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Definition (minimizer). A minimizer scheme selects within each sliding window of  -mers over a 
string , the smallest of those -mers (breaking ties on leftmost), with respect to some order .

w k
S k 𝒪

ATTCCTAGAS =

M = {ATTC0, CCTA3}
position in S

: lexicographic order𝒪 TTCC
  TCCT
   CCTA
    CTAG
     TAGA

ATTC

-mers of 4 S

Eg.

w
=

3

word of length k

Typically, it holds that .|𝒢 | ≫ |spk(𝒢) | ≫ |mnzk,w,𝒪(𝒢) |  good for big data era⇒
set of genomes set of -mersk set of minimizers
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The sparser the better. The (specific) density of a minimizer scheme on a string  is


                           .


It ranges somewhere within  and .


S

D =
|mnzk,w,𝒪(S) |

|S | − w − k + 2

1/w 1 every -mer is selectedk

a -mer is selected as soon as it enters the windows and as long as it lies within itk

- AAAAAAAAAAAA       (D = 1)S =

Extremal examples (on lexicographic order, , ).k = 4 w = 3
- CCACCACCACC       (D = 1/ )S = w

Applications of minimizers

Motivations 3Figure from Ndiaye et al. "When less is more: sketching with minimizers in genomics" (2024)
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Worst-case density of greedy minimizers

Motivations 4

Definition (greedy minimizer). The tie breaking rule favors the last selected minimizer, and takes 

the rightmost otherwise. This greatly reduces the density.

Research question. Given  and , come with a couple  such that 

the specific density of the greedy minimizer  on  is maximal. 

w k (𝒪, S)
(w, k, 𝒪) S

Eg.

AAAAAAAAAAAAAAS =AAAAAAAAAAAAAAS =

Sliding windows

Selected -mersk

Minimizer Greedy minimizer

D = 1 D = 1/w
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What makes density increase?

Motivations 5

Research question (rough reformulation). Come with an ordering on the vertices 

of the de Bruijn graph of order  such that there exist an increasing-then-decreasing path 

as long as possible in this dBG. 


k

Observation. There are two mechanisms that cause a greedy minimizer to change selected -mer 
between consecutive windows:

k

1. The previous -mer would have been selected (strictly smaller), but is no longer within the window,k
2. The new -mer, appearing at the right of the window, is the (strictly) smallest one.k

A maximal density string.

[1] increasing ordering values

[2] decreasing ordering values
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set of vertices is , and edges are given by:  iff the -long suffix of  is a prefix of .
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Eg. dBG( ).n = 3, Σ = {a, b}

Combinatorial explosion. These graphs have  vertices, and edges.|Σ |n |Σ |n+1

(for typical bioinformatics values:  vertices, twice as much edges)431 ≈ 4 ⋅ 1018 cannot be explored computationally⇒
Interest. Sliding windows (minimizers, compression schemes)
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de Bruijn graphs 8

Question. How many simple cycles of length  live within the de Bruijn graph of order 
 over an alphabet made of  letters?


ℓ
n σ

Outline. 

- A bijection from simple cycles to a restriction of Lyndon words

- Reformulation of the state of knowledge 

- Extending knowledge on simple cases (+ conjecture)

- A small CLI interface to count/enumerate simple cycles for the curious
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de Bruijn graphs and Lyndon words 11

Definition (k-perfect Lyndon word). This is a Lyndon word whose -mers are all distinct, when

seen as a circular word.

k

Corollary. There is a one-to-one correspondence between perfect Lyndon words and simple dBG 

cycles.

Question. How many -perfect Lyndon words of length  are there?
k ℓ
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Le
ng

th
 

 o
f t

he
 fa

ct
or

s
k

No such words (pigeonhole principle)

De Bruijn sequences

All Lyndon words are -perfect ( )k k ≥ ℓ

Unknown Our small results/conjecture
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Counting simple cycles of the dBG 14

Proposition. A word  of length  that admits a (circular) repeating factor of length , 

necessarily has a border.

w k + 1 k

same length

Case 2. 

Corollary. All -long Lyndon words are -perfect.ℓ k

πσ(k, ℓ = k + 1) = λσ(ℓ)
Explicit formula exists

Case 1. One occurence starts at index 0

Proof.

Consequently, such a word cannot be Lyndon.
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Establishing πσ(k, ℓ = k + 2)

Counting simple cycles of the dBG 15

Definition (Christoffel word). A word on a two-letter alphabet is a (lower) Christoffel word if it is 
obtained by discretizing a segment in the plane.

w = aaabaabaab

It is known that a word of length  that has  distincts factors of length  is a rotation 

of a Christoffel word.

ℓ (ℓ − 1) (ℓ − 2)

πσ(k, ℓ = k + 2) = λσ(ℓ) − φ(ℓ) ⋅ (σ
2)

(number of Christoffel words) x (choice of two letters)

 is Euler's totient functionφ
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Counting simple cycles of the dBG 16

πσ(k, ℓ = k + 3) = λσ(k, ℓ) − (σ
2)(σ ⋅ ψ(ℓ) − 2) (?)

Let  be the function:   if ,

                                          if ,

                                               otherwise.

ψ n ↦ 3/2 ⋅ φ(n) n ≡ 0 mod 4
n ↦ 2 ⋅ φ(n) n ≡ 2 mod 4
n ↦ φ(n)

1. We found out that  using OEIS,(π̄2(k, l = k + 3))k = 2 ⋅ OEISA126246 − 2
Process.

2. Guessing a small impact of  on the formula, we found that 
         ,        ,                    and ,

σ
π̄3 = 6 ⋅ OEISA126246 − 9 π̄4 = 24 ⋅ OEISA126246 − 12 π̄5 = 50 ⋅ OEISA126246 − 20 π̄6 = 90 ⋅ OEISA126246 − 30

3. We derive the formula, and verify it on tractable instances.

the number of Fibonacci numbers among (F(1),F(2),F(3),...,F(n)) which are coprime to F(n)

 is Euler's totient functionφ
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The dbg_cycles library

Counting simple cycles of the dBG 18

It implements the Duval's algorithms (Lyndon word enumeration) and the bijection between Lyndon words and dBG simple cycles.

Objective. Make this counting as accessible as possible. 

Limitation. very slow for enumerating cycles larger than the order of the graph (filtering step, that discards most candidates).
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Their topology is still not fully understood. Eg. their simple cycles

- we collected the state of knowledge

- we slightly extended it

- we made these results as accessible as possible 

Interest for bioinformatics. Sliding windows (minimizers, compression schemes)

Open question 1. Can we find (and prove) explicit formulas for the number of simple cycles for 

the regimes ?ℓ ≥ k + 3
Open question 2. Can we adapt Duval's algorithms to enumerate -perfect Lyndon words directly? 

in optimal space and time?

k
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results for the international community?

⇒

Conclusion 21



Thoughts

• History of dBG and Lyndon words is long  hard to navigate between 
equivalent/close notions and "folklore" results when non-specialist.


• Some papers are in French (eg. Duval's Algorithms): how accessible are these 
results for the international community?

⇒

Conclusion 21

Open question 3. Should we start a collective effort and launch debruijngraph.org?

• Some nice encounters:

http://debruijngraph.org


in the de Bruijn graph
Counting simple cycles
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