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Abstract—In the context of goal-oriented communications, this
paper addresses the achievable rate versus generalization error
region of a learning task applied on compressed data. The study
focuses on the distributed setup where a source is compressed and
transmitted through a noiseless channel to a receiver performing
polynomial regression, aided by side information available at the
decoder. The paper provides the asymptotic rate generalization
error region, and extends the analysis to the non-asymptotic
regime. Additionally, it investigates the asymptotic trade-off
between polynomial regression and data reconstruction under
communication constraints. The proposed achievable scheme is
shown to achieve the minimum generalization error as well as
the optimal rate-distortion region.

Index Terms—Information theory, source coding, statistical
learning, rate-distortion theory, generalization error

I. INTRODUCTION

Learning under communication constraints has received in-
creased attention recently, for instance for distributed learning
and sensor networks applications [1]. When considering a
rate-limited channel, one key question is whether the design
principles for the encoder and decoder for a learning task still
align with those of traditional communication systems, where
the main goal is data reconstruction.

To address this issue, researchers have explored simple
distributed learning problems involving two correlated sources
X and Y , where X is the source to be encoded and Y serves
as side information at the decoder. Distributed hypothesis
testing has been extensively studied for specific hypothesis
tests on the joint distribution PXY , and asymptotic limits
on the Type-II error exponent have been determined in [2]–
[4]. Furthermore, [5] demonstrated that the rate required for
estimating a parameter θ from the joint distribution PXY is
less than the rate necessary for reconstructing the source.
Finally, [6] developed a universal achievable bound on the
learning generalization error, applicable to a wide range of
distributed learning problems involving two sources. However,
it was later shown in [7] that this bound is quite loose when
applied to linear regression. Building upon [7], this paper
focuses on the wider problem of polynomial regression and
aims to establish achievable generalization error bounds that
improve over the ones presented in [6]. Despite its simplicity,
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polynomial regression, captures essential learning theory con-
cepts and is widely applied in signal and image processing,
e.g., [8], [9].

Morever, this paper investigates a secondary, yet significant
concern, which is the trade-off between data reconstruction
and learning under communication constraints. In this mat-
ter, [10] demonstrated that there indeed exists a tradeoff
between data reconstruction and visual perception. Similar
tradeoffs have been observed for other problems, such as
hypothesis testing in [2], or identifying noisy data in a database
in [11]. All previous works utilize distortion as the figure of
merit for data reconstruction and employ distinct measures for
the learning aspect; like a divergence between two distributions
in [10], and the type-II error exponent in [2]. Unfortunately,
none of these metrics are applicable to polynomial regression,
underlining the need for a different analysis in our case.

Least squares regression, a fundamental statistical prediction
problem, has been extensively investigated in literature. The
ordinary least squares (OLS) estimator is a popular regression
method, and its generalization error with k predictors and
n samples is known to scale as k

n−k+1 [12]. However, this
result does not take into account the communication con-
straint, which is an important consideration in many practical
scenarios. In the context of polynomial regression, this paper
determines the minimum achievable source coding rate under
a constraint on the generalization error for both asymptotic
and non-asymptotic regimes. The regions are derived using
both standard asymptotic information theory tools [13], [14]
and finite-length tools [15], and they improve over the bounds
established by [6]. Additionally, the analysis reveals that no
trade-off exists between data reconstruction and polynomial
regression in terms of coding rate.

The outline of the paper is as follows. Section II defines the
problem of coding for polynomial regression. Section III in-
troduces the asymptotic rate-loss bounds. Section IV provides
the rate-loss bounds in finite blocklength. Section V shows
numerical results.

II. PROBLEM STATEMENT

A. Notation

Throughout this article, random variables and their re-
alizations are denoted with capital and lower-case letters,
respectively, e.g., X and x. Random vectors of length n are
denoted X = [X1, ..., Xn]

T , and E[X] and C [X] are the
expected value and the covariance matrix of X , respectively.



Next, X = [X1, · · · ,Xp] is a matrix gathering a p-length
sequence of random vectors Xi, i ∈ J1, pK. We use Tr(X) to
denote the trace of matrix X , while λmax(X) and λmin(X)
are the maximum and minimum eigenvalues of matrix X ,
respectively. We further denote ||X|| as the norm-2 of a matrix
X . Sets are denoted with calligraphic fonts, and if f : X → Y
is a mapping then |f | denotes the cardinality of Y . Finally
log(·) denotes the base-2 logarithm.

B. Source definitions
Let (X,Y ) ∼ PXY be a pair of jointly distributed random

variables, where X is the source to be encoded and Y is the
side information only available at the decoder, see Figure 1.
For simplicity and without loss of generality, we consider
E [Y ] = 0. We define β = [β0, β1, ..., βk−1]

T ∈ Rk, and
Y ⋆ = [Y 0, Y 1, ..., Y k−1]T ∈ Rk, where Y i is the variable Y
raised to power i. We assume that X follows a polynomial
model of order k defined as

X =
k−1∑
i=0

βiY
i +N = βTY ⋆ +N, (1)

where N ∼ N (0, σ2) follows a Gaussian distribution with
mean 0 and variance σ2. The vector β is constant and unknown
at the transmitter.

C. Polynomial Regression
Polynomial regression aims at estimating the parameter

vector β̂ from realizations, or noisy realizations, of X and
Y . As a standard supervised learning problem, polynomial
regression consists of two phases. We use X , Y to denote
symbols generated at the training phase, and X̃ , Ỹ for symbols
generated at the inference phase. The training phase consists
of estimating β from a training sequence composed by the
available side information Y and by a coded version of
X which is denoted U . The inference phase consists of
calculating estimates of the symbols X̃ as X̂ = β̂Ỹ

⋆
, where

β̂ is the estimate of β from the training phase. Note that the
inference phase does not need any data transmission, since the
side information Ỹ is directly available to the decoder.

Following the notation introduced by Raginsky in [6], we
next formalize the problem as follows. Let F be the set of
polynomial functions f : R → R of the form f(y) = αTy⋆,
where α ∈ Rk. Polynomial regression outputs a sequence
of functions f̂ (n) ∈ F , called predictors, such that f̂ (n) :
Zn×R → R, where Z = (U ,Y ) ∈ Zn is a training sequence
in which U and Y are sequences of length n. Given that
f̂ (n) ∈ F , we can equivalently write

f̂ (n)(Z, y) = α(Z)Ty⋆, (2)

where α : Zn → Rk.
Consider the quadratic loss function ℓ : R2 → R defined as

ℓ(x, x̂) = (x− x̂)2. The minimum expected loss is defined as
in [6], [7] as1

L⋆(F ,β) = inf
f∈F

E [ℓ(X, f(Y ))] . (3)

1One may also define a loss over a sequence. However, since the samples
from the training and inference phases are i.i.d. it does not change the analysis.
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Fig. 1. Coding scheme for regression

The generalization error is defined as

G(f̂ (n),β) = EX̃Ỹ

[
ℓ
(
X̃, f̂ (n)(Z, Ỹ )

)
|Z

]
. (4)

where (X̃, Ỹ ) ∼ PXY is independent from Z, the training
sequence. The generalization error being a random variable
due to the conditioning on Z, the quantity EZ

[
G
(
f̂ (n),β

)]
is referred to as the expected generalization error.

In the previous expressions, the minimum expected loss (3)
simply expresses the average gap between X and f(Y ), for
the function f that minimizes the quantity E [ℓ(X, f(Y ))] over
the space of polynomial functions F . However, there is no
guarantee that this optimal function f can be obtained from
training. On the opposite, the generalization error measures
the learning performance as the expected loss for a certain
training sequence Z. This training sequence allows to produce
an estimated function f̂ (n)(Z, ·) which can then be used
to evaluate new samples ˆ̃X = f̂ (n)(Z, Ỹ ) at the inference
phase. Especially, it is easy to show that EZ

[
G
(
f̂ (n),β

)]
≥

L⋆(F ,β). Therefore, the gap EZ

[
G
(
f̂ (n),β

)]
− L⋆(F ,β)

is a key quantity to characterize the performance of a coding
scheme dedicated to learning, and this is why our rate-learning
regions will be expressed from this quantity.

D. Coding scheme

The coding scheme is analogue to the one for linear
regression in [7]. However, the theoretical analysis differs
and becomes more complex, as will be described in the next
sections.

Definition 1. A polynomial regression scheme at rate R is
defined by a sequence {(en, dn, R, f̂ (n)))} with an encoder
en : Xn −→ J1,MnK a decoder dn : Yn × J1,MnK → Un and
the learner tn : Yn × Un → F such that

lim sup
n→∞

logMn

n
≤ R.

Definition 2. An (n,M, l, ε) code for the sequence
{(en, dn, R, f̂ (n))} and ε ∈ (0, 1) is a code with |en| = M
such that

P
[
G(f̂ (n),β) ≥ l

]
≤ ε and

logM

n
≤ R. (5)

Definition 3. For fixed l and blocklength n, the finite block-
length rate-loss functions with excess loss ε is defined by:

R(n, l, ε) = inf
R
{∃ (n,M, l, ε) code} (6)



Definition 4. A pair (R, δ) is said to be achievable if there
exists a sequence {(en, dn, R, f̂ (n))} such that

lim sup
n→∞

EZ

[
G(f̂ (n),β)

]
≤ L∗(F ,β) + δ (7)

As discussed in Section II-C, the achievable region is de-
fined in terms of gap between EZ

[
G(f̂ (n),β)

]
and L∗(F ,β).

Although the regions defined in this section pertain to rate-
generalization error regions, for the sake of simplicity and
with a minor deviation in terminology, we refer to them as
rate-loss regions in the subsequent discussions.

III. ASYMPTOTIC BOUND ON THE RATE-LOSS FUNCTION

In [6, Theorem 3.3], it is shown that, for a quadratic loss
function, the generalization error can be bounded as:

L⋆ 1
2 (F ,β) ≤ lim sup

n→∞
E
[
G(f̂ (n),β)

1
2

]
≤ L⋆ 1

2 (F ,β)

+ 2DX|Y (R)1/2
(8)

where DX|Y (R) is the conditional distortion-rate function. It
can be shown that for the polynomial regression, the minimum
expected loss in (3) is L⋆(F ,β) = σ2. In this section, we build
a coding scheme that allows to improve the upper bound in (8)
for the polynomial model.

A. Rate-loss region

Theorem 1. Given any rate R > 0, the pair (R, 0) is
achievable for the polynomial regression scheme with squared
loss, for sources (X,Y ) following the polynomial model (1).

This result states that the minimum generalization error
which is given by the loss function L⋆(F ,β) in (8) can be
achieved with any arbitrary rate R, as long as the training
sequence is long enough. The proof of the Theorem is based
on an achievability scheme built on a Gaussian test channel.
This test channel is known for being optimal for joint Gaussian
sources when considering data reconstruction [16], although
it may be suboptimal for other models like the one we
consider in this paper. However, in our case, we show that
this test channel achieves the optimal rate-loss region (R, 0)
for polynomial regression, and we further discuss its optimality
for data reconstruction in Section III-C.

B. Proof of Theorem 1 : Achievability scheme

Let us consider the test channel U = α(X + Φ), where
Φ ∼ N (0, σ2

Φ) is independent of X , and α and σ2
Φ are two

parameters which depend on the distribution of X and Y .
The parameters β and the joint distribution PXY are un-

known to the encoder and decoder but the noise variance of the
model, i.e. σ2, is assumed to be known at the encoder. Hence,
the transmission rate is perfectly known at the encoder and
the variable-rate scheme in [14] becomes a fixed-rate coding
scheme in our setup. The same idea of binning is used and
the de-binning is performed based on the empirical mutual
information between x and u evaluated thanks to the type
of x transmitted in a prefix transmission [14]. Given that

D < σ2
x and (X | Y ) is Gaussian, we show that the rate-

distortion function Rb(D) = 1
2 log

(
1 + σ2

σ2
Φ

)
is achievable for

EXU [d(X,U)] ≤ D, where D is a function of σ2
Φ.

Then, for a training sequences (y,u), the OLS estimator β̂
is given by [17, Chapter 7]

β̂ = α−1(Y ⋆Y ⋆T )−1Y ⋆u. (9)

where Y ⋆ = [Y ⋆
1 , ...,Y ⋆

n ] ∈ Rk×n and this estimator has the
following statistical properties :

E
[
β̂
]
= β and C

[
β̂|Y

]
=

1

α2
σ2
U |Y (Y

⋆Y ⋆T )−1 (10)

where C
[
β̂|Y

]
is the covariance matrix of β̂ given Y . Hence,

the generalization error (4) can be rewritten as

G(f̂ (n),β) = EX̃Ỹ

[
[β − β̂]T Ỹ ⋆Ỹ ⋆T [β − β̂] +NTN |Z

]
= [β − β̂]TEỸ

[
Ỹ ⋆Ỹ ⋆T

]
[β − β̂] + σ2.

(11)
Let Σ̃ = EỸ

[
Ỹ ⋆Ỹ ⋆T

]
and Σ = 1

nY
⋆Y ⋆T . Then, the

expected generalization error is

EZ

[
G(f̂ (n),β)

]
= σ2 + E

[
1

n
(Σ−1Y ⋆(N +Φ))T Σ̃

1

n
(Σ−1Y ⋆(N +Φ))

]
= σ2 +

σ2 + σ2
Φ

n
E
[
Tr

(
Σ̃Σ−1

)]
. (12)

The next step is to show that E
[
Tr

(
Σ̃Σ−1

)]
is bounded

by some constant C for n large enough. The following
proposition bounds the trace of a product of two matrices by
their eigenvalues.

Proposition 1. [18, p 340] (Ruhe’s trace inequality). If U
and V are k×k positive semidefinite Hermitian matrices with
eigenvalues λi(U), λi(V ), i ∈ {1, · · · , k} then

Tr(UV ) ≤
k∑

i=1

λi(U)λi(V ) (13)

Lemma 1. If A and B are real symmetric matrices, then:

λmin(A) ≥ λmin(B)− ||A−B|| (14)

Proof: Let x be a vector such that ||x||2 = 1, by Cauchy-
Schwartz inequality, for a real symmetric matrix M , we have

−||M || ≤ xTMx ≤ ||M ||. (15)

With the properties of eigenvalues, we have

λmin(M) ≤ xTMx ≤ λmax(M). (16)

For real symmetric matrices A and B, we have

xTAx = xTBx+ xT (A−B)x. (17)

Applying the above inequalities shows the desired result.



We remark that Σ is an estimator of the covariance matrix
of Y . Then, from Proposition 1 and Lemma 1, for n large
enough, Tr

(
Σ̃Σ−1

)
is bounded almost surely by:

Tr
(
Σ̃Σ−1

)
≤ k

λmax(Σ̃)

λmin(Σ̃)− ||Σ̃−Σ||
. (18)

Substituting this into (12) with some constant C = λmax(Σ̃)

λmin(Σ̃)

and the fact that ||Σ̃−Σ|| → 0 almost surely, shows that the
expected generalization error is upper bounded by

EZ

[
G(f̂ (n),β)

]
≤ σ2 +

(σ2 + σ2
Φ)

n
kC (19)

Thus EZ

[
G(f̂ (n),β)

]
→ σ2 as n → ∞, which completes the

proof.
Our result closes the gap between the lower bound and the

upper bound from [6] (see equation (8)). In order to provide
a bound applicable to a wide range of problems, the upper
bound from [6] considered both the observation noise between
X and Y and the distortion between X and U . While in our
result, by the Gaussian test channel and OLS estimation from
U and Y , we show that the quantification error term in (19),
and hence the distortion term, is vanishing with the block-
length n.

C. Trade-off between data reconstruction and polynomial re-
gression

In this section, we show that the previous achievability
scheme considered for polynomial regression also achieves the
optimal Wyner-Ziv rate-distortion function for data reconstruc-
tion, for sources modeled by (1).

Corollary 1. For a pair of sources (X,Y ) modeled from (1),
there is no trade-off in terms of coding rate between distortion
and polynomial regression generalization error.

Proof: We first investigate the conditional setup in which
the side information Y is also available at the encoder.
Since the random variable (X|Y ) ∼ N (0, σ2), the following
conditional rate-distortion function can be achieved [19]

RX|Y (D) =
1

2
log

(
σ2

D

)
, (20)

where D = E
[
(X − X̂)2

]
is the distortion. We now show

that in the Wyner-Ziv setup where Y is only available at
the decoder, the rate-distortion function RWZ(D) is equal
to RX|Y (D) when considering the same test channel U =

α(X+Φ) as in the proof of Theorem 1, with α = σ2−D
σ2 , and

σ2
Φ = Dσ2

σ2−D . By using the proposed achievability scheme, the
random variable U can be recovered perfectly at the decoder,
and then produces X̂ = U +(1−α)βTY ⋆. This allows us to
evaluate E

[
(X − X̂)2

]
= (α − 1)2σ2 + α2σ2

Φ. Replacing α

and σ2
Φ by their expressions leads to E

[
(X − X̂)2

]
= D. Sec-

ond, the Wyner-Ziv rate-distortion function has expression [16]

I(X;U)− I(Y ;U) =
1

2
log2

(
σ2 + σ2

Φ

σ2
Φ

)

where the equality comes from the fact that N and Φ are
Gaussian random variables. Replacing σ2

Φ by its expression
gives that RWZ(D) = RX|Y (D) in (20), which shows that
the Gaussian test channel is optimal when considering our
polynomial source model. Note that in the previous derivation,
we considered that β is perfectly known. If this is not the case,
X̂ is computed from β̂ instead of β, and following the same
derivation as for the generalization error permits to show that
E
[
(X − X̂)2

]
→ D as n → ∞.

This result differs from the other ones in literature that show
that there is a tradeoff between reconstruction and learning,
such as for the hypothesis testing problem for instance [2].

IV. RATE-LOSS NON-ASYMPTOTIC BOUND

In the finite-blocklength regime, not all codewords satisfy
the generalization error constraint, and hence the excess prob-
ability, defined in Definition 2, has to be taken into account.
The characterization of the non-asymptotic achievable bound
for the rate-generalization error region is built from the rate-
distortion problem in finite blocklength regime, studied in [15].
Similarly, we define the information-loss density vector as
follows:

i(U,X, Y, X̃, Ỹ ) :=


− log

PU |Y (U |Y )

PU (U)

log
PU |X(U |X)

PU (U)

ℓ(X̃, f̂ (n)(Z, Ỹ ))

 (21)

where the third term is specific to our non-linear regression
problem. The expectation of i over the distribution PUXY X̃Ỹ

is J =
[
−I(U ;Y ), I(U ;X),EZ

[
G(f̂n,β)

]]T
, where the

sum of the first two components gives the Wyner-Ziv coding
rate. The covariance matrix of (21) is

V = C
[
i(U,X, Y, X̃, Ỹ )

]
. (22)

Let k be a positive integer and V ∈ Rk×k be a positive-
semi-definite matrix. Given a Gaussian random vector B ∼
N (0,V ), the dispersion region is [20]

S (V , ε) := {b ∈ Rk : Pr(B ≤ b) ≥ 1− ε}. (23)

By replacing the distortion measure by the generalization
error, and adapting some steps of the analysis, we can obtain
a similar result as Theorem 2 in [15]. Finally, by applying
this theorem in conjunction with the multidimensional Berry-
Esséen Theorem, we show that for all 0 < ε < 1 and n
sufficiently large, the (n, ε)-rate-generalization error function
satisfies:

Rb(n, ε, l) ≤ inf

{
MT

(
J +

S (V , ε)√
n

+
2 log n

n
13

)}
(24)

with M = [1 1 0]T and 13 = [1 1 1]
T .



Fig. 2. Non-asymptotic rate-generalization error region labeled on the
blocklength n and the excess loss probability ε.

V. NUMERICAL RESULTS

Let us consider X = β0 + β1Y + β2Y
2 +N , and assume

that Y is uniform over [−1, 1]. We also set β = [2, 3, 1]T and
σ2 = 16. From the theorem of change variable, for β2 > 0
and β2

1 + 4β2(v− β0) ≥ 0, the distribution of V = βTY ⋆ is:

PV (v) =


1√

β2
1+4β2(v−β0)

|y1(v)| ≤ 1 and |y2(v)| ≤ 1

1

2
√

β2
1+4β2(v−β0)

|y1(v)| ≤ 1 or |y2(v)| ≤ 1

0 otherwise

where y1 =
−β1−

√
β2
1+4β2(v−β0)

2β2
, y2 =

−β1+
√

β2
1+4β2(v−β0)

2β2
.

The probability density function of U = α(V +N + Φ) can
then be expressed as

PU (u) =
1

α
√

2π(σ2 + σ2
Φ)

∫ ∞

−∞
PV (v)e

−
( u
α

−v)2

2(σ2+σ2
Φ

) dv (25)

which can be evaluated numerically. Using (24) with (U |Y ) ∼
N (0, α2(σ2 + σ2

Φ)) and (U |X) ∼ N (0, α2σ2
Φ), we can

estimate the information-density-loss vector by generating a
large number of samples, and thus estimate the dispersion
region in (23). Figure 2 shows the boundaries of the achievable
rate-loss region for different parameters n and ε. The black line
represents the best achievable generalization error, i.e. σ2. We
observe that the achievable region enlarges when the source
size, n, or the excess probability increases. Indeed, when the
excess probability is larger, the proportion of codewords which
exceeds the generalization error constraint is larger, and this
situation occurs for smaller rate. Moreover, for a fixed excess
probability, increasing n allows to reduce the rate since the
poorly reconstructed U is compensated by the large number
of samples for estimating the regression parameters. These
results do not deal with an outer bound at finite blocklength,
i.e. a rate-loss region that cannot be exceeded, and the region
outside the boundary needs further investigation.

VI. CONCLUSION

This paper provided achievable rate-generalization error
regions for the polynomial regression problem in both asymp-

totic and non-asymptotic regimes. An important result of
our study states that asymptotically there is no trade-off
between data reconstruction and polynomial regression under
communication constraints. The characterization of the outer
bound (converse) for the rate-generalization error region is
also of great interest and would allow to refine the analysis.
The developed framework could be extended to more complex
learning taks, such as non-parametric estimation, in the future.
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