε (7)

and
logM

n
≤ R

Definition 4. For fixed l and blocklength n, the finite block-
length rate-loss functions with average loss and with excess
loss are respectively defined by:

R(n, l) = inf
R
{∃ (n,M, l) code}

R(n, l, ε) = inf
R
{∃ (n,M, l, ε) code}

(8)



Definition 5. A pair (R, δ) is said to be achievable if an
(n,M, l)−code exists such as

lim sup
n→∞

EZ

[
L(f̂ (n),S)

]
≤ L∗(F ,S) + δ (9)

Even though the regions defined in this section correspond
to rate-generalization error regions, in what follows, we often
refer to them as rate-loss regions for simplicity and by a slight
abuse of language.

III. ASYMPTOTIC BOUND ON THE RATE-LOSS FUNCTION

In [5], it is shown that the generalization error can be
bounded as

σ ≤ lim sup
n→∞

E
[
L(f̂ (n), P )

1
2

]
≤ σ(1 + 2−R+1), (10)

where P is the distribution of (X,Y ) in [5], and σ2 is the
minimum expected loss for linear regression, i.e. L⋆(F ,S) =
σ2. Our next result provides an achievable rate-loss region
which tightens the upper bound in (10) for Gaussian sources.

A. Main result

Theorem 1. Given any rate R > 0, the pair (R, 0) is achiev-
able for a linear regression learner for Gaussian sources with
squared loss.

This result shows that the minimum expected generalization
error L⋆(F ,S) = σ2 can be achieved even with a very small
rate R, as long as the length of the training sequence is
large enough. This also provides a refined upper bound σ
in (10), which does not depend on R and is actually tight
with the lower bound. The result of Theorem 1 comes from
an achievability scheme which we now describe.

B. Proof of Theorem 1: Achievability scheme

Define U as the output of a test channel PU |X which
satisfies the Markov chain U −X − Y such as:

U = α(X +Φ) (11)

where α =
σ2
X−D

σ2
X

, Φ ∼ N
(
0, σ2

ϕ

)
, σ2

ϕ =
Dσ2

X

σ2
X−D

and D > 0

is a parameter. Since we assume that the parameters S of the
joint Gaussian distribution PXY are unknown to the encoder
and decoder, we resort to the achievability scheme proposed
in [10].

This scheme relies on a prefix transmission to estimate σ2
x

so that it is known by the encoder and by the decoder. This
completely defines the test channel (11). The codebook is
constructed by randomly generating 2nR1 sequences u, which
are then randomly and uniformly assigned to one of 2nR bins,
where R1 > R. For a given source sequence x, the encoder
picks a sequence u which is typical with x, and incrementally
sends to the decoder the index s to which u belongs. Universal
de-binning is applied to retrieve the sequence u from the bin
index and from the side information sequence y. As soon
as the empirical mutual information of the sequences pair
satisfies a time-varying threshold θk, the decoder declares that
the source input has been correctly decoded, otherwise the

transmitter stops if nI(X;U) bits have been transmitted. It
is shown in [10] that the de-binning error probability can be
made as small as desired, as long as the time-varying threshold
is appropriately chosen and by letting the observation length
n be sufficiently large.

The original achievability scheme of [10] then relies on
an universal estimation method to reconstruct the sequence
x as x̂ such that E

[
d(X, X̂)

]
< D, where d(·, ·) is a

squared distortion measure. Here, instead, we apply the linear
regression directly over the intermediate vector u after de-
binning. In this case, for D < σ2

x, the results of [10] show
that the rate

Rb(D) =
1

2
log

(
1 +

σ2

σ2
ϕ

)
(12)

is achievable for EXU [d(X,U)] ≤ D.
Then, according to (1) and (11), the conventional least

square estimation of β0 and β1 from u and y is [14, Chapter
6]

β̂1 =
1

α

∑n
i=1 uiyi − nūȳ∑n
i=1 y

2
i − nȳ2

,

β̂0 =
1

α
(ū− ȳβ̂1)

(13)

where ȳ and ū are the empirical means of vectors y and u,
respectively. The estimators β̂0 and β̂1 are unbiased. Let us
denote B0 and B1 the random variables representing β̂0 and
β̂1. The generalization error defined in (5) is:

L(f̂ (n),S) = EX̃Ỹ

[
ℓ
(
X̃, f̂ (n)(Z, Ỹ )

)
|Z
]

(14)

= EX̃Ỹ

[(
(B0 − β0) + (B1 − β1)Ỹ −N)

)2
| Z
]

= (B0(Z)− β0)
2 + E[Ỹ 2](B1(Z)− β1)

2 + σ2

since E [N ] = 0 and E
[
Ỹ
]
= 0. We then need to express

EZ

[
L(f̂ (n),S)

]
= EY

[
EU[L(f̂

(n),S)|Y = y]
]
. (15)

By defining Syy = 1
n

∑n
i=1(yi − ȳ)2 and given that E[B1] =

β1, E[B0] = β0, and V [(U |Y = y)] = α2(σ2+σ2
ϕ), we have

V [B1|Y = y] = V
[(∑n

i=1 Uiyi − nŪ ȳ

α
∑n

i=1 y
2
i − nȳ2

|Y = y

)]
=

(
1

nαSyy

)2 n∑
i=1

(yi − ȳ)2V [Ui|Y = y]

=
σ2 + σ2

ϕ

nSyy
, (16)

and

V [B0|Y = y] = V
[
1

α
(Ū − ȳB1)|Y = y

]
=

1

α2

(
V
[
Ū |Y = y

]
+ ȳ2V [B1|Y = y]

−2ȳCov(Ū , B1|Y = y)
)

=
σ2 + σ2

ϕ

n

(
1 +

ȳ2

α2Syy

)
. (17)



The expected generalization error in (15) can be expressed as:

EZ[L(f̂
(n),S)]

= σ2 + EY [V [B0|Y = y]] + σ2
Y EY [V [B1|Y = y]]

= σ2 +
σ2 + σ2

ϕ

n

(
1 +

1

α2
E
[
ȳ2

Syy

]
+ σ2

Y E
[

1

Syy

])
. (18)

First, nSyy

σ2
Y

∼ χ2(n − 1), nȳ2

σ2
Y

∼ χ2(1), where χ2(n) is
a Chi-squared distribution with n degrees of freedom [14,
Chapter 5], and (n−1)ȳ2

Syy
∼ F(1, n − 1), where F is the

Fisher–Snedecor distribution [14, Chapter 5]. By the properties
of the Chi-squared and Fischer-Snedecor distributions, we
get [14, Chapter 5]

E
[

1

Syy

]
=

n

(n− 3)σ2
Y

, E
[
ȳ2

Syy

]
=

1

n− 3
, (19)

which gives

EZ[L(f̂
(n),S)] = σ2 +

(σ2 + σ2
ϕ)(1 + 2nα2 − 3α2)

n(n− 3)α2
. (20)

Then, limn→∞ EZ[L(f̂
(n),S)] = σ2. Therefore, as n → ∞,

L(f̂ (n),S) → L∗(F ,S) = σ2, which completes the proof of
Theorem 1.

C. On the trade-off between loss and distortion

We now discuss the tradeoff between linear regression and
data reconstruction. The proof of Theorem 1 shows that the
considered scheme permits to achieve the minimum expected
loss σ2 for any R, as long as the training sequence is long
enough. In [10], it is shown that the same scheme allows to
achieve the Wyner-Ziv rate-distortion function [9] for joint
Gaussian sources. In [10], the reconstruction of the source
X is realized by universal estimation from U after debinning,
while we consider least square estimation of β0 and β1 instead.
This allows us to state the following result.

Corollary 1. For joint Gaussian sources, there is no trade-
off in terms of coding rate between distortion and the linear
regression generalization error.

IV. NON-ASYMPTOTIC BOUND ON THE RATE-LOSS
FUNCTION

Theorem 1 provides the asymptotic rate-generalization func-
tion for linear regression in the setup of Figure 1. We
now aim to investigate the finite-blocklength regime. In the
classical problem of rate-distortion with side information in
finite blocklength, the probability of excess distortion plays
an important role, since not all the codewords can satisfy
the distortion constraint. This problem has been well studied
recently, by using the notion of distortion dispersion [11], [12],
[15]. In the following, based on the work in [12], we derive a
non-asymptotic achievability bound for the rate-generalization
error region.

A. Definitions

Let us consider the following three sets, similar to those
defined in [12]:

Tp(γp) :=
{
(u, y) : log

PY |U (y|u)
PY (y)

≥ γp

}
, (21)

Tc(γc) :=
{
(u, x) : log

PX|U (x|u)
PX(x)

≤ γc

}
, (22)

Te(l) :=
{
(x̃, ỹ, u, y) : ℓ(x̃, f̂ (n)(z, ỹ)) ≤ l

}
, (23)

where γp, γc are predefined thresholds, and l is the target
generalization error. The first two sets already appeared in [12]
for the conventional setup of data reconstruction with side
information, while the third one is specific to our linear regres-
sion problem. Accordingly, define the information-density-loss
vector as

i(U,X, Y, X̃, Ỹ ) :=


− log

PY |U (Y |U)

PY (Y )

log
PX|U (X|U)

PX(X)

ℓ(X̃, f̂ (n)(Z, Ỹ ))

. (24)

Taking the expectation over the distribution PUXY X̃Ỹ of this
vector gives

J(i) :=E[i(U,X, Y, X̃, Ỹ )] (25)

=

 −I(U ;Y )
I(U ;X)

EZX̃Ỹ

[
ℓ(X̃, f̂ (n)(Z, Ỹ )

]
. (26)

The sum of the first two components gives the Wyner-Ziv
coding rate defined in equation (12). The covariance matrix
of this vector is

V = Cov(i(U,X, Y, X̃, Ỹ )). (27)

Let k be a positive integer and V ∈ Rk×k be a positive-
semi-definite matrix. Given a Gaussian random vector B ∼
N (0,V), the dispersion term is defined w.r.t. the covariance
matrix as [13]

S (V, ε) := {b ∈ Rk : Pr(B ≤ b) ≥ 1− ε}. (28)

B. Main result

By replacing the excess distortion measure in [12], by the
generalization error, and adapting some steps of the analysis,
we obtain the following result.

Theorem 2. For arbitrary constants γp, γc, l ≥ 0, and positive
integer N, there exists an (n,M, l, ε) code satisfying

ε ≤PUXY X̂ [(u, y) ∈ Tp(γp)c ∪ (u, x) ∈ Tc(γc)c

∪ (x̃, ỹ, u, y) ∈ Te(l)c]

+
N

2γp |M|
+

1

2

√
2γc

N
. (29)

Proof: The proof is omitted due to the lack of space but
follows the same steps as in [12].



Fig. 2. Non-asymptotic rate-generalization error region labeled on the
blocklength n and the excess loss probability ε.

By choosing γp = log N
|Mn| +log n and γc = logN− log n,

and by applying Theorem 2 together with the multidimensional
Berry-Esséen Theorem, we derive the following achievable
second-order coding region as follows.

Theorem 3. For every 0 < ε < 1, and n sufficiently large,
the (n, ε)-rate-generalization error function satisfies:

Rb(n, ε, l) ≤ inf

{
M

(
J+

S (V, ε)√
n

+
2 log n

n
13

)}
(30)

with M = [1 1 0].

Proof: The proof is omitted due to the lack of space but
follows the same steps as in [12].

V. NUMERICAL RESULTS

In this section, we consider β0 = 2, β1 = 5, σ2 = 4,
σ2
y = 16, and σ2

x = σ2 + β2
1σ

2
y = 404. We use Theorem 3 to

plot the rate-generalization error region in finite blocklength,
where the dispersion term S (V, ε) is estimated by generating
samples from the known joint distribution PUXY . The infor-
mation density i(x;u|y) is then estimated from these samples,
and the dispersion is estimated from (28).

Figure 2 plots the boundaries of finite blocklength achiev-
able regions for various values of n and ε. It illustrates that as
n increases, whatever ε is, the achievable region gets closer
to the asymptotic one shown in black. Similarly, for a fixed
blocklength n, when the constraint on the excess loss becomes
less stringent, the achievable region enlarges. This implies that
for a fixed generalization error and blocklength n, a lower rate
is possible if a higher excess probability is allowed, since only
the average error is taken into account. These results do not
tell us what happens for a rate-generalization error pair outside
the region, as our findings are achievability results, and the
characterization of the outer bound remains an open problem.

VI. CONCLUSION

In this paper, we investigated achievable rate-generalization
error regions for the linear regression problem. Achievable
region have been provided in both non-asymptotic and asymp-
totic regimes, i.e. with and without the excess loss probability.

As an important outcome, our study shows that there is no
trade-off between the distortion for data reconstruction and
the generalization error for linear regression, given that the
blocklength n is sufficiently large. The characterization of the
outer bound (converse) for the rate-loss region is also of great
interest and would allow to refine the analysis. Future works
also include the extension of this approach to more complex
learning tasks.
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