

BBC: Wireless Interconnect Network on Chip for **Broadcast-Based Parallel** Computing

Thierry Le Gouguec (Lab_STICC/DIM) Cédric Quendo (Lab STICC/DIM) Pierre-Marie Martin (Lab_STICC/DIM) Ihsan El Masri (PhD) (Lab_STICC/DIM) Christian Roland (Lab_STICC/IAS) Jean Philippe Diguet (Lab_STICC/MOCS) Johann Laurent (Lab_STICC/MOCS) Olivier Sentieys (INRIA/CAIRN) Cédric Killian (INRIA/CAIRN) Joel Ortiz (INRIA/CAIRN-Lab-STICC/IAS) Daniel Chillet (INRIA/CAIRN) Dominique Morche (CEA-LETI) Hemanta Kumar Mondal(Lab STICC/MOCS)

Background

On-Chip Data Communication Issues

UNIVERSITE

BRETAGNE

LOIRE

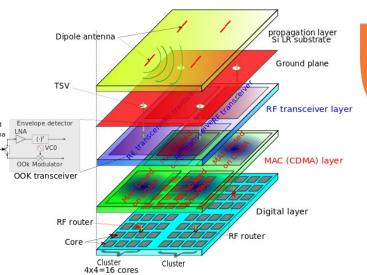
- Need for data rate increase
- **Energy efficiency**
- Many-core architectures
- Parallelism, cache coherence

Solutions

- 3D interconnects
- Optical Interconnects (See CominLabs "3D Manycores" project)
- **RF** guided interconnect
- **RF** Wireless interconnect

Our main focus in this project will be on **RF Wireless Interconnect (WiNoC)**

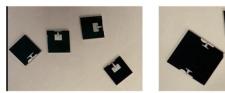
Objectives of BBC project

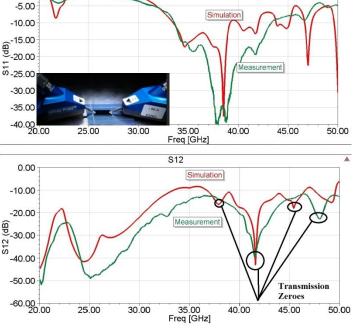

Main objectives of BBC project

- Evaluation of the contribution of RFradio link for the intra-chip interconnect
- Definition of new opportunities for \geq parallelism management and concurrent memory accesses

Answer to the question:

"In which cases RF wireless links are attractive and in which cases other solutions are preferable?"


Comparison with other interconnect solutions, especially with the results issues from 3DCORE project


CominLabs day 2018: May 28-30 WP1: Physical layer

Aims:

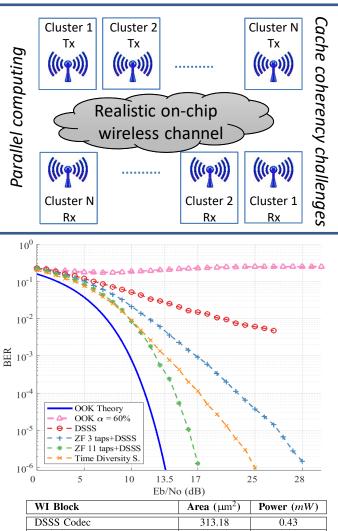
- \geq Antenna design for WiNOC
- Channel Characterization using EM \geq simulations and measurements
- Study of RF transceiver for WiNoC \geq possibility

Example of design and measured structures 0.00

Validation of antenna design and EM simulation of Channel on Si Substrate at 30 GHz

Build a base for channel model

WP3: New protocols based on broadcast


Aims:

- Efficient broadcast protocol for effective parallel computing

WP2: Medium Access

Study best access techniques supporting channel compensation techniques

- To offer high communication reliability \succ over a realistic on-chip wireless channel
- To share the medium between clusters \geq
- \geq To enable and optimize new features that will improve classic NoC communications

WI Block	Area (µm ²)	Power (mW)
DSSS Codec	313.18	0.43
TDS Codec	401.63	0.82
Optimized TDS Codec	317.42	0.63
3-tap ZF with DSSS Codec	490.41	0.98
11-tap ZF with DSSS Codec	1967.37	4.04
8-bit Serializer (10 Gbps)	21.8	0.1741
32-bit Serializer (1.25 Gbps)	49	0.04391
32-bit Deserializer (1.25 Gbps)	50	0.044
4-bit ADC [29]	9000	16
OOK Transceiver [33]	not specified	20.8

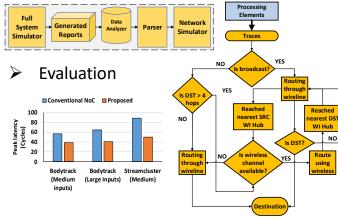

Publications

Illustration of a Wireless network on Chip

BBC project is divided in 3 Work-Packages:

- WP1: Physical layer \geq
- WP2: New low power MAC \triangleright
- WP3: New protocols based on Broadcast

Evaluation framework for hybrid networks

- Ihsan El Masri (student), Thierry Le Gouguec, Pierre-Marie Martin, Rozenn Allanic, Cedric Quendo: Integrated **Dipole Antennas and Propagation Channel on Silicon in** Ka Band for WiNoC Applications. IEEE Workshop on Signal and Power Integrity, 2018 (submitted)
- Joel Ortiz, Olivier Sentieys, Christian Roland: A Diversity Scheme to Enhance the Reliability of Wireless NoC in Multipath Channel Environment. 12th IEEE/ACM International Symposium on Networks-on-Chip (NOCS), 2018 (submitted)
- Thierry Le Gouguec, Pierre-Marie Martin: A 45-GHz Wireless Transmission for a Wireless Interconnect Network-on-Board. 21th IEEE Workshop on Signal and Power Integrity, 2017

