

Compressed CNN for Green Versatile Video Coding

Probability matrix of each 4x4 block boundary

 $h_{1,1} \quad v_{1,1} \quad \cdots \quad h_{1,M-1} \quad h_{1,M}$

 $h_{2,M-1}$

 $h_{M,M-1}$ $h_{M,M}$

IETR - Vaader

Daniel Ménard

Wassim Hamidouche

Inria - Cairn Olivier Sentieys Silviu-Ioan Filip

Context

- High amount of video in internet traffic
 - x4 from 2016 to 2021
 - 81% of the overall internet traffic
- New video services and format

Encoding complexity: up to x40

• Prediction based on CNN

Limited search space

VVC encoder

Search space prediction

- VOD, webTV, video sharing, live streaming, ...
- 8K, HFR, 360° video

Objectives

→ Needs for more efficient video coding standard
 → New MPEG standard for 2021: VVC

• Huge increase of the RDO search space

→ Need for drastic complexity reduction

Complexity reduction of encoding process

techniques to enable real time encoders

DL-CNN

Search space

Results for complexity reduction

Quality degradation – complexity reduction

Probability matrix of each block boundary

 $v_{2,1}$

- Complexity reduction
- Execution time reduction
- Video quality reduction
 - BD-PSNR: Bjontegaard-Delta Peak-Signal-to-Noise-Ratio
 - BD-BR: Bjontegaard-Delta bit-rate (bit rate increase)

Video Class	BD-PSNR (dB)	BD-Rate (%)	Complexity reduction (%)		
A1	-0,06	2,42	55,24		
A2	-0,04	1,29	46,61		
В	-0,06	1,42	50,32		
C	-0,10	1,77	31,27		
D	-0,12	1,78	27,15		
E	-0,10	2,22	39,78		
Mean	-0.08	1.78	41.37		

Custom floating-point support

- Different quantization formats at each layer
- Explore sensitivity of each layer to quantization effects
- → Experiments on LeNet for the MNIST dataset

FormatLayer	conv1	conv2	conv3	fc1	fc2	All layers
(1, 1)	87.28%	24.11%	11.83%	11.83%	12.50%	11.83%
(23, 1)	91.67%	32.70%	11.83%	11.83%	14.62%	11.83%
(1,8)	92.30%	89.73%	94.75%	99.33%	75.11%	31.81%
(2,3)	98.67%	98.88%	98.33%	99.33%	97.10%	72.10%
(3, 3)	99.33%	99.00%	99.00%	99.22%	99.22%	97.32%
(4, 4)	99.22%	99.22%	99.33%	99.22%	99.22%	99.22%

Contributions

Input video stream

- 1. Complexity reduction of encoding process
 - Deep learning with CNN to increase performance
- 2. Techniques to reduce the CNN inference cost
 - Limitation of CNN inference overhead

• New partitioning tree: QT - BT - TT

CTU Tree partitioning

Neural network approximation

- Much work on compressing feed-forward neural networks for inference
 - Weight & activation quantization
 - Network compression (i.e., smaller and or structured architectures)
- Make CNNs (and DNNs in general) more friendly for edge devices
 - Reduce memory pressure for storing networks
 - Improved energy efficiency
- ➤ Need for efficient methods and tools to explore neural network approximation/compression design space for inference

Energy efficiency improvement

Energy vs. Area of custom floating-point adders and multipliers

- Reducing computations from 32 down to 10 bits provides gains of more than 15× in energy and more than 8× in area
- Opens up interesting opportunities in making deep-learning inference more efficient

Search space reduction scheme

• Prediction of probability matrix

Quantization methodology

- Focus on low-precision floating-point formats for all operations inside the CNN
 - Add support for custom floating-point arithmetic inside the N2D2 framework for DNN design
 - Work on an automatic method for choosing appropriate floating-point quantization formats at each layer of the network

Automatic exploration of different quantization formats

• Initial exploration in this direction:

$$D^* = \operatorname{argmin}_{D \in \{D_0, D_1, \dots, D_n\}} d_{D, \max}$$

$$d_{D, \max} = \max_{y \in H} d_{D, y}$$

$$d_{D, y} = \min_{x \in \Delta_D} ||x - y||$$

- D_0, D_1, \dots, D_n available quantization formats
- H list of network weights
- $d_{D,y}$ distance between y and its closest quantization in format D
- ullet Δ_D set of all possible values in the format D
- $d_{D,\mathrm{max}}$ maximal distance between a weight and its approx. in D

