
HardBlare: Monitoring information flows in
heterogeneous SoCs with a dedicated coprocessor

Muhammad Abdul Wahab α, Pascal Cotret λ, Mounir Nasr Allah β, Guillaume Hiet β,
Vianney Lapôtre γ, Guy Gogniat γ, Arnab Kumar Biswas γ

α SCEE / IETR, CentraleSupélec, Cesson-Sévigné - FRANCE, β CIDRE / IRISA / INRIA, CentraleSupélec, Cesson-Sévigné
- FRANCE, γ Lab-STICC, University of South Brittany, Lorient - FRANCE, λ Chercheur indépendant - FRANCE

Introduction

HardBlare proposes a software/hardware co-design methodology to ensure that
security properties are preserved all along the execution of the system but also
during files storage. The general context is to address Dynamic Information
Flow Tracking (DIFT) that generally consists in attaching marks (also known
as tags) to denote the type of information that are saved or generated within the
system. It allows to detect software attacks such as overflows or SQL injection.
Example: Let’s suppose that “print” function, which sends output stream to
stdout, is public and the tag of a variable x is underlined variable x.

Example code Tag initialization Tag propagation Tag check
p = 3; p← public
s = 42; s← secret
x = p + s; x← p + s = s

print(x);
if (x != public)

raise interruption

State of the art

Advantages Disadvantages

Software Flexible security policies
Huge runtime overhead

(from 300% to 3700%)

H
yb

ri
d

In-core DIFT [1] Low runtime overhead (<10%)
Invasive modifications

Few security policies

Dedicated CPU for DIFT [2]
Low runtime overhead (<10%) Wasting resources

Few modifications to CPU Energy consumption (x 2)

Flexible security policies Communication

Low runtime overhead (<10%) between CPU and DIFT
Dedicated DIFT Coprocessor

[3],[4],[5]
CPU not modified Coprocessor

Recovering required information for DIFT on ARM hardcore CPU

1. CoreSight components allow to reconstruct the traced program’s Control Flow Graph (CFG).
2. Static analysis allows to determine what happens inside each basic block.
3. Memory instructions (ldr, str, . . . ) are instrumented in order to retrieve memory addresses that cannot be recovered from static

analysis. The register r9 is dedicated to the instrumentation and contain the address of the instrumentation FIFO.
4. RFBlare, a modified Linux kernel, provide support to store and retrieve tags associated to files.

0x10168 movw r0,#0x913c

str sp, [r9]

str r0, [sp, #4]

str r2, [r9]

ldr r1, [r2], #4

bxls lr

Overall Architecture

I User application is executed on the Cortex-A9.

I When the Linux kernel loads the application, it also
loads the output of static analysis in the Annotations
memory section.

I During the execution, PTM sends to the DIFT
Monitor the traces through the PFT Decoder.

I When the application performs memory accesses, it also
sends the load/store addresses to the DIFT
Monitor via the Instrumentation FIFO.

I If the application makes a read (write) syscall,
RFBlare sends (retrieves) the tag to (from) the DIFT
monitor.

CPU Cortex-A9 DIFT Monitor

PTM

User application
Annotations

Instrumentation

System calls

Traces

tag(file) → tag(memory)

HardDrive (file system with extended attributes) passwd.txt
Tag:

index.html
Tag:

PFT Decoder

Memory tags

Instrumentation FIFO

Tag Register File

Linux Kernel with information flow support (RfBlare)

(basic block addresses)

(load/store adresses)

tag(memory) → tag(file)

DIFT Core

TMC

Dispatcher

Figure: Overall architecture of proposed approach

I The DIFT monitor is implemented on the FPGA
part of the Zynq SoC (ZedBoard).

I Using decoded trace, the Dispatcher core finds
the corresponding annotations and store it in the
memory for TMC (Tag Management Core).

I DIFT Core
I looks for tags either in memory tags or tag register

file.
I computes tags depending on propagation rules.
I updates corresponding tags either in memory tags or

tag register file.
I checks for security policy violation and raise an

interruption.

Implementation details and results

9
.5

6 1
1

.4
1

3
.6

4

3
.7

3

1
.5

3
4

.5
2

2
8

.9
9

1
0

.1
7

1
1

.6

6
.9

9

7
.6

6

3
.0

2

3
.0

9

1
.3

9

2
9

.4
1

2
3

.4
6

9
.3

7

9
.4

9

2
.8

4

2
.3

1

1
.6

7

1
.6

7

1
.1

3

7
.1

8

7
.9

6

2
.5

2

2
.9

2

C H O L E S K I C R C D F T F F T F I R L U M A T R I X N B O D Y R A D I X

Related Work Strategy 1 Strategy 2

Figure: Average instrumentation time overhead

Decode

Register
File (RF)

TRF

Decode

Fetch
instruction

ALU

Tag ALU

WriteBack

Fetch
annotation

TRF_FP

GRF

Memory
access

Tag 
Memory
Access

WriteBack

TPR

Dispatcher

TMC

TCR
Tag check

TMMU

Figure: DIFT Core microarchitecture

Approaches Kannan [3] Deng [4] Heo [5] Wahab [6] This work
Hardcore portability No No Yes Yes Yes
Main CPU Softcore Softcore Softcore Hardcore Hardcore
Communication overhead N/A N/A 60% 5.4% 335%
Library instrumentation N/A N/A partial No Yes
All information flows Yes Yes No No Yes
Area overhead 6.4% 14.8% 14.47% 0.47% 0.95 %
Power overhead N/A 6.3% 24% 16% 16.2%
Max frequency N/A 256 MHz N/A 250 MHz 250 MHz
FP support No No No No Yes
Multi-threaded support No No No No Yes

Table: Performance comparison with related work

Some References

[1] M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: A flexible information flow architecture for software security,” in

In International Symposium on Computer Architecture (ISCA), 2007.

[2] V. Nagarajan, H.-S. Kim, Y. Wu, and R. Gupta, “Dynamic information tracking on multicores,” in 12th Workshop

on the Interaction between Compilers and Computer Architecture (INTERACT), Feb 2008.

[3] H. Kannan, M. Dalton, and C. Kozyrakis, “Decoupling dynamic information flow tracking with a dedicated

coprocessor,” in DSN 2009, pp. 105–114, 2009.

[4] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh, “Flexible and efficient instruction-grained run-time

monitoring using on-chip reconfigurable fabric,” MICRO ’43, 2010.

[5] I. Heo, M. Kim, Y. Lee, C. Choi, J. Lee, B. B. Kang, and Y. Paek, “Implementing an application-specific

instruction-set processor for system-level dynamic program analysis engines,” ACM TODAES, 2015.

[6] M. A. Wahab, P. Cotret, M. N. Allah, G. Hiet, V. Lapotre, and G. Gogniat, “Armhex: A hardware extension for dift

on arm-based socs,” in FPL 2017, Sept 2017.

Conclusions and Perspectives

I Hardware-assisted DIFT system.
I Only solution to target ARM hardcore CPUs.
I Instrumentation overhead reduced by more than 3 times.
I Approach based on a non-modified CPU with a standard Linux and generic

binaries⇒ Could be implemented by industrial partners in medium-term.
I Perspectives on runtime reconfiguration and multicore/manycore systems.
I Acknowledgements: This work is done in the frame of HardBlare project

which is funded by CominLabs and Brittany region.


