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Reservoir Pattern Sampling Problem
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Batch-based Reservoir Pattern Sampling
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RPS: Our contribution
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Fig. 1: Overview of the approach (the incomplete block denotes
next barch)

Property 2 (From CBPD to IBF). Let k be the total number
of trials, n, < k the minimum number of times the event must
occur, and p the probability of the event occurring in a single
trial. The Cumulative Binomial Probability Distribution can
be computed as follows:

k
P(n,, k) = Z (?)pj(l_p)k_j =Iy(ne k—n,+1). (2)




Direct Local Pattern Sampling

Frequent sequential pattern sampling
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Pattern sampling state-of-the-art
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Challenges in Complex Data Structure

Challenges for subsequences

Challenge 1: compute the number of subsequences sample

Sild | Sequences #subseq. : 2
1 (ab)c 6 Challenge 2: do not favor |—
2 | (ablclac) = subsequence having ab)
3 c(ac) 5 .

s | eonca) " multiple occurrences ()

Tid Subsequences ac, ac
a, b, (ab), ac, bc ca
1. Pick a sequence proportionally to a, b, ¢, (ab), (ac), ac, bc,...

its number of subsequences

Example

2. Pick a subsequence uniformly

¢, (ac), ca, cc within the drawn sequence

a, b, ¢, d, (ab), (cd),...

Bl w|n| -

p<2(((ab)c) o () # p<x(((ab)e)x(5) + p<1(((ab)e)) x(7)

With repetitions, (), ! ()

some subsequences (« %3))' ((b), §Cg},} )} ) ! (a), (b), (c) } °(c)

are counted multiple ab)), (ac), {bc : _

times + 7x1 + 4 x—l(c); {(ac), (bc),{cc)
= 11

= 11— (-1? ¢<x1(((ab)) e (c))=11-3=8

[Diop et al., ICDM'2018]

DNA sequential data



Theorem for Distinct Subsequences Counting

Theorem 1 (Subsequence number with a maximum norm):
Let s be a sequence, Y be an itemset and j be an integer, the
number of distinct subsequences having a norm less or equal

to j in soY, denoted by ®<;(soY), is defined as follows':

Pi(s0Y) (quj K ( ('?)) — R<(5,Y)

where R<;(s,Y) is the correction term defined by:

Rei(a¥)= 3. (¥R (s¥)
Q)CKQL(S,Y)
— RK (,Y) Zi:l (I)Sj_k(smz‘n(K)—l) % (Is[K]lﬂY|)
where STK] Nkek S|k

Using the inclusion-exclusion principle

[Diop et al., ICDM'2018]

1. Number of subsequences with a norm £ j

min{j.|Y |}
P<i(s0Y) = ( Z (f.'f{r.' X (])E_;'A("")) — R<i(s,Y)
- k=0 |

./'
/'/ |
number of distinct  correction

subsequences term
without

repetitions

number of distinct
subsequences of norm <j of
the concatenation of s with Y

2. Drawing uniformly a subsequence

o Algorithm for drawing a subsequence within s:
1. Draw randomly an occurrence o from s
2. If ois not the first occurrence in s of its subsequence, repeat step 1.
3. Return the subsequence stemming from o

Example: 2 occurrences of ac in (ab)c(ac):

(ab)c(ac)  {abjelae}



Pattern Counting in Weighted Itemsets (1/2)

High utility pattern mining & Knowledge graph profiling

Knowledge graph profiling [Principe et al, VLDB)'21] High utility pattern sampling [Diop, PAKDD’22]
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1)
L

/ X3 = ({C3}, P3, {e1, e3}), X4 = ({C1}, P3,{e1, e2}) PXs) = p(Xa) = 3.
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Pattern Counting in Weighted ltemsets (2/2)

1. Weighting approach PROPERTY 1 (SYMMETRY). If V} is the upper triangle utility of
a given transaction t, and € and i two positive integers such that
DEFINITION 3 (UpPPER TRIANGLE UTILITY). Given a quantitative £ < i < |t| then we have: V,(£,i) = Vi (i — £+ 1,i).
transaction t, { and i two positive integers less than or equal to |t|.
The upper triangle utility of t denoted by ‘V; is defined as follows: & ™\
i Theorem 2. Let t be a transaction from a gDB. The
Vo(£,i)=0if £ > i V,(1,i) = Z w(t[j]. 1) cumulative utility sum of the entire set of patterns
j=1 that appear in transaction t is expressed as: W (t) =
. [t]-1 .
th(fni)=(;_1)xw(t[i],t)+‘vt(f—1,i—1)+"V,(t’,i—l). £ X Lxerw(X1)

2. Drawing approach

h:{ X, X ., X3, X4 } Property 2 (Dichotomous random search). Let t be a quan-

i 40 4 e titative transaction, and t[j| be the last picked item during
Y 30 e = the drawing process. Using a sequential random variable
g g 151 ‘;Z generation to draw the next item t[i], with i < j, to add in

the sampled pattern  is equivalent to jumping directly on
it based on dichotomous search. In other words, if a random

Theorem 1. Let V; be the upper triangle utility af\ number o; drawn from the interval |0, Vt(€~i)+(;) xUc(p,t)]

any given a quantitative transaction t. For any positive allows us to pick t[i], i.e., v,((;‘_i)+(?)ix1]‘;(p,f) < P(t[i]|le A £),

integers ¢ and i such that ¢ < i < |t|, the following then from position j of t, we can directly select the item

statement holds: Vy((,i) = (;:i) x Vi(1,17). ti] sL.lc'h t{zatl Vi(l,i — 1) + (t—fl) X Ueg(pyt) < o <
Vi(6,3) + (;—;) x Us(e, ).

[Diop et Plantevit., EEEBigData'2024]



Generic Problem Reformulation

Definition : (Pattern). ¢ = (X{,..., X],) is a pattern or an
generalization of an instance v = (X1,...,X,), denoted by
© =7, if there exists an index sequence 1 < i1 <is < ... <

ins < n such that for all j € [1..n'], one has X; C X;,.

This definition is usually used in the context of sequential
pattern mining, but we recall that an itemset 1s nothing else
that a sequential pattern of length 1.

Algorithm 1 Sample, (£,B,m)

W i T B e 8 b e

Output: A sample of n, patterns of £(B) drawn propor-
tionally to the utility measure m

Let wm(y) ¢ 2, <, m(p,7) forall y € B

Let ¢ < 0

for j € [1.n,] do

, . A . Wnl(‘y)
Draw ~ from B with P(y,B) = Dl
Let w;;)(/) — Z¢j7All¢||=( 7”'(99’7) for £ € [1”’7”]

Draw an integer /' with a probability of <<= (€)

’ Zi wm (€)
Let o; ~m({p <7 : ¢l =¢})
¢ — oU{p;}

return ¢




RPS: Generic Reservoir Pattern Sampler

Algorithm 2 RPS: A Generic Stream pattern sampler

l:
9.

PN

10:
|} &

Input: A data stream D, a utility measure m, a damping
factor ¢ € [0, 1], and the desired reservoir size k
Output at time 7,: A sample S of k patterns drawn in
L(D = {((t;,By),...,(t,.B,))) based on m and ¢
S+—0;Zy=0
while (f,‘. B,) is from D do

//Batch acceptance probability

Z,=12; +wm(Bi) X igF

w,,,(Bi)XPSX'i
P 7

z + random(0,1)
if p > = then
//Number of realisations
ny < 1+ arg|L,(n,,k —n,) = z| > Definition 10

//Patterns s"e'lection

E « getPatternsToRemove(S,n,.)

S+ S\{S|j]: forj € E}

for ©; € Sample, (£,B;,m) do
S« SU{(ti, pj)}

Definition : (Inverse Incomplete Beta Function). The Inverse
Incomplete Beta Function allows for the approximation of the
number of successful trials n,. out of k trials that matches the
CBPD with a given probability x € [0, 1] as follows:

n, = arg, [I,(n,k—n,+1)=2x.



Computing Number of Realizations (1/2)

@ Context: Selecting patterns for a reservoir of size k.

@ Goal: Draw a set of n, patterns proportionally to their weights from
the current batch B;, with n, < k.

@ Method:

e Use n, copies of batch B; to simulate independent Bernoulli trials.

o Simplify probability computation using Cumulative Binomial
Probability Distribution (CBPD):

k

B = Y ()P - ot

J=n, J

with n, < k the minimum number of times the event must occur, and
p the probability of the event occurring in a single trial.

o Efficiency: Leverage the Incomplete Beta Function (IBF) to reduce
computational overhead.



Computing Number of Realizations (2/2)

@ Incomplete Beta Function (IBF):

1 > —1 b—1
77 (1 —t dt
505 /D (1— t)> dt,

where B(a, b) is the beta function.
e Key Application:
e Replace summation over binomial probabilities with IBF.
o Efficiently compute probabilities for large reservoirs.
@ Inverse IBF:
e Determine n, for a given x:

Ix(a, b) =

n, = arg, [lp(n- k—n-+1)=x].

Total number of realizations

wm(B;)-e®

,t'l.
Let x = random(0, 1) and p = = for a batch current batch B;.
The total number of realizations can be computed as follows:

nr = Lix<py - (14 arg,, [Ip(nr, k — ny) = X])



Soundness of RPS

For any Two-Step pattern sampler,
regardless the data structure

Property 5 (Soundness). Let D = ((t1,B1),..., (tn, Bn))
be a stream data defined over a pattern language L, m be a
norm-based utility measure, k the size of the reservoir S and
e € [0,1] a damping factor. After observing (t,,B,), RPS

returns a sample of k patterns o1, ..., where each pattern
w; = S[j| is drawn with a probability equals to:
. G:fn, (99 9 D)
P(@j :S[j]aD) = -

ngeﬁ an(tpja D) .

Definition : (Pattern Global Utility under temporal bias). Let
D = ((t1,B1),..., (tn, Bn)) be a stream data defined over a
pattern language L, m be an interestingness utility measure
and € € [0, 1] a damping factor. At time t,,, the global utility
of any pattern @ inserted into the reservoir at time t and that
still appears into S is given by:

Go (D)= > > me, i) | % Ve(tn, t:)

(ti,B@')ED '}"ij €B;



Use Case on
Classification of
Stream
Sequential Data

Init

Learn = True
Predict = Fake

Learning-duration = 0 = maxLearn
Prediction-duration = 0 = maxPredict

Learning-duration ++ o If (Learning-duration=maxLearn) Then "\ Prediction-duration ++
Predict = True
Learning-duration = 0 Predict = True

Else 1f (Prediction-duration = maxPredict) Then

with the reservoir

!

[ Binarize the data ]

_[

[ Drift with label ?

s

[ Predict data

Learn = True Learn = True
;\ Prediction-duration =0
V4
Update reservoir J
p Yes
Binarize the data
with the reservoir
Yes
[ Drift with label ? ]7
No
v v
¥ Emp ty the model ]
Update the model Leam = True, Predict = False | Yes
with binarized data Leaming-duration =0

Prediction-duration=10

)

r Drift on accuracy | No
L with KSWIN ?




Snapshots of RPS-
Classifiers
Evolution per batch

Accuracy

Accuracy
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Figure: Evolution of the accuracy per batch with different parameters on Books.
The learning timestamps are colored red. k: reservoir size, N: batch size, /d:
learning duration, pd: predict duration



Online Classifier Accuracies
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Figure: Comparison between RPS-based classifiers (with reservoir size k =10,000;
batch size=1,000; learning duration=2 time-units, predict duration=>52
time-units) vs cheater classifiers (with 50% train and 50% test)



Conclusion

Summary:
@ Introduced a novel weighted reservoir sampling approach.

@ Demonstrated scalability and effectiveness in complex streams.

Impact:
@ Enhances scalability for large-scale systems.

@ Reduces computational complexity for real-time tasks.

Future Work:
@ Extension to multi-stream environments.

@ For xAl: Capturing patterns from latent space during model training
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