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TagSNPs Problem

TagSNPs Problem

Single Nucleotide Polymorphisms
More than 99.9% sequence of DNA is similar between different

populations
SNiPs or SNPs =
sites of variation in the genome
(spelling mistakes)

Karen  AGCTTGACTCCATGATGATT
pebe  AGCTTGACGCCATGATGATT
Jose  AGCTTGACTCCC TGATGATT
Thomas AGCTTGACGCCCTGATGATT
Anupriya AGCTTGACTCCATGATGATT
Robert  AGCTTGACGCCATGATGATT
Michelle  AGCTTGAC TCCCTGATGATT
Zhijun - AGCTTGACGCCCTGATGATT

Most of the variations come given by single nucleotide
polymorphism (SNPs) v - EHU
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TagSNPs Problem

TagSNPs Selection Problem

@ If an individual carries out a SNP then, with high probability
will carry out another “close” SNP

@ The value of one SNP can be used to predict the value of
other SNP

@ TagSNP selection problem:

Given a set of SNPs, find the minimum subset that can
be used to predict the rest of SNPs

@ Prediction ability is given in terms of correlation

UPV - EHU



Estimation of Distribution Algorithms for Combinatorial Problems in Bioinformatics
TagSNPs Problem

TagSNPs Selection Problem

@ Prediction ability is given in terms of correlation threshold
I'min

@ Single Marker: A SNP s; tags another SNP s; if r;; > rpin

@ Multiple Marker: A subset of SNPs T tags a single SNP s;,
if I'Ti > I'min

We consider marker subsets with |T| < 2 |

Santana, R., Mendiburu, A., Zaitlen, N., Eskin, E., and Lozano, J. A. (2010). Multi-marker tagging single nucleotide
polymorphism selection using estimation of distribution algorithms. Artificial Intelligence in Medicine, 50(3), 193-201.
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TagSNPs Selection Problem

Codification
@ X = (Xy,...,Xn) Where

[ 1 ifs;jisatagSNP
"7 1 0 otherwise

Optimization problem

min f(X) = Z X;
i=1
subjectto x tags all the SNPs
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TagSNPs Problem

Datasets
Index Population | n.ind. | SNPs n' | pairs | triples
1 Adygei 15 1388 | 1048 | 3445 | 203640
2 Balochi 24 1399 | 1020 | 3486 | 220892
3 BantuKenya 11 1338 | 800 | 2183 | 89372
4 BantuSouthAfrica 8 1379 | 905 | 2553 | 127780
5 Basque 24 1362 | 1042 | 3956 | 252296
6 Bedouin 45 1433 | 1015 | 3147 | 182836
7 Bengali 15 1390 | 1007 | 3374 | 211439
8 BiakaPygmy 23 1322 | 700 | 2071 | 78136
9 Brahui 24 1368 | 975 | 2770 | 140452
10 Burusho 23 1388 | 1016 | 3272 | 197048
11 CEU 60 1386 | 1018 | 3227 | 191730
12 Cambodian 8 1335 | 1067 | 3476 | 219632
13 Colombian 7 1175 | 1008 | 4467 | 264906
14 Dai 10 1267 | 982 | 3762 | 212758
15 Daur 10 1248 | 956 | 3372 | 187016
16 Druze 41 1377 | 1019 | 3306 | 190120
17 French 28 1418 | 1068 | 3596 | 229216
18 Han 34 1273 | 946 | 3527 | 211194
19 Han — NChina 10 1230 | 954 | 3270 | 188553
20 Hazara 22 1329 | 968 | 2868 | 159534 UPV-EWU
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EDAs
Probabilistic graphical models

Probabilistic graphical model

P(Xe=1| Xi,X2) | Banr Bzt Byt Bunr Busi Baat
P(Xi=2 | X1,X2)|Ba2 Buz2 Binr Buir B2 Oa
P(X=3 | X1,X)| Ouis s Ouss Ouss Ouss Ouss
P(X=4 | X1,X2)| Ou1s Ois Ouzs Ouss Ouss Buss
P(X.=5 | X1,X2)| Ou1s Ons Osss Ouss Osss Oses

(a) Structure (b) Conditional probability table

A probabilistic graphical model for X = (X, X, . .., X») encodes a graphical
factorization of a joint probability distribution p(x)

@ It has two components:

@ A structure S (e.g. directed acyclic graph for Bayesian networks).
@ A set of local marginal probability values.

@ S represents a set of conditional independence assertions between the h
variables. J
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EDAs
Graphical models in optimization

Optimization approaches

Optimization problem

f= maXy,c(1,.. kynf(X)

.

@ Population based evolutionary algorithms
@ Use probabilistic models instead of genetic operators

@ At each generation a probabilistic model of the selected
population is learnt

@ The probabilistic model is used to sample new solutions
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EDAs
Graphical models in optimization

Probabilistic distributions in EDAs

Figure: Joint probability distributions determined by the components
of an EDA. Dy, Dy4: populations at generation t and t + 1; pf(x),
p?(x): Joint probability distributions determined by selection and the
probabilistic model approximation.
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EDAs
Graphical models in optimization

Pseudocode of UMDA

UMDA (Muhlenbein and Paas:1996)

@ D, + Generate M solutions randomly

Q /=1

Q do{

o D7 , < Select N < M solutions from D;_1
according to a selection method

o pi(x) =T174 p(xi|Df ;) + Estimate the joint
probability of the selected solutions

Q D, < Sample M solutions (the new population)
from py(x)

@ ! until A stop criterion is met t
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EDAs
Graphical models in optimization

EDAs: other probabilistic model used

Markov-chain model

n
puk(X) = p(xt, . xeer) [T POG | Xia, -5 Xik)
i=k+2
n
pree(X) = [ [ p(xi | pa(x;))
i—1

.

Mixture of trees model

PuT(X) = > NPree(X)
j=1
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EDAs for TagSNPs

EDA approaches: Tree model

Classical and restricted tree-EDA approaches

@ Tree-EDA: The tree is learnt from the matrix of mutual
information learned from data

@ Tree-EDA’: The tree is learnt from the data constrained to
known interaction of problem instance
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EDA for tagSNP selection problem

TreeEDA TreeEDA'
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EDA for tagSNP selection problem

TreeEDA TreeEDA'
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EDAs for TagSNPs

EDA for tagSNP selection problem

TreeEDA TreeEDA’
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EDAs for TagSNPs

Datasets

Characteristics of the datasets
@ No. of datasets: 58
@ No. of SNPs: 780-1089
@ No. of pairs: 1937-4467
@ No. of triples: 76007264906

Algorithm Parameters

@ Pop. Size: 5000
@ Selection: 15

@ Repetitions: 30
@ Generations: 100
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EDAs for TagSNPs

Preliminary Results

I Best mean

UMDA | Tree | TreeR || UMDA Tree | TreeR
1 362 285 285 367.63 | 291.30 | 288.13
2 365 302 300 371.17 | 304.50 | 303.73
3 344 284 283 349.73 | 285.97 | 285.53
4 372 305 306 378.47 | 308.67 | 308.33
5 354 283 279 360.80 | 286.53 | 284.40
6 376 299 208 381.63 | 302.37 | 301.73
7 341 276 273 346.93 | 281.27 | 280.00
8 325 265 264 329.23 | 265.70 | 265.43
9 364 296 204 374.53 | 299.37 | 298.40
10 351 288 288 359.30 | 291.43 | 291.50
11 360 293 294 370.00 | 299.43 | 297.50
12 341 270 270 346.93 | 276.00 | 273.97
13 286 235 233 294.20 | 238.90 | 236.30
14 325 263 261 332.37 | 266.90 | 263.13
15 325 264 264 332.90 | 267.63 | 267.67
16 361 | 201 201 || 369.90 | 297.37 | 206.50 .M
17 360 284 284 374.17 | 290.70 | 289.07
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Results

TreeEDA vs TreeEDA’

@ Average results: TreeEDA’ obtains better results in 43 from
58 datasets

@ Best results: TreeEDA’ obtains better results in 26 from 58
datasets and the same results in 15 of them
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Solving new instances

—

N
J

N
y

BB

N
J

UPV - EHU



Estimation of Distribution Algorithms for Combinatorial Problems in Bioinformatics
EDAs for transfer learning

Solving new instances
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EDAs for transfer learning

Transfer Learning

) | @ What information extract from
— o the problems?
\ | e @ How to define relatedness

\ between problems?
i

@ How to transfer the available
- information?
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Transfer Learning

Transfer Learning for Optimization
L_..J @ Transfer of solutions
— INFORMATON  Opfiriadon @ Structural transfer
L',?" L @ Behavioral or algorithmic
- — transfer
\— | @ Combined transfer )
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Transfer Learning in the TagSNP problem

Structural Transfer

@ The possible dependencies between the variables are
transfered

@ Four different transfer strategies are evaluated

UPV - EHU
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Tn1: Aggregated Interactions

Instance 3

Target

Instance UPV - EHU
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Transfer Learning for TagSNPs with EDAs
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Transfer Learning for TagSNPs with EDAs
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Tn1: Aggregated Interactions
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Tn2: Pure Transfer
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Transfer Learning for TagSNPs with EDAs

Tn2: Pure Transfer

Instance 1
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Transfer Learning for TagSNPs with EDAs

Tn3: Limited Information. Overlapping Variables
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Tn3: Limited Information. Overlapping Variables
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Tn4: Limited Information. EDA results
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Tn4: Limited Information. EDA results

Instance 3

Target
Instance

UPV - EHU
Instance 2



Estimation of Distribution Algorithms for Combinatorial Problems in Bioinformatics

Transfer Learning for TagSNPs with EDAs

Tn4: Limited Information. EDA results
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Transfer Learning for TagSNPs with EDAs

Tn4: Limited Information. EDA results
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Transfer Learning in the tagSNP Problem. Tn1 and
Tn2

@ A matrix of interactions for problem i is created by
combining the interactions between any pair of SNPs in
problem j that were detected in any of the other SNP
datasets

A

@ l|dentical to Tn1 but information about the interactions in
problem / is not included in the aggregation matrix.

.
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Transfer Learning in tagSNP Problem Tn3 and Tn4

@ The most related problems to problem i are selected as
those that share the largest set of common variables
(SNPs) with it.

@ The aggregation matrix is formed using the matrix of
interactions from this subset of problems.

@ The interaction matrix of each problem j are used to solve
problem i

@ The best interaction matrices for problem i are aggregated

UPV - EHU
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Transfer Learning for TagSNPs with EDAs

Similarities between problems (share SNPs)

T T T T g ™ & T T
.
L 5 AN W L
5k - -
— g — | — - - -“. - - -

Populations
8
)

- . - - " -
— e e e —-.'-.——;—
35| . - : a
L= - -
40 F & = — ‘ o -
-y »

5 10 15 20 25 30 35 40 45 50 55
Populations

UPV - EHU



Estimation of Distribution Algorithms for Combinatorial Problems in Bioinformatics

Transfer Learning for TagSNPs with EDAs

Similarities between problems (structural similarity)

Populations

Populations
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Transfer Learning Results

mean I Best mean
UMDA Tree | TreeR Tnl | Tn2 | Tn3 | Tnd Tnl Tn2 Tn3 Tnd
367.63 | 291.30 | 288.13 1 281 | 281 | 280 | 283 |[ 285.60 | 285.20 | 287.00 | 287.33
371.17 | 304.50 | 303.73 2 296 | 298 | 299 | 297 || 300.13 | 300.97 | 302.93 | 302.00
349.73 | 285.97 | 285.53 3 281 | 282 | 283 | 284 || 284.27 | 284.60 | 285.80 | 285.13
378.47 | 308.67 | 308.33 4 | 304 | 304 | 306 | 306 | 306.47 | 306.17 | 308.60 | 309.03
360.80 | 286.53 | 284.40 5 276 | 278 | 282 | 282 || 281.53 | 281.47 | 286.93 | 286.00
381.63 | 302.37 | 301.73 6 205 | 297 | 295 | 204 || 299.23 | 298.97 | 300.50 | 299.00
346.93 | 281.27 | 280.00 7 271 | 269 | 271 | 271 || 275.60 | 275.00 | 277.97 | 275.80
329.23 | 265.70 | 265.43 8 263 | 263 | 265 | 264 || 265.07 | 264.63 | 266.43 | 265.73
374.53 | 299.37 | 298.40 9 291 | 293 | 291 | 292 || 294.80 | 295.73 | 295.47 | 296.17
359.30 | 291.43 | 291.50 10 | 284 | 285 | 283 | 284 || 287.33 | 288.20 | 287.80 | 287.80
370.00 | 299.43 | 297.50 11| 291 | 291 | 289 | 288 || 296.50 | 295.67 | 295.33 | 294.23
346.93 | 276.00 | 273.97 12 | 265 | 266 | 270 | 269 || 271.07 | 271.70 | 274.67 | 274.20
204.20 | 238.90 | 236.30 13 | 230 | 229 | 229 | 232 || 233.57 | 233.47 | 235.83 | 236.80
332.37 | 266.90 | 263.13 14 | 257 | 255 | 260 | 258 || 261.03 | 261.27 | 263.37 | 262.83
332.90 | 267.63 | 267.67 15| 260 | 261 | 266 | 261 || 264.73 | 264.47 | 268.17 | 264.97
369.90 | 297.37 | 296.50 16 | 290 | 286 | 289 | 288 || 293.63 | 292.17 | 292.40 | 293.60
374.17 | 290.70 | 289.07 17 | 281 | 279 | 282 | 284 || 285.80 | 286.10 | 287.27 | 288.63
331.87 | 262.37 | 261.50 18 | 255 | 255 | 255 | 256 || 258.13 | 258.43 | 258.63 | 250.17
336.60 | 269.43 | 268.00 19 | 261 | 262 | 260 | 262 || 265.90 | 266.30 | 266.03 | 267.00
366.77 | 296.37 | 294.00 20 | 287 | 288 | 289 | 201 || 292.40 | 292.03 | 293.33 | 295.03
332.33 | 263.27 | 260.70 21 | 253 | 254 | 254 | 253 || 257.27 | 257.27 | 258.77 | 257.67
340.97 | 278.23 | 277.27 22 | 270 | 270 | 272 | 271 || 274.53 | 274.67 | 275.80 | 274.47
327.50 | 261.23 | 260.00 23 | 253 | 254 | 255 | 254 || 257.10 | 256.43 | 257.93 | 257.00
360.00 | 282.43 | 280.80 24 | 2v1 | 272 | 274 | 272 || 277.37 | 277.20 | 278.97 | 277.33
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Transfer Learning Results

@ Tn1 improves all the results of TreeEDA and TreeEDA’
@ Tn2 improves in all but one

@ Tn3 improves in 91% and 79% TreeEDA and TreeEDA’
respectively

@ Tn4 improves in 90% and 76% TreeEDA and TreeEDA'’
respectively
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Conclusions

@ Transfer learning is an attractive alternative for EAs and
EDAs

@ Simple transfer learning can dramatically improve the
results of optimization algorithms

@ ltis a new area in optimization that deserves much
attention
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EDAs for protein problems

Protein problems addressed

Protein folding in HP model
@ To find the HP configuration with lowest energy

Side chain placement problem

@ To find the optimal positioning of the side chain with
respect to a given backbone

A

Protein design

@ To find the sequence that has the lowest energy with
respect to a protein structure

A
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EDAs for protein problems

HP and functional model protein

]

(——————

Figure: Best solution found for sequence
HPHPPHHPHPPHPHHPPHPH
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EDAs for protein problems

Results in the two-dimensional lattice
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