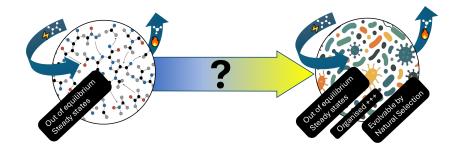
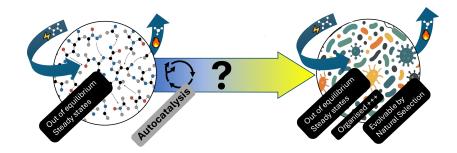
Complexity of detecting autocatalysis in chemical reaction networks

Denis Kuperberg CNRS, LIP, ENS Lyon

Joint work with Sylvain Charlat, Thomas Kosc, Étienne Rajon

Combinatorics of Life Sciences 01/10/2025





Reaction Networks

Reaction Network: (S, R)

S: species (A, B, ...)

 \mathcal{R} : reactions

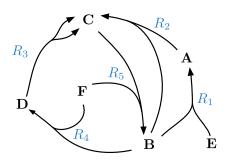
 $\sum \alpha_i S_i \rightarrow \sum \beta_j S_j$

Stoichiometric Matrix:

Rows: species ${\cal S}$

Columns: reactions ${\cal R}$

$$M[i,j] = \beta_{ij} - \alpha_{ij}.$$

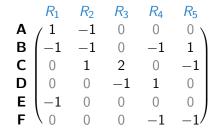

Reaction Networks

Reaction Network: (S, R)

S: species (A, B, ...)

 \mathcal{R} : reactions

 $\sum \alpha_i S_i \rightarrow \sum \beta_j S_j$



Stoichiometric Matrix:

Rows: species ${\cal S}$

Columns: reactions \mathcal{R}

 $M[i,j] = \beta_{ij} - \alpha_{ij}$.

Using the stoichiometric matrix

Stoichiometric matrix

Flow vector

Net production

$$\begin{pmatrix} 2 \\ 1 \\ 0 \\ 1 \\ -2 \end{pmatrix} \begin{matrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \end{pmatrix} = \begin{pmatrix} 1 \\ -6 \\ 3 \\ 1 \\ -2 \\ -3 \end{pmatrix} \begin{matrix} A \\ E \\ C \\ C \\ E \\ E \\ E \end{matrix}$$

Autocatalysis

Autocatalytic core [Blokhuis, Lacoste, Nghe 2022]:

Submatrix N of M such that

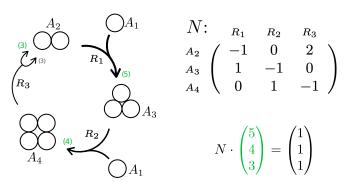
 $\begin{tabular}{ll} \textbf{Autonomy} & Each column and row contains coefs} < 0 \ and > 0 \end{tabular}$

Production $\exists \vec{v} \in \mathbb{R}^k$ such that $N \cdot \vec{v} \in (\mathbb{R}^{*+})^k$

Minimality N is minimal

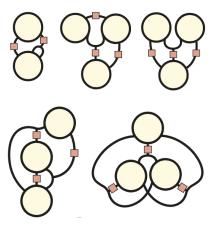
Autocatalysis

Autocatalytic core [Blokhuis, Lacoste, Nghe 2022]:

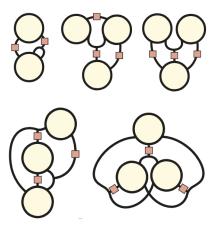

Submatrix N of M such that

Autonomy Each column and row contains coefs < 0 and > 0

Production $\exists \vec{v} \in \mathbb{R}^k$ such that $N \cdot \vec{v} \in (\mathbb{R}^{*+})^k$


Minimality N is minimal

Example:


Classification of autocatalytic cores

[Blokhuis, Lacoste, Nghe 2022]


Classification of autocatalytic cores

[Blokhuis, Lacoste, Nghe 2022]

Goal: Find autocatalytic cores in the network, track their activity.

EmergeNS Software

$$A + B \rightleftharpoons AB$$

How to compute flows?

$$A + B \rightleftharpoons AB$$

How to compute flows? Mass action law

$$v_{
m assoc} = k_{
m assoc}[A][B]$$

 $v_{
m dissoc} = k_{
m dissoc}[AB]$
flow $v = v_{
m assoc} - v_{
m dissoc}$

$$A + B \rightleftharpoons AB$$

How to compute flows? Mass action law

$$v_{
m assoc} = k_{
m assoc}[A][B]$$

 $v_{
m dissoc} = k_{
m dissoc}[AB]$
flow $v = v_{
m assoc} - v_{
m dissoc}$

Consistent core: Flow witness must be realistic:

Concentration vector $\vec{c} \rightsquigarrow$ flow vector \vec{v} witnessing production.

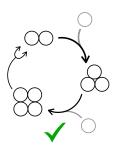
$$A + B \rightleftharpoons AB$$

How to compute flows? Mass action law

$$v_{
m assoc} = k_{
m assoc}[A][B]$$

 $v_{
m dissoc} = k_{
m dissoc}[AB]$
flow $v = v_{
m assoc} - v_{
m dissoc}$

Consistent core: Flow witness must be realistic:

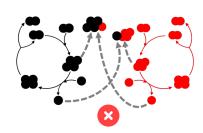

Concentration vector $\vec{c} \rightsquigarrow$ flow vector \vec{v} witnessing production.

Compatible cores: share the same witness \vec{v} .

Results on thermodynamic realism

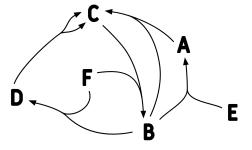
[Kosc, Kuperberg, Rajon, Charlat 2025]

Theorem 1: Any core is consistent.

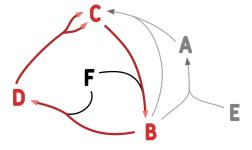

Results on thermodynamic realism

[Kosc, Kuperberg, Rajon, Charlat 2025]

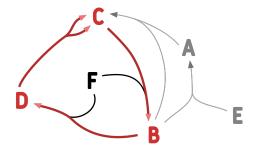
Theorem 1: Any core is consistent.


Theorem 2:

Compatible cores might be mutually inconsistent.


Input: reaction network (S, \mathcal{R})

Output: List of autocatalytic cores in the network.

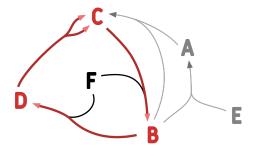

Input: reaction network (S, \mathcal{R})

Output: List of autocatalytic cores in the network.

Input: reaction network (S, R)

Output: List of autocatalytic cores in the network.

Several variants:


Cycle: ∃ autocatalytic core

List: ∃ AC outside input list

Constrained: ∃ AC constraints on food/species.

Input: reaction network (S, R)

Output: List of autocatalytic cores in the network.

Several variants:

Cycle: ∃ autocatalytic core

List: ∃ AC outside input list

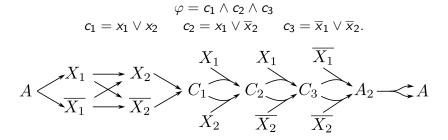
Constrained: ∃ AC constraints on food/species.

Do we allow irreversible reactions?

Results

	Cycle	List	Constrained
Reversible	?	?	NP-c
Irreversible	NP-c	NP-c	NP-c

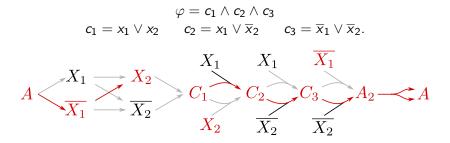
Reduction from SAT:

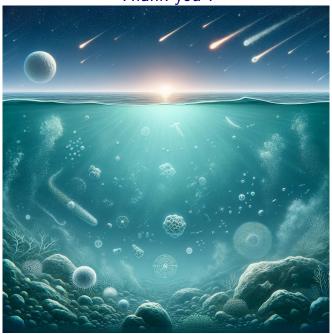

$$\varphi = c_1 \wedge c_2 \wedge c_3$$

$$c_1 = x_1 \vee x_2 \qquad c_2 = x_1 \vee \overline{x}_2 \qquad c_3 = \overline{x}_1 \vee \overline{x}_2.$$

Results

	Cycle	List	Constrained
Reversible	?	?	NP-c
Irreversible	NP-c	NP-c	NP-c


Reduction from SAT:


Results

	Cycle	List	Constrained
Reversible	?	?	NP-c
Irreversible	NP-c	NP-c	NP-c

Reduction from SAT:

Thank you!

