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Web Applications are like Magic

2



Web Applications are like Magic
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Data Control and Web Applications

Our Data Programs from the Web

The Browser
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Non Interference
direct flow
var public = secret

indirect flow
if (secret) {

public = true
} else {

public = false
}

Non interference is a hyperproperty
/* Source */
var x = true
var y = true
if (secret) {

x = false
}
if (x) {

y = false
}
public = y

/* assume secret is true */
var x = true
var y = true
if (secret) {

x = false
}

public = y

/* assume secret is false */
var x = true
var y = true

if (x) {
y = false

}
public = y
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The SecCloud Project

A comprehensive language-based approach to the
definition, analysis, and implementation of secure
applications developed using JavaScript.

1. formal semantics of JavaScript
2. static and dynamic analyses
3. preventive information flow control
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JSCert

Coq world
“real” world

Ocaml
extraction Parser

Bisect

JSRefJSCert Correctness
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Lessons from JSCert
Hard to keep pace with the standardisation
JSCert inductive definition is too big
A implementation close to the spec is very useful

ECMA2017
(English prose)

⇑

JSCert ⇐ New JSRef ⇒ JSExplain
(Coq, inductive) (OCaml, recursive) (JS, recursive)

⇓ ⇓ ⇓

Proofs Testing Debugging
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JSExplain

Interpreter
and libraries

(OCaml)

Libraries
(JS)

Interpreter
with traces

(JS)

AST of
interpreted
program

interpreted
program

web page

trace

generator

tracing
generator

Esprima

8



JSExplain

https://jscert.github.io/jsexplain/branch/master/driver.html
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Static and Dynamic Analyses

Static analyses: before running the program
pro considers the whole program
con may be less precise

Dynamic analyses: as the program runs
pro sees only code that runs, access to exact values
con does not capture every information flow

Hybrid analyses: combine both
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Hybrid Monitoring
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Hybrid Monitoring
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Multi-semantics

Given a huge formal semantics, how to prove non-interference?
Solution transform a hyperproperty (of the semantics) into a
simple property (of the multi-semantics)

Theorem
If a program is interferent, then there exists a derivation in the
annotated multi-semantics that witnesses it.
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Preventive Information Leaks

facets: values with several values (e.g. private and public)
faceted evaluation:

Credits: Florent Marchand de Kerchove

experimentation by extending Narcissus
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Split addresses
Change the address of references depending on the execution stack

Implementation in the Chromium V8 engine
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Conclusion and Future Work

Highlights
▶ formalization of the full JavaScript language
▶ analyses proven in Coq
▶ practical tools

Future
▶ transfer to TC39
▶ usable formalization of JavaScript
▶ extension to other languages (Hop.js)
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