
The Language of the Web

JavaScript is THE language of the web. It is used in all browsers to

interpret dynamic website pages.

Outside its original ecosystem, some operating system native

software is written with JavaScript (like with Electron framework).

But it is also a language with a complex syntax and many implicit

type castings. These issues make some programs difficult to

understand. As a consequence, evaluating JavaScript software

coherence, safety or security could be a hard task. It creates a drag

for language evolution because evaluating new feature proposal

impact is difficult.

Celtique Team

Alan Schmitt

Arthur Charguéraud

Thomas Wood

JSExplain:
A Double Debugger
for JavaScript

A Certified JavaScript Interpreter

Titre

JSExplain is a JavaScript program debugger that can be used in a

browser. You can write or load the program you want to verify, and

then interpret and run it step by step (❶).

We visualize at the same time:

The program execution context: memory state, expressions,

variables, types and values (❷).

The lexical context (❸).

At each program step we see in parallel:

The JavaScript interpreter code and its localization regarding the

precise execution point (❹).

What part of the ECMAScript specification it corresponds to (❺).

Buttons allow the user to go forward and backward in the program

execution and to skip functions that he does not want to inspect

(❻).

Web browser interpreters implement

ECMAScript, the official language

specification in different ways, mainly

because it is written in pseudo natural

language.

During the JSCert project, it has been

formalized and verified with the Coq

proof assistant (❶).

The JSRef interpreter is correct

regarding this specification (❷).

The JavaScript interpreter is written in Ocaml. It is derived from

the interpreter extracted from the JSCert project that was written

in Coq. It is compiled into JavaScript so that it can be embeded in

the web interface (➀). The source code is converted in a specific

data structure called Abstract Syntax Tree (➁). The interpreter

takes it as input and produces the program execution trace (➂).

Un outil pour comprendre
JavaScript Its Ocaml extraction maintains this correctness too (❸). The

semantics of the language is preserved from end to end. We have

the guarantee that the executable interpreter is an exact

mechanizable version of the semantics expressed in the

specification.

Architecture

❶

❷
❸

❹

❺

❻

Normalization

➀

➁

➂

To verify this assertion and maintain the interpreter, it is tested

with the official ECMA test set (❹).

Finally, from the study of a langage and the formalization of its

specification we got a certified JavaScript reference interpreter.

People can use it to verify their own developments.

❶
❷

❸

 Help JavaScript Evolution

If the JSRef JavaScript Interpreter is a naive one, it

is correct and give an exact idea of what should be

the behavior of a real world interpreter. So beyond

JavaScript developpers it is a precious tool for

normalization people.

Upstream and during the integration of a new feature in

the language one would like to know the impact of

the evolution. Does it break or contradict any existing

feature? A version of the feature can be implemented in

the JSRef interpreter and checked with the official

test set.

A Tool to Understand JavaScript

❹

ECMA, the European association for standardizing

information and communication systems was created in

1959. When JavaScript is born in 1995 ECMA has started

to publish the language specification since 1997. So

beside its issues, at least the language has been

formalized since its early beginning.

The process to suggest a new feature, to study and

validate it is strongly normalized. Once it is done it can be

integrated in the specification.

	Diapo 1

