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Given a tissue represented by a 2D / 3D labelled (segmented) image
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Build the set of simplices corresponding to the adjacency between tissue cells
(ensuring they form a valid triangulation / tetrahedralization)
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• Given a set of "vertices" 𝑉 : collection of subsets of 𝑉, closed under taking subsets
• Subset 𝜎 of size 𝑘 + 1 = 𝑘-simplex: dimension 𝑛 of 𝐾 as the max 𝑘 in all simplices
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• Non-degeneracy: ∀𝜎 ∈ 𝐾, the points 𝐩 𝑣 , 𝑣 ∈ σ must be affinely independent
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Not all embeddings of an ASC lead to a 
geometric realization (invalid geometric SC)
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Collection of image adjacency simplices: not necessarily a valid simplicial complex
Dealing with non-simplicial image adjacencies (4-label linels, 5+-label pointels)

Real-world 3D data
• Limits on the resolution of raw images
• Segmentation errors and artifacts
• Labelled image: noisy proxy of the tissue
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Construct a 𝑛-simplicial complex 𝐾 on 𝑉 such that:

𝐾 is a valid (geometric) simplicial complex 
(pure, non-overlapping, simplicial manifold)

The 1-simplices match as much as possible 
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The geometric "quality" of the 𝑛-simplices
(e.g. measured as eccentricity) is maximized

Constrained Optimization
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• Modify the combinatorial structure through elementary edit operations: e.g. in 2D

• Only allowed if they preserve the validity of the complex

• Geometric embedding adds even more constraints (and operations)
• Check for intersections (and degeneracy) for all operations
• Update embedding for vertex-inserting/removing operations



• Optimization problem: given 𝑉 and 𝐩, and an initial (valid) simplicial complex 𝐾



• Optimization problem: given 𝑉 and 𝐩, and an initial (valid) simplicial complex 𝐾
• Maximize an objective function with only vertex-preserving edit operations



• Optimization problem: given 𝑉 and 𝐩, and an initial (valid) simplicial complex 𝐾
• Maximize an objective function with only vertex-preserving edit operations



• Optimization problem: given 𝑉 and 𝐩, and an initial (valid) simplicial complex 𝐾
• Maximize an objective function with only vertex-preserving edit operations

• Geometric constraints are imposed by 𝐩

• Govern the feasibility of edit operations



• Optimization problem: given 𝑉 and 𝐩, and an initial (valid) simplicial complex 𝐾
• Maximize an objective function with only vertex-preserving edit operations

• Geometric constraints are imposed by 𝐩

• Govern the feasibility of edit operations

Restricted "walkable" space
• Discrete SC space: combinatorial graph
• Valid edit operations define edges
• Pruned by geometric constraints! 



• Optimization problem: given 𝑉 and 𝐩, and an initial (valid) simplicial complex 𝐾
• Maximize an objective function with only vertex-preserving edit operations

• Geometric constraints are imposed by 𝐩

• Govern the feasibility of edit operations

• Limits the accessibility of the optimal SC?

Restricted "walkable" space
• Discrete SC space: combinatorial graph
• Valid edit operations define edges
• Pruned by geometric constraints! 
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+ removal w/r tissue surface• Compute the Delaunay tetrahedralization of cell centers

• Objective function: maximize overlap with image adjacencies + tetrahedron quality

• Optimization: perform edit operations in a simulated-annealing iterative process

Optimality of the solution?
• Geometry impeding path to an optimum?
• Local minima of the objective function?
• + Not suited for reconstructing 2.5D SC
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Mesh the image domain & project cell labels on vertices

Apply edge-collapses on 1-simplices including identically labelled vertices

(Use as initial SC to iteratively optimize the previous objective function)

Solves a different problem?
• Relaxes a constraint on the vertices 𝑉
• Current implementation limited to 2-SC
• Inefficient data structure: slow process
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Given 2 "concentric" 2-simplicial complexes

Reconstruct a 3-SC including all 2-simplices

Match image adjacencies and ensure quality
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• Lineaging problem: find a mapping function between cells at consecutive times

• Rely (mostly) on geometry through image registration

• Min. cost path of SC edit operations: mapping 𝑉𝐭#𝟏 to 𝑉𝐭

Reformulated as a SC edition problem?
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Different acquisitions (individuals) of the same biological tissue

Could we compute the pairwise edit paths between their simplicial complexes?

Use mappings and edit costs to quantify local variability of cellular organization 
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Versatile representations of multicellular 
tissues, suited for many applications

Higher order combinatorial space …with
an extra layer of geometric constraints

Lack of (expertise on) efficient
algorithmic tools to build & compare

Open exciting challenges on both
biological and combinatorial sides




