

HardBlare, a hardware/software co-design approach for Information Flow Control

Guillaume Hiet and partners

November 18, 2019

HardBlare project

General information

- Started in October 2015. Duration: 3 years (some works are still ongoing)
- Funding: 2 PhD students and 1 PostDoc

Partners

- CentraleSupélec, IETR (SCEE) @ Rennes
 - Pascal Cotret (Ass. Prof.) now at ENSTA Bretagne
 - Muhammad Abdul Wahab (PhD student) now R&D engineer at Ultraflux
- CentraleSupélec/Inria, IRISA (CIDRE) @ Rennes
 - Guillaume Hiet (Ass. Prof.)
 - Mounir Nasr Allah (PhD student)
- UBS, Lab-STICC @ Lorient
 - Guy Gogniat (Full Prof.), Vianney Lapôtre (Ass. Prof.)
 - Arnab Kumar Biswas (Postdoc) now research Fellow at NUS

Context

Cyber-security is a major concern

Many vulnerable systems are targeted by sophisticated attacks

A new type of target: embedded systems

- IoT, Industrial Control Systems, Cyber-Physical Systems, etc.
- We target Systems using rich OS (Linux, Android, etc.) and powerful application processors (e.g. ARM Cortex A family)
 - Smartphones/tablets, smart watches, set-top boxes, business printers, military devices (Android Tactical Assault Kit), etc.

How to secure embedded systems?

- Preventive approaches (avoiding vulnerabilities) are insufficient
- It is also important to monitor systems to detect intrusions at runtime

3

Dynamic Information Flow Tracking

Motivation

A generic approach to detect attacks against confidentiality and integrity at different levels

DIFT principle

- We attach labels called tags to containers and specify an information flow policy, i.e. relations between tags
- At runtime, we propagate tags to reflect information flows that occur and detect any policy violation

Originality of our approach

- Combines hardware/software for fine-grained DIFT with OS-level tagging to associate labels to registers, memory and files
 - Helps the end-user to specify the security policy
 - Saves the security contexts between reboots
- Implements tag propagation in an external co-processor to isolate the monitor with no modification of the main CPU
- Solves the semantic-gap issue by an original combination of approaches:
 - pre-computing of annotations during the compilation of applications
 - sending of branching information using hardware trace mechanisms
 - sending of addresses of read/write accesses using instrumentation of the application code
- Implementation and evaluation of the approach on a Xilinx ZYNQ SoC (ARM Cortex A9 + FPGA) executing a dedicated Yocto Linux distribution

Threat model

- We target software attacks that directly modify the values of containers (files, registers, memory)
- We do no handle physical attacks (e.g. fault injection using laser or physical side-channel attacks)
- We only monitor applications
 - OS kernel is part of our TCB
 - We could reduce the TCB to the kernel code that manages file tags and communicates with the co-processor

General Overview

7

Key contributions

Software

- Modification of the Linux kernel and loader
- Patch of the official Linux kernel PTM driver (now included in the official vanilla Linux kernel distribution)
- LLVM backend pass

Hardware: dedicated multi-core DIFT co-processor in VHDL

Results

	Without OS support			With OS support	
Approaches	Kannan et al.	Deng et al.	Heo et al.	Heo et al. adapted	HardBlare
Area overhead	6.4%	14.8%	14.47%	N/A	0.95%
Power overhead	N/A	6.3%	24%	N/A	16.2%
Max frequency	N/A	256 MHz	N/A	N/A	250 MHz
Communication time overhead	N/A	N/A	60%	1280%	335%
Hardcore	NI-	N.I.			
portability	No	No	Yes	Yes	Yes
portability Main CPU	Softcore	Softcore	Softcore	Yes Hardcore	Yes Hardcore
Main CPU Library	Softcore	Softcore	Softcore	Hardcore	Hardcore

9

Publications

- International conferences with proceedings (3 + 1 short paper)
 - Abdul Wahab et al.: A small and adaptive coprocessor for information flow tracking in ARM SoCs, ReConFig2018
 - Abdul Wahab et al.: A novel lightweight hardware-assisted static instrumentation approach for ARM SoC using debug components, AsianHOST2018
 - Abdul Wahab et al.: ARMHEx: A hardware extension for DIFT on ARM-based SoCs, FPL2017
 - Abdul Wahab et al.: Towards a hardware-assisted information flow tracking ecosystem for ARM processors (short paper), FPL2016
- International technical conferences (3)
 - HITBSecConf 2017, 34th Chaos Communication Congress 2017, Toulouse Hacking Convention 2018
- National conferences and workshops (4)
 - France/Japan Cybersecurity workshop 2016, CryptArchi2016, 11ème Colloque National du GDR SoC/SiP, RESSI2017
- Posters (2)
 - CHES 2015, séminaire doctorants SIF 2016

External collaborations

PhD Internship

- \circ 6 months internship of Mounir at ARM Cambridge with Alastair Reid (07/2017 to 01/2018)
 - Model checking of the formal specification of ARM Cortex M processors to verify IFC properties
- 3 months internship of Muhammad at ALaRI Lugano with Alberto Ferrante (01/2018 to 03/2018)
 - Explore how trace mechanisms and FPGA of the ZYNQ SoC can be used to accelerate malware detection

Presentation to industrial partners

 ARM research (Cambridge, UK), HP Labs (Bristol, UK), Secure-IC (Rennes, France), IBM OpenPower team (Rochester, USA)

Future collaborations

 Submission to an AURORA project proposal with Norvegian researchers from HVL, who are interested by our approach.

Perspectives

- Reduction of the TCB, implementing isolation of kernel parts using TrustZone
- Reduction of instrumentation overhead (by optimizing the static analysis)
- Implementation of multicore and multi-thread DIFT (by using multiple TMCs)
- Porting of the approach to other platforms (e.g. Intel PT)
- Taking benefit of dynamic partial reconfiguration of FPGA to increase co-processor flexibility

HardBlare, a hardware/software co-design approach for Information Flow Control

Guillaume Hiet and partners

November 18, 2019

