
Context

•High amount of video in internet traffic
• x4 from 2016 to 2021
• 81% of the overall internet traffic

•New video services and format
• VOD, webTV, video sharing, live streaming, …
• 8K, HFR, 360° video

➥ Needs	for	more	efficient	video	coding	standard	
➥ New	MPEG	standard	for	2021:	VVC	
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Search space reduction scheme

Quantization methodology 

Custom floating-point support

Results for complexity reduction 

•Much	work	on	compressing	feed-forward	
neural	networks	for	inference

• Weight	&	activation	quantization
• Network	compression	(i.e.,	smaller	and	or	
structured	architectures)	

•Make	CNNs	(and	DNNs	in	general)	more	
friendly	for	edge	devices

• Reduce	memory	pressure	for	storing	networks
• Improved	energy	efficiency

➥ Need	for	efficient	methods	and	tools	to	explore	
neural	network	approximation/compression	
design	space	for	inference
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Automatic exploration of 
different quantization formats 

Energy efficiency improvement

Split QT

Split BT-V Split BT-H

Split TT-V Split TT-H

(a) (b) (c)

CTU Tree partitioning 

• Encoding complexity: up to x40
• Huge increase of the RDO search space
➥ Need	for	drastic	complexity	reduction	

techniques	to	enable	real	time	encoders

• Complexity	reduction	of	encoding	process
• Prediction based on CNN

• Contributions
1.	Complexity	reduction of	encoding	process

• Deep	learning	with	CNN	to	increase	performance			
2.	Techniques	to	reduce	the	CNN	inference	cost			

• Limitation	of	CNN	inference	overhead

Objectives
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•New partitioning tree: QT – BT - TT

• Prediction of probability matrix

Appendix

Video Class Sequance name BD-PSNR (dB) BD-Rate (%) Complexity reduction (%)

A1 Campfire -0.08 2.46 49.3

A1 Tango2 -0.04 3.10 63.84

A1 FoodMarket4 -0.07 1.71 52.58

A2 CatRobot1 -0.04 1.80 48.86

A2 ParkRunning -0.02 0.40 34.87

A2 DaylightRoad -0.07 1.67 56.1

B BasketballDrive -0.06 2.07 61.02

B MarketPlace -0.03 0.76 51.59

B BQTerrace -0.07 1.21 41.57

B RitualDance -0.07 1.44 46.89

B Cactus -0.05 1.64 50.55

C BasketballDrill -0.11 2.32 23.43

C BQMall -0.11 2.06 39.18

C PartyScene -0.08 1.25 21.88

C RaceHorsesC -0.08 1.46 40.59

D BasketballPass -0.12 1.96 35.22

D BlowingBubbles -0.10 1.61 22.71

D BQSquare -0.14 1.95 19.45

D RaceHorses -0.10 1.61 31.21

E FourPeople -0.10 1.95 38.28

E KristenAndSara -0.10 2.10 38.38

E Johnny -0.10 2.61 42.69

Mean on the di↵erent sequences -0.08 1.78 41.37

Table 2: Performances of the proposed complexity reduction techniques in terms of quality degradation and com-
plexity reduction. The quality degradation is evaluated in terms of video quality reduction with the the Bjontegaard-
Delta Peak-Signal-to-Noise-Ratio (BD-PSNR) and bit-rate increase with the Bjontegaard-Delta bit-rate (BD-BR).
The BD-PSNR is the di↵erence in terms of PSNR between two encoding for a same bit-rate. The BD-BR is the
di↵erence in terms of bit-rate between two encoding for a same quality.

Video Class BD-PSNR (dB) BD-Rate (%) Complexity reduction (%)

A1 -0,06 2,42 55,24

A2 -0,04 1,29 46,61

B -0,06 1,42 50,32

C -0,10 1,77 31,27

D -0,12 1,78 27,15

E -0,10 2,22 39,78

Mean -0.08 1.78 41.37

Table 3:
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•Quality degradation – complexity reduction
• Complexity reduction

• Execution time reduction
• Video quality reduction

• BD-PSNR: Bjontegaard-Delta Peak-Signal-to-Noise-Ratio
• BD-BR: Bjontegaard-Delta bit-rate (bit rate increase)

• Probability matrix of each block boundary

• Focus	on	low-precision	floating-point	
formats	for	all	operations	inside	the	CNN

• Add	support	for	custom	floating-point	arithmetic	
inside	the	N2D2	framework	for	DNN	design

• Work	on	an	automatic	method	for	choosing	
appropriate	floating-point	quantization	formats	
at	each	layer	of	the	network

•Different	quantization	formats	at	each	layer
• Explore	sensitivity	of	each	layer	to	
quantization	effects
➥ Experiments	on	LeNet for	the	MNIST	dataset

Neural network approximation 

• Initial exploration in this direction:

Energy	vs.	Area	of	custom	floating-point	
adders	and	multipliers

• Reducing computations	from 32	down	to	10	
bits	provides gains	of	more	than 15× in	energy
and	more	than 8× in	area

➥ Opens	up	interesting	opportunities	in	making	
deep-learning	inference	more	efficient
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CTU	decomposition	 in	4x4	pixel	blocks


