

Interactive Communication InterCom

TFAM

- Inria, Sirocco team
- LabSTICC, Télécom Bretagne
- Inria, i4S team
- External partner: L2S, CentraleSupelec.

Massive Random Access to subsets of compressed correlated data

The interCom project aims to develop novel compression techniques allowing massive random access to large databases.

- large database: to be stored on a single server, the data have to be **compressed** efficiently, i.e. the redundancy/correlation between the data have to be exploited.
- random access: The dataset is then stored on a server and made available to users that may want to access only a subset of the data. Such a request for a subset of the data is indeed random, since the choice of the subset is user-dependent.
- massive requests: upon request, the server can only perform low complexity operations (for instance no decompression/compression).

Algorithms for two emerging applications of this problem will be developed:

Free-viewpoint Television (FTV) and massive requests to a database collecting data from a large-scale sensor network (such as Smart Cities).

SERVER Offline encoder online extractor request request Client request Client Client

Random access to a database: the user can choose any subset of the compressed correlated data.

Applications

Meteorological spatio-temporal data

➤ Free Viewpoint Television

Data Modeling

Meteorological spatio-temporal correlation

Spatial predictions

Results

Temporal prediction: optimal linear predictor $Z_n = X_n - aX_{n-1} - bX_{n-2} \label{eq:Zn}$

360° image

(scenario, datasets, etc.)

Data Modeling?

(prediction, correlation model, etc.)

Coder?

(optimal,incremental, etc.

Applications?

periments, etc.)

Free Viewpoint Television

- 3D to 2D mapping
- User's request modeling
- Geometry-aware interblock prediction
- Geometry aware block

> Influence of the correlation model

Impact of correlation model on the coder performance

Performance

Derivation of optimal transmission-storage rate performance

3D model

- Universal coding (models unknown)
- Not ergodic and not stationary sources

Coding scheme optimization based on user's request modeling

Coder

- Implementation of an embedded entropy coder
- Rate-adaptive LDPC codes that adapt to data model
- The proposed code construction greatly reduces the amount of cycles in the parity check matrices of the code
- It shows a clear performance improvement compared to state of the art method called LDPCA

Design and Implementation of a generic interactive coder

Achievements

- 2 journals and 6 journal submitted or in preparation
- 9 conference papers (DCC, ICIP, EGU, GRETSI, WCNC, ICASSP, PCS)
- 1 workshop in Brest (January 2018)
- 9 invited seminar (France, UK, Switzerland, Germany)
- 2 PhD defenses

