
SecCloud

Alan Schmitt

May 28, 2018

1



Web Applications are like Magic

2



Web Applications are like Magic

2



Data Control and Web Applications

Our Data Programs from the Web

The Browser

3



Non Interference
direct flow
var public = secret

indirect flow
if (secret) {

public = true
} else {

public = false
}

Non interference is a hyperproperty
/* Source */
var x = true
var y = true
if (secret) {

x = false
}
if (x) {

y = false
}
public = y

/* assume secret is true */
var x = true
var y = true
if (secret) {

x = false
}

public = y

/* assume secret is false */
var x = true
var y = true

if (x) {
y = false

}
public = y

4



The SecCloud Project

A comprehensive language-based approach to the
definition, analysis, and implementation of secure
applications developed using JavaScript.

1. formal semantics of JavaScript
2. static and dynamic analyses
3. preventive information flow control

5



JSCert

Coq world
“real” world

Ocaml
extraction Parser

Bisect

JSRefJSCert Correctness

6



Lessons from JSCert
Hard to keep pace with the standardisation
JSCert inductive definition is too big
A implementation close to the spec is very useful

ECMA2017
(English prose)

⇑

JSCert ⇐ New JSRef ⇒ JSExplain
(Coq, inductive) (OCaml, recursive) (JS, recursive)

⇓ ⇓ ⇓

Proofs Testing Debugging

7



JSExplain

Interpreter
and libraries

(OCaml)

Libraries
(JS)

Interpreter
with traces

(JS)

AST of
interpreted
program

interpreted
program

web page

trace

generator

tracing
generator

Esprima

8



JSExplain

https://jscert.github.io/jsexplain/branch/master/driver.html

9

https://jscert.github.io/jsexplain/branch/master/driver.html


Static and Dynamic Analyses

Static analyses: before running the program
pro considers the whole program
con may be less precise

Dynamic analyses: as the program runs
pro sees only code that runs, access to exact values
con does not capture every information flow

Hybrid analyses: combine both

10



Hybrid Monitoring

11



Hybrid Monitoring

11



Multi-semantics

Given a huge formal semantics, how to prove non-interference?
Solution transform a hyperproperty (of the semantics) into a
simple property (of the multi-semantics)

Theorem
If a program is interferent, then there exists a derivation in the
annotated multi-semantics that witnesses it.

12



Preventive Information Leaks

facets: values with several values (e.g. private and public)
faceted evaluation:

Credits: Florent Marchand de Kerchove

experimentation by extending Narcissus

13



Split addresses
Change the address of references depending on the execution stack

Implementation in the Chromium V8 engine
14



Conclusion and Future Work

Highlights
▶ formalization of the full JavaScript language
▶ analyses proven in Coq
▶ practical tools

Future
▶ transfer to TC39
▶ usable formalization of JavaScript
▶ extension to other languages (Hop.js)

15


