

Space-division multiplexing for quantum communication networks (MuRin)

Exploratory Action

Introduction

UNIVERSITE

BRETAGNE

LOIRE

The challenge

How to distribute, from a <u>single source</u>, entangled photon pairs in a <u>multi-user</u> network?

A critical issue in the framework of industrial deployment of large-scale quantumsecured communication networks

Project structure

- 1 Modelling of nonlinear light propagation and generation of photon pairs by spontaneous four-wave mixing (FWM) in few-mode optical fibres (FMFs)
 - Numerical modelling of inter-modal FWM in classical (amplification) regime
 - Semi-classical analytical modelling of inter-modal FWM in spontaneous regime
- 2 Experimental development of the fibred multimode photon pair source
 - Design, fabrication and characterization (linear and nonlinear properties) of the device
 - Generation of photons pairs by inter-modal FWM and characterization of the pairs (spectral and modal properties, generation efficiency, quantum purity)
- ③ Entanglement of the pairs and distribution by wavelength- and space-division multiplexing

Our approach

Multi-user distribution of photon pairs by space-division multiplexing

Reminder: Phase matching depends on the dispersive properties of the medium, thus on the transverse propagation modes that are involved in the process.

If several modes are possible, then several phase-matching conditions can be satisfied.

Simplest case: In a 2-mode fibre, if the pump is injected into both of the modes, 4 distinct four-wave mixing processes can be expected:

SDM = Space-division (de)multiplexer

DWDM = Dense wavelength-division (de)multiplexer

Distribution to

4 pairs of users

EPS = Entangled photon pair source

(105 possible configurations)
 + Enhanced capacity if the phase-matching conditions are spectrally broad

simultaneously!

Exploratory Action – Numerical study of inter-modal four-wave mixing in few-mode optical fibres

Numerical modelling of nonlinear light propagation in few-mode optical fibres

Numerical resolution (split-step Fourier method) of the **nonlinear Schrödinger equation in multimode regime** [1] (which describes the propagation of electromagnetic waves in few-mode optical fibres)

Validation by comparison with the numerical results reported in [2]

Comparison parameter:

Conversion efficiency = $\frac{\text{Output power at } \omega_i (= \omega_{p1} + \omega_{p2} - \omega_s) \text{ in LP}_{11}}{\text{Output power at } \omega_s \text{ in LP}_{01}}$

Application: Phase-sensitive amplification by inter-modal four-wave mixing

Particular case where signal and idler waves are *frequency degenerate*

 $\omega_{s} = \frac{\omega_{p1} + \omega_{p2}}{2}$ $\omega_{p2} \quad \omega_{s} = \omega_{i} \quad \omega_{p1}$

Injection of a *probe wave* at the same frequency as the signal, but in the other transverse mode

Two distinct IM-FWM processes simultaneously occur, leading to interferences that can **inhibit or enhance the signal amplification** (depending on the phase of the input signal wave).

The extinction ratio (contrast between enhancement and inhibition) can be adjusted by tuning the input probe power.

Results of the Exploratory Action & Future prospects

RESULTS OF THE EXPLORATORY ACTION

- 1. Implementation and validation of a numerical model for the nonlinear propagation of light in few-mode optical fibres (FMFs) in classical regime
 - **Essential tool for the entire project**
- 2. Numerical investigation of phase-sensitive amplification (PSA) by inter-modal four-wave mixing (IM-FWM) in FMFs
- 3. Initiation of discussions between the Optics, Networks, and Security communities to **instigate trans-disciplinary collaborations** for the development of **new technological resources and know-hows for the next generation of secured networks** (data transmission in multimode optical fibres, security of short-reach networks such as data centres, etc.)

SHORT-TERM PROSPECTS

Input signal phase [rad]

Probe = 10 dBm

Probe = -10 dBm

- 1. Experimental demonstration of PSA by IM-FWM in FMFs
- 2. Entry into the quantum regime (spontaneous IM-FWM) in order to generate photon pairs that could be exploited for e.g. quantum cryptography protocols
 - Towards the demonstration of generation, entanglement, and space-division multiplexing-based distribution of photon pairs by spontaneous IM-FWM in FMFs

